Ю. А. Кругляк КВАНТОВАЯ ХИМИЯ Киев: 1963 – 1991 Yu. A. Kruglyak QUANTUM CHEMISTRY Kiev: 1963 – 1991

Одесса ТЭС 2016 Ю. А. Кругляк

Yu. A. Kruglyak

Киев: 1963 – 1991

КВАНТОВАЯ ХИМИЯ QUANTUM CHEMISTRY Kiev: 1963 – 1991

> Одесса ТЭС 2016

ББК 24.511.2я43 УДК 54:530.145(066) РАСS: 03.65.-w, 31.10.+z, 31.15.-p, 31.15.Ct, 31.15.Ne, 31.25.-v, 31.25.Jf

К 840 Кругляк, Юрий Алексеевич

Квантовая химия. Киев: 1963 – 1991 / Ю. А. Кругляк. – Одесса: ТЭС, 2016 – 668 стр.; 76 рис.; 106 табл.; 971 лит.

Книга посвящена основным научным результатам в области квантовой химии и квантовой механики молекул моих коллег и сотрудников киевской группы квантовой химии Института физической химии им. Л. В. Писаржевского АН УССР и Института теоретической физики им. Н. Н. Боголюбова АН УССР полученным в период 1963 – 1991 годов.

В первом разделе (главы 1 и 2) изложены методы решения молекулярного уравнения Шредингера, в том числе метод конфигурационного взаимодействия вплоть до полного КВ в представлении вторичного квантования и метод одноэлектронного гамильтониана в многоконфигурационной теории самосогласованного поля, впервые предложенные и разработанные в Киеве.

Второй раздел (главы 3 – 5) полностью посвящен расчету молекул *ab initio* в базисе гауссовых функций, созданной в СССР впервые в Киеве неэмпирической программе ФУГА и особенностям расчета молекул в ограниченных базисах гауссовых функций.

Третий раздел (главы 6 – 11) содержит избранные наиболее важные результаты. Среди них разработанный в Киеве метод полного проектирования волновой функции неограниченного метода Хартри – Фока на состояние с определенной спиновой мультиплетностью на примере неэмпириского расчета бензильного радикала, детальный анализ взаимодействия иона Li⁺ с молекулой азота, подробно представлен киевский цикл исследований по фрагментации, конформациям и перегруппировке молекул во внешнем поле, дан обзор всех киевских результатов по электрическом квазиодномерным электронным системам, подробно изложен впервые разработанный в Киеве метод идеальных пиков для количественного изучения ближней упорядоченности в полимерах, наконец, представлен также цикл исследований по химической топологии и подробно изложен эффективный прогнозирования свойств молекулярных новый метод вешеств С использованием новых инвариантов полностью взвешенных графов. Часть оригинальных результатов вместе со справочными сведениями вынесена в Приложения.

Книга предназначена прежде всего для специалистов в области квантовой и теоретической химии, однако, вводные главы книги могут быть полезными для магистрантов и аспирантов физиков и химиков.

ISBN 978-617-7337-54-5

ББК 24.511.2я43 УДК 54:530.145(066)

ISBN 978-617-7337-54-5

PACS: 03.65.-w, 31.10.+z, 31.15.-p, 31.15.Ct, 31.15.Ne, 31.25.-v, 31.25.Jf

Kruglyak, Yuriy A.

Quantum chemistry. Kiev: 1963 – 1991 / Yu. A. Kruglyak. – Odessa: TEC, 2016 pages 668; figures 76; tables 106; references 971

The book is dedicated to the major scientific results in the field of quantum chemistry and molecular quantum mechanics of my colleagues and staff of the Kiev quantum chemistry group at L. V. Pisarzhevsky Institute of physical chemistry and N. N. Bogolyubov Institute for theoretical physics of Academy of Sciences of the Ukrainian SSR obtained in the period 1963 – 1991.

In the first section chapters 1 and 2 outline the methods of solving the molecular Schrödinger equation, including the Method of configuration interaction up to the Full CI in the second quantization representation approach and the One-electron Hamiltonian method in multi-configurational self-consistent field theory, both first proposed and developed in Kiev.

The second section (chapters 3 to 5) is dedicated to the *ab initio* calculation of molecules in the basis of gaussian functions, as well as to developed in Kiev for the first time in USSR nonempirical FUGA program and to the peculiarities of molecular calculations with a limited gaussian basis.

The third section (chapters 6 to 11) gives a selection of the most important scientific results: the first developed in Kiev the method of complete projection of the unrestricted Hartree – Fock wave function to the state for a given spin multiplicity with an example of *ab initio* calculation of the benzyl radical, a detailed analysis of the interaction of the Li⁺ ion with the nitrogen molecule, a series of Kiev studies on fragmentation, conformations and rearrangement of molecules in an external electric field, very detailed overview of all Kiev results in quantum mechanical theory of the quasi-one-dimensional electronic systems, modeling of the short-range order for polymers by the ideal peak method first developed in Kiev, finally, a series of studies on the chemical topology is given including new effective method to predict the properties of molecular substances with the use of new invariants of the fully weighted graphs. Part of the original results together with the standard data is outlined in the Appendix.

The book is intended primarily for professionals in the field of quantum and theoretical chemistry, but the introductory chapters of the book may be useful for magistrants and doctorants physicists and chemists.

ISBN 978-617-7337-54-5

Предисловие

Мне повезло. Поступил с первого раза на химический факультет Харьковского университета. При 54 балах проходных для ребят (конкурс в 1954 году был 11 человек на одно место) набрал 53 бала (получил тройку за сочинение на украинском языке), но председатель конкурсной комиссии доц. Л. М. Литвиненко, а он слушал мои ответы на вопросы на экзамене по химии, отстоял мое зачисление.

Сразу стал заниматься в кружке на кафедре органической химии под руководством Л. М. Литвиненко: нитрование бифенила мною закончилось небольшим пожаром, и это было моим последним увлечением экспериментальной химией.

Встреча с проф. Н. П. Комарем решила мою судьбу. Я обратился к нему с вопросом – будет ли растворяться в воде идеальный, без каких-либо дефектов кристалл соли NaCl? В ответ услышал: вам, молодой человек, нужно было поступать на физический факультет, а не на химический. Чуть ли не на следующий день он повел меня к ректору университета акад. И. Н. Буланкину, и я был зачислен студентом физического факультета, но с обязательством закончить и химический факультет.

Самым ярким воспоминанием университетских лет осталась поездка со студенческим отрядом физиков на целину с середины мая по сентябрь 1956 года. Назад возвращались через Челябинск, где в книжном магазине нашел Стенографический Всесоюзного совещания отчет «Состояние теории химического строения в органической химии» 11 – 14 июня 1951 г. Книга Я. К. Сыркина и М. Е. Дяткиной «Химическая связь и строение молекул» издания 1948 г. у меня уже была, краем уха уже слышал о критике теории резонанса в химии, теперь же узнал подробности как и кем вершился погром квантовой химии в СССР. По возвращении домой написал большую статью в стенгазету о гибели студентов на целине и том беспределе, которым сопровождалась уборка урожая в сентябре и о нашем бессмысленном и во многом трагическом пребывании на целине в мае – августе. Стенгазета провисела лишь несколько минут и в лице декана химфака В. П. Корниенко приобрел фундаментального недоброжелателя.

На физфаке я учился в группе физиков-теоретиков. Среди сокурсников особенно хорошо помню Илью Ахиезера, Станислава Гузенко, Игоря Кулика, Валентину Палатник и Игоря Фалько. Это были незабываемые годы учебы. Лекции по статфизике нам читал И. М. Лифшиц, по квантовой механике – А. И. Ахиезер, матфизику читал и вел практические занятия А. Я. Повзнер, и этот перечень блестящих ученых и преподавателей можно продолжить.

Моя дипломная работа была посвящена разработке дырочной теории растворимости. В ее основе лежала дырочная теория жидкости Я. И. Френкеля. Эта модель растворимости вскоре нашла применение на Северодонецком химическом комбинате при поиске растворителя для безопасного хранения необыкновенно взрывоопасного триацетилена. На память остались два авторских свидетельства об изобретении.

Вопреки требованию декана В. П. Корниенко и мнению партбюро химфака проф. Н. А. Измайлов принял меня в аспирантуру к себе на кафедру физической химии. Кроме сдачи стандартного экзамена по специальности Николай Аркадьевич требовал также продемонстировать ему лично знание назубок двух монографий – его «Электрохимии растворов» и монографии Гуггенгейма «Современная термодинамика, изложенная по методу У. Гиббса» еще довоеного издания. Хорошо помню, уже в роли аспиранта, первую встречу с Николаем Аркадьевичем. Он начал прямой разговор с того, что плохо знает физику, еще хуже – математику, а хотел бы понять и объяснить такой обнаруженный им экспериментальный факт как удивительную близость энергий первичной сольватации ионов щелочных и щелочно-земельных металлов в растворителях совершенно различной химической природы, что абсолютно не соответствовало казавшейся тогда совершенно естественной электростатической теории сольватации ИОНОВ. Продемонстировал экспериментальные факты и подробно рассказал о своем подходе к вычислению энергии первичной сольватации ионов из ее суммарного значения для соли. Эта первая встреча была в октябре 1959 года. Вторая встреча состоялась только в апреле следующего года. Я принес ему квантовую донорно-акцепторную модель первичной сольватации ионов, как катионов, так и анионов. Долго обсуждали в тот день, а закончили обсуждение уже вечером у него дома возможных следствий этой модели, в частности, для проблемы разделения энергии сольватации соли на ионные составляющие. Концовка этой встречи была для меня полной неожиданностью. «Завтра едем в Москву, расскажите эту модель Я. К. Сыркину и В. К. Семенченко. Послушаем их мнение». Мы таки послезавтра оказались в Москве. И Яков Кивович Сыркин и

6

Владимир Ксенофонтович Семенченко слушали нас дома, с мелом в руках около обычной школьной доски. Пили чай с печеньем. Получили «добро». В то время Я. К. Сыркин собирал и редактировал статьи по теоретической химии в готовящуюся к изданию «Краткую химическую энциклопедию» в 4-х томах. Предложил мне написать для энциклопедии статью «Координационная связь». Все это происходило для меня как во сне. Статью я, конечно, вовремя представил и она попала в энциклопедию.

Вернулись домой в Харьков и еще в поезде Николай Аркадьевич предложил сразу засесть за короткую статью в ДАН СССР, наметил канву будущей статьи и поручил писать ее мне. Предстоящий месяц пока создавалась эта статья я иногда вспоминал это время почти с ненавистью к своему руководителю. a теперь vжe давно вспоминаю с великой к нему благодарностью за то, что он научил меня писать научные статьи кратко, емко и ответственно: возвращал мне статью на переделку и доработку 17 раз. Статья «К вопросу о сольватации ионов» вышла в июньском номере 1960 года. Представил ее к печати акад. М. И. Кабачник. Это была моя первая публикация.

Кандидатскую диссертацию «Изучение сольватации протона и ионов металлов I и II групп элементов Периодической системы но основе квантовой механики» защищал на Ученом совете химического факультета в 1963 г. уже без Николая Аркадьевича. Он скончался неожиданно и скоропостижно 2 октября 1961 года. Вечная память замечательному человеку и нестандартному талантливому ученому и руководителю.

В Киеве я оказался случайно и неожиданно для меня. На Пятой украинской республиканской конференции по физической химии (Киев, 1962) делал доклад «О природу связей в сольватах и механизме образования ионов лиония», который и привлек внимание акад. А. И. Бродского, в прошлом известного электрохимика. Получил приглашение на работу в его Институт физической химии АН УССР. В этот период научные интересы Александра Ильича лежали в области физической химии свободных радикалов. Он предложил подключиться к этому направлению и сосредоточиться на электронном строении и интерпретации спектров ЭПР свободных радикалов. А это чистая квантовая химия. В отделе А. И. Бродского начала создаваться группа квантовой химии. Ее первыми сотрудниками были Виктор Данилов, Юра Горлов, Светлана Христюк, Ирина Ященко. Начали осваивать ЭВМ М-20 Института кибернетики АН УССР и вместе с сотрудниками этого института Б. Н. Пшеничным и В. С. Квакушем запустили первую в СССР программу на кодах М-20, реализующую метод молекулярних орбиталей Хюккеля. Начал

собираться семинар по квантовой химии, активным участником которого всегда был Георгий Глебович Дядюша, замечательный человек и блестящий ученый, он работал в ИОХ АН УССР. В группу влились Слава Лутошкин, был принят Миша Долгушин после его аспирантуры в Дубне у Н. Н. Боголюбова, перешел к нам из другого института Виктор Куприевич, появились аспиранты Е. В. Моздор, Н. Е. Радомысельская, И. И. Украинский. Шла интенсивная и многоплановая работа по развитию и программированию самосогласованных методов расчета электронной структуры молекул. Всех нас увлек расчетами компонентов нуклеиновых кислот Виктор Данилов. В 1967 г. он успешно «Квантовомеханическое защитил кандидатскую диссертацию изучение компонентов нуклеиновых кислот в связи с молекулярними механизмами мутагенеза». Он был моим первым защитившимся аспирантом. Вскоре после защиты Виктора перевели в Институт молекулярной биологии и генетики АН УССР, где начал создаваться его отдел квантовой биологии.

В том же 1967 году защитил кандидатскую Виктор Куприевич на тему «Обобщенная теория самосогласованного поля и расчет электронной структуры сопряженных систем» (руководитель Г. Г. Дядюша). В 1967 и 1969 годах в «Науковой думке» вышли две наших коллективных монографии по методам расчета электронной структуры и спектров молекул.

Весной 1969 года Александр Ильич как-то спросил меня не пора ли защищать докторскую И посоветовал защищаться В Ленинградском университете. Там, по его словам, работает Сергей Александрович Щукарев, он отстаивает электронные представления в химии. «Он вас поддержит». Кафедры квантовой химии в Ленинграде тогда еще не было. И вообще, квантовая химия только начала приходить в себя после идеологического разгрома в 1951 году. Так С. А. Щукарев, энциклопедически одаренный ученый и образец русской интеллигентности стал моим оппонентом. Оппонировать мою докторскую также взялся авторитетный физик-теоретик Михаил Григорьевич Веселов в Борисовичем Болотиным паре с Адольфом ИЗ Вильнюса. Ведущим предприятием назначили лабораторию Н. Д. Соколова с его молодыми бультерьерами-теоретиками из Института химической физики АН СССР.

Диссертацию «Исследования в теории сопряженных систем в парамагнитных состояниях» написал за май и начались бесконечные поездки в Ленинград и Москву с докладами и согласованиями. 21 августа неожиданно умер Александр Ильич, ему было всего 74 года. Потеря для мировой и отечественной науки просто невосполнимая. Только после его смерти стали постепенно доходить до нас отрывочные сведения о его довоенном

8

днепропетровском периоде (первое получение тяжелой воды, каскадное разделение изотопов урана). Александр Ильич был гениальным ученым и уникальным руководителем института. Именно благодаря его дару предвидения и гражданской смелости начала в Киеве развиваться и восстанавливаться попранная в своих правах квантовая химия. С нами осталась и вечно прибудет светлая память об Александре Ильиче Бродском.

Предзащиту я проходил по совету М. Г. Веселова на его кафедре теоретической физики ЛГУ. Еще был жив и активен Владимир Александрович Фок, заведующий кафедрой, но уже плохо слышал. Я докладывал как раз технику вторичного квантования, разработанную именно В. А. Фоком, применительно к компьютерной реализации полного конфигурационного взаимодействия для модельных молекулярных гамильтонианов. Владимир Александрович сидел как-то тихонько в углу семинарской комнаты, так и не задал мне ни одного вопроса. А так хотелось услышать его. Защитился уже в декабре.

Миша Долгушин тепер уже на ЭВМ БЭСМ-6 начал программирование метода расчета молекул *ab initio* в базисе гауссовых функций и в 1971 году была запущена первая в СССР программа неэмпирического расчета молекул. Этот год стал переломным в судьбе всей нашей группы. Неожиданно получили приглашение всей группой перейти в недавно открытый в Феофании Институт теоретической физики АН УССР. Такое же приглашение одновременно получил и Виктор Данилов со своим отделом квантовой биологии. Переговоры с нами вел Виталий Петрович Шелест от имени директора института Николая Николаевича Боголюбова. В институте был создан Сектор теоретической биофизики. Постановлением Президиума АН УССР наши оба коллектива перевели в этот Сектор и создали два отдела – квантовой биофизики (В. И. Данилов) и квантовой механики молекул под моим началом. Хорошо помню представление В. П. Шелестом меня Н. Н. Боголюбову. Николай Николаевич сильно удивился, услышав от меня о разработке нашей группой численного решения молекулярного самосогласованного уравнения Шредингера на ЭВМ из первых принципов.

Началась интенсивная работа обоих коллективов, часто совместная как в направлении квантовой химии, так и квантовой биологии и даже квантовой фармакологии. Хорошо помню как на одном из годичных отчетов, а в роли официального рецензента наших работ в тот год выступал Александр Ильич Ахиезер, он начал с того, что «... вы, друзья, так дойдете и до квантовой

9

гинекологии. Так я хочу вас разочаровать, но я лично сторонник классических подходов в этой задаче ...».

Участниками наших регулярних семинаров стали не только штатные сотрудники и аспиранты обоих отделов, но и наши коллеги из других киевских институтов и даже из других городов. Я хочу назвать поименно всех кого я помню:

Г. М. Баренбойм, С. Н. Волков^{*}, Ю. И. Горлов^{*}, В. И. Данилов[†], Л. С. Дегтярев^{*}, М. Д. Долгушин, Г. Г. Дядюша[†], Н. В. Желтовский[†], Д. А. Жоголев^{*}, В. А. Засуха, В. В. Ильин^{*}, Г. Ф. Квенцель^{*}, В. Е. Клименко, Н. Е. Кругляк (Радомысельская), Ю. А. Кругляк^{**}, Е. С. Крячко^{*}, З. Г. Кудрицкая, Н. В. Кузьменко, В. А. Куприевич^{*†}, В. В. Лобанов^{*}, В. И. Лутошкин, Н. Н. Маковский, Е. В. Моздор, В. В. Оглоблин, А. И. Онипко^{*}, В. В. Пеньковский[†], В. И. Печеная, В. М. Пинчук^{*†}, А. Ю. Посудиевский, В. А. Сажников, В. М. Семяновский, И. И. Украинский^{*†}, В. Е. Хуторский^{*}, О. В. Шрамко, С. М. Шульга, Л. Н. Щеголева^{*}.

Все защитили кандидатские, а многие – и докторские (помечены *). Многих уже нет. Особо я хочу отметить громадный вклад в становление и развитие квантовой химии и квантовой биофизики в Киеве дипломированных и рядовых сотрудников наших коллективов, выполнявших программирование и расчеты на всех советских ЭВМ от М-20 до БЭСМ-6 и на всей линейке ЕС. Это Г. В. Бугрий, М. Д. Долгушин, Г. Г. Дядюша[†], Д. А. Жоголев, В. С. Квакуш[†], В. Е. Клименко, Н. Е. Кругляк, В. А. Куприевич[†], В. В. Лобанов, В. И. Лутошкин, Н. Н. Маковский, Л. М. Подольская, Б. Н. Пшеничный[†], В. Б. Распопов, В. Н. Семяновский, И. И. Украинский[†], В. И. Хильченко, Е. А. Хмурова, С. П. Христюк, В. Е. Хуторский, О. В. Шрамко, И. С. Ященко.

С назначением нового директора института А. С. Давыдова почти сразу стало очевидным и Виктору Данилову и мне, что конфликт научных интересов неизбежен, и нам прийдется уйти. А тут я еще как-то проговорился ему, что читал его выступление на идеологическом «резонанском» Всесоюзном совещании 1951 года. Буквально на следующий день после закрытия International Conference on Quantum Chemistry, Biology, and Pharmacology, September 18 – 22, Kiev, 1978 А. С. Давыдов предъявил припрятаную до поры до времени анонимку и потребовал моего ухода из института. Я подготовил и отправил в США доклады на конференции; они вскоре были опубликованы в четырех номерах Intern. J. Quantum Chemistry, 16, nn 1 - 4 (1979). К этому времени я как-то уже перегорел и отнесся к уходу равнодушно. По решению Президиума АН УССР меня перевели в Физико-химический институт АН

УССР в Одессу, который я вскоре покинул и перешел на преподавательскую работу в Одесский университет им. И. И. Мечникова, в котором мне позже открыли кафедру молекулярной электроники. Перед этим были еще восемь лет преподавания пятисеместрового общего курса физики в Одесском технологическом институте им. М. В. Ломоносова.

Вслед за мной почти сразу же покинул институт и Виктор Данилов. Его вернули в Институт молекулярной биологии и генетики АН УССР.

Виктор Иванович Данилов ушел из жизни неожиданно 9 января 2014 г. Его близкий друг Максим Франк-Каменецкий написал некролог и опубликовал его в «Biopolymers and Cell». Я воспроизвожу его сразу после этого предисловия. Виктор несомненно заложил основы квантовой биологии в целом в СССР, он был одаренным ученым, жил буквально своими нуклеиновыми кислотами, был настойчивым и дотошным исследователем, вместе с тем имел непростой характер, который так тяжело отражался на его личной жизни и на окружающих. Я был свидетелем фактически всей его жизни, начиная со студенческих лет, и буквально до его последнего дня. Он навсегда останется в моей памяти не только как близкий друг, но и как коллега по совместной работе.

Сейчас, когда я пишу это предисловие, в Институте теоретической физики из всего нашего коллектива квантовых химиков остался и успешно работает в области фундаментальных основ теории функционала плотности и теории гидратации молекул выпускник Харьковского университета Евгений Сергеевич Крячко, в прошлом мой аспирант, а ныне доктор физ.-мат. наук, чем я могу только гордиться. Из отдела Виктора Данилова остался в институте и также успешно занимается теорией конформационных превращений ДНК Сергей Наумович Волков, тоже доктор физ.-мат. наук. К чести его он в течение многих лет читал курс биофизики на физическом факультете Киевского национального университета им. Т. Г. Шевченко, что само по себе уже подвиг в наших условиях. Одно могу сказать. Пребывание наших двух коллективов в стенах этого института не осталось без следа. Квантовохимическая и молекулярнобиологическая тематика стала традиционной для многих киевских физиковтеоретиков.

В Украине в советское время было несколько центров развития квантовой химии. В моем родном Харьковском университете кафедру квантовой химии открыли Игорю Васильевичу Кривошею. Он был младше меня на один курс. Ушел из жизни слишком рано. Ему не исполнилось еще и шестидесяти. Был талантливым и креативным физиком.

В Днепропетровске получила известность школа квантовой химии В. П. Морозова и В. В. Россихина.

Хорошо помню как мне позвонил Михаил Григорьевич Веселов и спросил не найдется ли подходящего места работы для Михаила Марковича Местечкина в Украине забрать его из Саранска, куда он попал по направлению после аспирантуры у М. Г. Веселова. «Он ведь одессит». Я сразу подумал о Леониде Михайловиче Литвиненко, у него уже был свой институт в Донецке. Вскоре Михаил Маркович получил отдел в Институте физико-органической химии АН УССР. Часто наведывался он в Киев. Оппонировал двум моим аспирантам. Успешно публиковал свои нетривиальные монографии в издательстве «Наукова думка». Год-два назад перед отъездом в США был в Одессе и зашел к нам домой попрощаться. Сейчас взаимно зарегистрировались в сети R^G, видим друг друга и можем общаться, если потребуется.

В этой книге я собрал на мой взгляд главные научные результаты в области квантовой химии и квантовой механики молекул моих коллег, сотрудников и аспирантов киевской группы квантовой химии ИФХ / ИТФ АН УССР полученные в период 1963 – 1991 годов либо с моим участием в некоторых проектах, либо в тех направлениях, которые представлялись мне наиболее важными и которые я активно поддерживал.

Многие важные результаты методического характера оказались за пределами этой книги памяти. Особенно это касается всех публикаций по вычислительным методам и программированию, сыгравшим важнейшую роль в развитии квантовой химии в Украине.

9 декабря 2016 года Одесса

Юрий Кругляк

CHRONICLE AND INFORMATION

In memoriam: Victor I. Danilov (1936–2014)

Victor Danilov, a pioneer of quantum biophysics, died in Kiev on January 9th of 2014. The cause of his death was heart attack. Victor has been a prominent figure internationally as a leading expert in applications of quantum chemistry to biology. Specifically, he made seminal contributions into quantum mechanical studies of DNA bases and their interactions with water and with each other.

I wish to share here with the readers of Biopolymers and Cell my very personal recollections about Victor, with whom I have been a close friend for 50 years. We first met in Leningrad, in 1963, at the 1st All-Union Biochemical Congress. I was still a student at that time but we immediately became friends since we shared passion for DNA and for modern physics. Soon after our first meeting, we became unofficial members of a small community, dispersed throughout most of the Soviet Union, of DNA biophysicists. There was an intense exchange of ideas within this community existing behind the Iron Curtain, which was almost completely separated form the rest of the world, before the Iron Curtain was dismantled by Mikhail Gorbachev in 1989. Victor was our major representative in Kiev, others represented the community in Leningrad, Kharkov, Yerevan, Tbilisi, etc. As everything in the Soviet Union, the DNA biophysics community centered in Moscow. A wide geography allowed us not to feel too claustrophobic, while we were artificially separated from the world scientific community.

I cannot say how many times I visited Victor in Kiev. One of these visits was especially memorable. On April 26th of 1986, I was visiting Victor and we walked through the forest in Pheophania, near the Institute of Theoretical Physics, where Victor worked at the time. The spring weather was absolutely beautiful. We learned only later that a major nuclear accident happened that day in Chernobyl and Kiev got its share of radionuclides. When I returned to Moscow and subjected my jacket to the Geiger counter, it clicked like crazy.

It was not that we talked only about DNA. Victor was a quintessential representative of the Soviet intelligentsia, who could never come in terms with the repressive Communist rule, and we exchanged with our very critical opinions about the regime. We also exchanged with news about the underground literature and other unofficial cultural events.

Very early, Victor established working contacts with his Eastern European colleagues, mostly in Poland, and, since for them more contacts with the West were allowed, Victor gradually established links with his Western colleagues. I remember a very fruitful international meeting on quantum biochemistry and biophysics in late 1970s in Kiev, which was organized by Victor and his Kiev colleagues. Also very memorable, was a visit in mid 1980s to Kiev of Rama Sarma and his wife Mukti, the organizers of the famous Albany Conversations on Biomolecular Stereodynamics. The late Valery Ivanov and me came to Kiev from Moscow, and Victor marvelously hosted all of us. Such personal contacts with Western colleagues paid off later, after the collapse of the Iron Curtain, and made it possible for our DNA biophysics community to quickly incorporate itself into the world community. Victor, and the rest of us, presented a sharp contrast with the frightened official Soviet visitors to the Western laboratories, most of whom were the KGB agents, and who, as a colleague here in Boston once noticed to me, were ready to jump out of the window when were asked most innocent political questions. Victor was never afraid of speaking his mind with anybody, whether it was science or politics and whether he spoke to a Soviet colleague or a foreigner.

Victor, with his enormous erudition in the field of nucleic acids and quantum chemistry, greatly benefited from the openness followed the collapse of the Communists rule. He started extremely fruitfully collaborating with colleagues all over the world. He continued to work very productively to the very last minute of his life. His signature feature has always been the uninhibited devotion to science.

I will sorely miss Victor, as, I am sure, his many colleagues, friends and former students.

Список сокращений

- АГП/АGР Антисимметризованные геминальные произведения (функции)
- АМО/АМО (Метод) альтернантных молекулярных орбиталей
- АО/АО Атомная орбиталь
- АПСГ/APSG (Метод) антисимметризованного произведения строго ортогональных геминалей
- АУ/АН Альтернантный углеводород
- ВЗМО/НОМО Высшая заполненная МО
- BC/VB (Метод) валентных схем
- КВ/СІ Конфигурационное взаимодействие
- КВОД/CISD КВ с учетом всех одно- и двухвозбужденных конфигураций
- КРТ/QЕТ Квазиравновесная теория
- ЛКАО/LCAО Линейная комбинация атомных орбиталей
- ЛКГО/LCGO Линейная комбинация гауссовых орбиталей
- ЛКОС/LCBO Линейная комбинация орбиталей связей
- МК ССП/MCSCF Многоконфигурационная (теория) ССП
- МО/МО Молекулярная орбиталь
- МП/DМ Матрица плотности
- МЧПДП/MINDO Модифицированное частичное пренебрежение дифференциальным перекрыванием
- НДП/ZDO Нулевое дифференциальное перекрывание
- НПМО/LUMO Низшая пустая МО
- НХФ/UHF Неограниченный (метод) Хартри Фока
- НХФ-СП/UHF-SP НХФ со спиновым проектированием
- ОГ/ОЕН Одноэлектронный гамильтониан
- ОГТ/GTО Орбитали гауссова типа
- ОСТ/STO Орбитали слэтеровского типа

ОХФ/RHF – Ограниченный (метод) Хартри – Фока

ОХФО/ROHF – Ограниченный (метод) Хартри – Фока для открытых оболочек

ПАП ССП/CASSCF – (Метод) полного активного пространства ССП

ПКВ/FCI – (Метод) полного конфигурационного взаимодействия

- ППДП/INDO (Метод) промежуточного пренебрежения дифференциальным перекрыванием
- ППДП/2 / CNDO/2 (Метод) полного пренебрежения дифференциальным перекрыванием
- ППЭ/PES Поверхность потенциальной энергии
- ППП/РРР (Метод) Паризера Парра Попла
- РМП/RDМ Редуцированная матрица плотности
- РМХ/ЕНМ Расширенный метод Хюккеля
- POPC/DODS Разные орбитали для разных спинов
- РХФ/ЕНГ Расширенный (метод) Хартри Фока
- ССП/SCF Самосогласованное поле
- СТС/HFS Сверхтонкая структура
- OBC/GVB (Метод) обобщенных валентных связей Годдарда
- ОМХФ/GHF Обобщенный метод Хартри Фока
- ОЭГ МКССП/ОЕН MCSCF (Метод) одноэлектронного гамильтониана в МК теории ССП
- $X\Phi/HF (Метод) Хартри Фока$
- ХФР/HFR (Метод) Хартри Фока Рутана
- ЧПДП/INDO Частичное пренебрежение дифференциальным перекрыванием
- ЭВМ Электронная вычислительная машина
- ЭМО/ЕМО Эквивалентные МО
- ЭПР/ESR Электронный парамагнитный резонанс
- Karl K. Irikura. Glossary of Common Terms and Abbreviations in Quantum Chemistry: <u>www.cccbdb.nist.gov/glossaryx.asp</u>.

Содержание Contents

Предисловие / Preface	5
In Memoriam: Victor I. Danilov (1936 – 2014)	13
Список сокращений / List of abbreviations	15
I. Методы расчета электронной структуры молекул I. Methods of calculation of electronic structure of molecules	
Введение / Introduction Глава 1. Гамильтонианы и волновые функции Chapter 1. Hamiltonians and wave functions	27 28
 1.1. Приближение Борна – Оппенгеймера / Born – Oppenheimer approximation 1.2. Волновые функции / Wave functions 1.2.1. Спин-орбитали / Spin-orbitals 1.2.2. Многоэлектронные спиновые состояния / Many-electron spin states 1.2.3. Детерминанты Слэтера / Slater determinants 1.3. Матричные элементы между слэтеровскими детерминантами 	28 32 32 s35 35 39
 1.3.1. Матричные элементы одноэлектронного оператора Matrix elements for a one-electron operator 1.3.2. Матричные элементы двухэлектронного оператора Matrix elements for a two-electron operator 	43 46
Глава 2. Методы решения молекулярного уравнения Шредингера Chapter 2. Methods of solving the molecular Schrödinger equation	53
Введение / Introduction	53
2.1. Обобщенный метод самосогласованного поля Годдарда и его вариан Generalized Goddard self-consistent field method and its variants	ты 53
2.1.1. Своиства решении уравнении осоощенного метода ССП и примеры его применения Properties of solutions of the Generalized SCF method and examples of its application	65 ons
2.2. Метод Хартри – Фока и теорема Бриллюэна / Hartree – Fock method 2.2.1. Теорема Бриллюэна / Brillouin theorem	75 75
2.3. Неограниченные по спину уравнения Хартри – Фока Spin-unrestricted Hartree – Fock method	78
 2.3.1. Теорема Купманса / Koopmans theorem 2.4. Ограниченный метод Хартри – Фока и его развитие Restricted Hartree – Fock method and its development 	81 83
 2.5. Метод Хартри – Фока – Рутана / Hartree – Fock – Roothaan method 2.5.1. Матрица плотности / Density matrix 2.5.2. Матрица Фока и энергия / Fock matrix and energy 2.5.3. Метод ОХФО нид открытых оборонов / DOUE method for even their 	87 89 90
Литература / References	95 95

2.6. Koppe.	ляция электронов / Correlation of electrons	99
2.7. Метод Config	конфигурационного взаимодействия aration interaction method	101
2.7.1.	Теорема Несбета / Nesbet theorem	103
2.7.2.	О полном и усеченном KB / About full and truncated CI	105
2.7.3.	Configuration Interaction in the Second Quantization Representat Basics with Applications to Benzyl Radical up to Full CI	ion: 107
	2.7.3.1. Introduction	107
	2.7.3.2. The Second Quantization and CI Method	108
	2.7.3.3. Hole Formalism	111
	2.7.3.4. Expansion of the Physical Value Operators over the <i>N</i> -products	113
	2.7.3.5. General Approach to Calculation of the Matrix Elements	116
	 2.7.3.6. Matrix Elements of the Physical Value Operators for Molecules and Radicals with Account of Singly and Doul Excited Configurations as an Example of General Approa 2.7.3.6.1. Basis Vectors 2.7.3.6.2. Elements of the CI matrix 2.7.3.6.3. Brillouin Theorem and its Analog for Radicals 2.7.3.6.4. Calculation of Certain One-particle Properties 	120 bly ach 120 122 123 125
	2.7.3.7. Exact Solution for a Seven-electron System Using Full C	ĽI
	2.7.3.7.1. Configurations and Details of Computation	128
	2.7.3.7.2. Discussion of Results	132
	2.7.3.8. Determinantal Method to Derive the Electron Density – Bond Order Matrix and the Spin Density with an Accour All Doubly Excited Configurations for Molecular States	nt of 137
	2.7.3.8.1. The Wave Functions	137
	2.7.3.8.2. The Expectation Value of a One-electron Oper	ator
	2.7.3.8.3. The Electron Density – Bond Order Matrix and the Spin Density	1 140
	2.7.3.8.4. Some conclusions	143
References		144

2.8. Многоконфигурационная теория CCП / Multi-configurational SCF theory	147	
 2.8.1. О методах МК ССП / About MCSCF methods 2.8.2. Метод одноэлектронного гамильтониана в МК теории ССП The one-electron Hamiltonian method in MCSCF theory 	147 148	
2.8.2.1. Общая постановка задачи / General formulation		
2.8.2.1.1. Методы оптимизации орбиталей, основанни	ые	
на вариационных уравнениях Эйлера / Methods for orbi	tal	
optimization based on the variational Euler equations	151	
2.8.2.1.2. Градиентный метод оптимизации орбитале	й /	
The gradient method of orbital optimization	158	
2.8.2.2. Метод ОГ в МК теории ССП / ОЕН method in MCSCF th	eory	
2.8.2.2.1. Квадратичная аппроксимация энергетическ	ой	
поверхности в пространстве элементов унитарной	162	
Ouadratic approximation of the energy surface in the space of the	102	
elements of the unitary matrix of orbital transformation		
2.8.2.2.2. Построение ОГ первого приближения / Construction of the first approximation OEH	165	
2.8.2.2.3. Выбор параметров ОГ / Choice of OEH paramet	ers	
2.8.2.2.4. Построение ОГ второго приближения /	167	
Construction of the second approximation OEH	,	
2.8.2.2.5. Улучшенный метод ОГ первого приближен	ИЯ /	
Improved method of the first approximation OEH $2.8 + 2.2$ (Magnetic the first approximation of the	170 171	
2.8.2.2.6. Матричная формулировка метода ОГ и его	1/1	
and its computational scheme	nou	
2.8.2.2.7. Тестирование методов ОГ в рамках МК тео	рии	
$\rm CC\Pi$ / Testing of the OEH methods in MCSCF theory	176	
2.8.2.2.7.1. π-Сопряженные молекулы /	176	
π -Conjugated molecules 2.8.2.2.7.1.1. Vpaulum и полиен (7. /	
2.0.2.2.7.1.1.5 paquin in noninen C	176	
2.822712 Попиены Сс С.	170	
урацил и бензильный раликал /	185	
Polyenes C_6 , C_8 , C_{10} , uracyl and benzyl		
2.8.2.2.7.2. Молекула LiH ab initio /	195	
LiH molecule ab initio		
2.8.2.2.7.2.1. К постановке задач	и /	
Statement of the problem	195	
2.8.2.2./.2.2. Методика расчета	107	
Calculation procedure	19/ 	
2.8.2.2. / .2.3. Расчет потенциаль	нои 200	
кривои, спектроскопических	∠00 a /	
Calculation of potential curve,	ı /	

spectroscopic constants and dipole mor 2.8.2.2.7.2.4. Обсуждение	ment
энергетических результатов /	206
Discussion of the energy results	• • -
2.8.2.2.7.2.5. Корреляция во	207
внутренней оболочке / Correlatio	n
2 8 2 2 7 2 6. Обсужление	
орбитальной структуры	208
МК волновых функций / Discuss	sion
of the orbital structure of MC wave functions	
2.8.2.3. Метод ОГ в одноконфигурационной теории ССП / The OEH method in the single-configurational SCF theory	210
2.8.2.3.1. Построение одноэлектронных гамильтониа	нов
в одноконфигурационном приближении / Construction	of
the OEHs in the single-configurational approximation	211
2.8.2.3.2. Стандартные ОГ / The standard OEHs	213
2.8.2.3.3. Оптимизация орбиталей в	216
одноконфигурационной теории ССП / Orbital optimizat in the single-configurational SCF theory	ion
Литература / Referances	221
2.9. Фермионные редуцированные матрицы плотности в квантовой хим The fermion reduced density matrices in quantum chemistry	ии / 225
2.9.1. Введение / Introduction	225
2.9.2. Определения / Definitions	225
2.9.3. Редуцированная матрица плотности как интегральный опера The reduced density matrix as an integral operator	тор/ 230
2.9.4. Собственные значения редуцированных матриц плотности / The eigenvalues of reduced density matrices	231
2.9.5. Собственные функции редуцированных матриц плотности / The eigenfunctions of reduced density matrices	237
2.9.6. Носитель и ранг редуцированных матриц плотности / The support and the rank of reduced density matrices	239
2.9.7. Редуцированные матрицы плотности для однодетерминантни функций / Reduced density matrices for the single-determinantal function	ЫX 1S
2.9.8. Редуцированные матрицы перехода / Reduced transition matrices	245
Литература / References	247

II. Pacчет молекул <i>ab initio</i> на гауссовых функциях II. <i>Ab initio</i> calculation of molecules on gaussian functions	
Глава 3. Вычисление молекулярных интегралов / Chapter 3. Calculation of molecular integrals	249
3.1. О вычислении интегралов на экспоненциальных функциях / To calculation of integrals over exponential functions	249
3.2. Вычисление молекулярных интегралов с гауссовыми функциями / Calculation of molecular integrals with gaussian functions	253
3.3. Сравнение слэтеровских и гауссовых функций в качестве базисных Comparison of slater and gaussian functions as basis functions	: / 259
Глава 4. Расчет атомов методом разложения и выбор гауссовых базисных функций. Конфигурации 1s ² 2s ² 2p ⁿ	263
Chapter 4. Calculation of atoms by the expansion method and choice of gaussian functions. Configurations $1s^2 2s^2 2p^n$	200
Введение / Introduction 4.1. О выборе оптимальных параметров в разложении атомных функци	263 й по
Гауссовым / To choice of optimal parameters in the expansion of atomic function over gaussian ones 4.2. Расчет атомов в базисе гауссовых функций / Calculation of atoms in the	263 268
gaussian basis 4.3. Систематический способ получения гауссовых базисных функций, атомных и молекулярных расчетов / Systematic approach to obtain gaussian basis functions for atomic and molecular calculations	для 277
Глава 5. Расчет электронной структуры молекул в ограниченных базисах безузловых гауссовых функций Chapter 5. Calculation of electronic structure of molecules in the restricted spherical lobe gauss	283 sians
5.1. Аппроксимация функций, обладающих выделенными осями симметрии, посредством сферических гауссовых функций / Approximation of functions having a selected symmetry axes by spherical gaussians	283
5.2. О программе ФУГА, о точности вычисления интегралов, выборе значений сдвигов и об инвариантности расчетов при поворотах осей координат / About the FUGA program, the accuracy of integral calculations, the choic the shift values, and about the computational invariance relative to rotations of the coord axes	286 ce of inate
5.3. Базис $7s3p$ для атомов второго периода, способы его контрактации расчет молекул в таких ограниченных базисах / Basis $7s3p$ for atoms of the second period, the ways of its contraction and molecular calculations with such a restrict basis set	и 290 ed

5.4. Особенности расчетов в ограниченных базисах гауссовых функций /
Pecularities of the calculations with the restricted basis of gaussian functions298Литература / References307

III. Избранные результаты III. Selected topics

Глава 6. Chapter 6.	Электронная и спиновая структура бензильного радикала <i>ab initio Ab initio</i> electronic and spin structure of the benzyl radical	313
6.1.	Введение / Introduction	313
6.2.	Расчет электронных оболочек бензильного радикала неограниченны методом Хартри – Фока на гауссовом базисе / Calculation of electronic structure of the benzyl radical by UHF method with gaussian basis	ым 313
6.3.	Обсуждение результатов расчета / Discussion of calculation results	315
6.4.	Метод полного проектирования волновой функции $HX\Phi$ на состоян с определенной спиновой мультиплетностью / Full projection techniques of the UHF wave function onto the state with pure spin multiplicity	ие 318
6.5.	Орбитальный анализ электронной и спиновой заселенности атомов бензильного радикала без проектирования / Orbital analysis of electron and spin population of atoms in the benzyl radical without spin projection	322
6.6.	Электронное строение бензильного радикала в модели $HX\Phi$ с проектированием волновой функции на дублетное состояние / Electronic structure of the benzyl radical in the UHF model with the wave function projection onto the doublet state	327
Литерат	ypa / References	333
Глава 7. Chapter 7.	Анализ взаимодействия иона Li^+ с молекулой азота Analysis of interaction of Li+ ion with nitrogen molecule	335
7.1.	Введение / Introduction	335
7.2.	Орбитальные базисы / Orbital basis 7.2.1. Орбитальный базис иона Li ⁺ / Orbital basis for Li ⁺ ion 7.2.2. Орбитальный базис атома N / Orbital basis for atom N	337 337 337
7.3.	Результаты расчета иона Li^+ и молекулы N_2 / Calculation results for Li^+ ion and molecule N_2 7.3.1. Ион Li^+ / Ion Li^+ 7.3.2. Молекула N_2 / Molecule N_2	338338338
7.4.	Результаты расчета и анализ энергии взаимодействия иона Li^+ с молекулой N_2 / Results of calculations and analysis of energy of interaction between Li^+ ion and molecule N_2	341
Литерат	ypa / References	354

Глава 8.	Фрагментация, конформации и перегруппировка молекул в электрическом поле	359
Chapter 8.	Fragmentation, conformations, and decomposition of molecules in electric field	007
8.1.	Фрагментация электронным ударом / Fragmentation by the electron impact	359
8.2.	Фрагментация электрическим полем / Fragmentation by electric field	370
8.3.	Цикл киевских исследований по полевой фрагментации A series of Kiev studies on the field fragmentation	371
	8.3.1. Метод расчета / Method of calculation	372
	8.3.2. Фрагментация альдегидов: этаналь, пропаналь и бутаналь / Fragmentation of aldehydes: ethanal, propanal, and butanal	373
	8.3.3. Фрагментация молекул ацеталей / Fragmentation of acetal molecules	393
	8.3.4. Фрагментация и водородная перегруппировка метиламина / Fragmentation and hydrogen rearrangement in methylamine	402
	8.3.5. Конформационный анализ молекулы диоксана во внешнем однородном электрическом поле / Conformation analysis of dioxane molecule in external homogeneous electric field	416
Литерат	ypa / References	422
Chapter 9	9. Quantum-chemical Studies of Quasi-one-dimensional Electron System	S
9.1.	Introduction	427
9.2.	Review of Local Electronic States in Long Polyene Chains in the Tight-binding Model	427
	9.2.1. General Relations9.2.2. Single Substitution9.2.3. Double Substitution9.2.4. Perturbed bond	428 431 436 441
9.3.	The Generalized Hartree – Fock Method and Its Versions	446
	9.3.1. Properties of solutions of the generalized Hartree – Fock equations and their applications	s 458
9.4.	Electronic Structure of Long Neutral Polyene Alternant Radicals by the DODS Method	467
	9.4.1. The DODS method for alternant radicals9.4.2. Calculation of Properties of Long Neutral Polyene Radicals by the DODS Method	467
	9.4.3. Projection on Pure Spin State	476

9.5	5. The Influence of an Impurity Atom on π -electronic Structure of Long Polyenes using the UHF Approach	481
	9.5.1. The UHF Solution for Long Polyene Chains with an Impurity Atc9.5.2. Local States9.5.3. Appendix	om 487 490
9.0	5. Basics of π -Electron Model of Cumulenes	493
9.7	7. Electronic Structure of Long Cumulene Chains in the Extended Hartree – Fock Method Compared with its Unrestricted Version	500
	9.7.1. The UHF equations for long polyene chains9.7.2. Electronic Structure of Long Cumulene Chains9.7.3. EHF and UHF Methods when Applied to Large Electronic System9.7.4. Some Conclusions	501 504 ns 514
9.8	 Coexistence or Contradiction of the Peierls- and Mott-type Instabilities Quasi-one-dimensional Systems 	in 515
	9.8.1. Peierls and Mott Instabilities at $T = 0^{\circ} K$	517
	9.8.2. Finite Temperatures	524
9.9	9. Coexistence of Mott and Peierls Instabilities in Quasi-one-dimensional Systems	526
	9.9.1. The Method of Calculations and Qualitative Evaluations	527
9.1	10. Conclusions & Perspectives	533
Referen	nces	539
Chapter	10. Modeling of the Short-Range Order for Polymers by the Ideal Peak Method	549
10	.1. Introduction	549
10	.2. Experimental and computation methods	551
10	.3. Methods of conformational and modeling calculations	556
10	.4. Experimental data and results of calculations	558
10	.5. Results of conformational and modeling computations	560
10	.6. Discussion	564
10	.7. Conclusion	574
Referen	ices	575

Chapter 11. Excursus to chemical topology	579
11.1. Coding system for quasi-polycyclic structures	579
11.1. 1. Introduction to the coding system11.1. 2. Coding of substituted benzenoids	579 580
11.2. Analytical formulae for the enumeration of substitutional isomers of pla Molecules	inar 588
11.2. 1. Introduction 11.2. 2. The case when $G' = 0$ 11.2. 3. The case when $G' \neq 0$ 11.2. 4. Calculations 11.2. 5. Analytical dependences	588 589 590 591 592
References	595
Приложения: Appendices:	
П-1. Фундаментальные постоянные и энергетические эквиваленты физических величин / Fundamental constants and energy equivalents of physical quantities	597
П-2. Формализм дираковских векторов «бра» и «кет» / The formalism of the Dirac "bra" and "ket" vectors	598
П-3. Перестановки и их основные свойства / Permutations and their basic properties	605
П-4. Интерпретация электронных возбуждений в молекулах посредствочисел заполнения естественных орбиталей на примере возбуждения $1^2B_2 \rightarrow 2^2B_2$ бензильного радикала / The interpretation of electronic excitations in molecules via occupation numbers of natural orbitals with an example of the excitation $1^2B_2 \rightarrow 2^2B_2$ in benzyl radical	м я 606
П-5. Сводка формул теории возмущения Рэлея – Шредингера вплоть до третьего порядка (невырожденный случай) / A summary of the Rayleigh – Schrödinger perturbation theory up to the third order (non-degenerate case)	611
П-6. Асимптотика волновой функции молекулы на больших расстояния Asymptotics of the molecular wave function at large distances	x / 612
П-7. Расчет равновесной конфигурации бензильного радикала в модели электронно-колебательного взаимодействия с дальнейшим учетом полного КВ в π-приближении / Calculation of equilibrium configuration of the benzyl radical according to electron vibrational interaction model with further accounting for the full CI	613 ic-

	7.1. Метод количественной оценки геометрической конфигурации бензильного радикала с учетом деформации σ -остова / Method of quantitative evaluation of geometrical configuration of the benzyl radical with an account of σ -core deformation	615
	7.2. Многоконфигурационные расчеты в π-приближении бензильно радикала в его равновесной геометрии вплоть до полного KB / Multiconfigurational calculations in π-approximation of the benzyl radical at equilibrium geometry up to the full CI	ого 624 its
	7.3. Расчет и интерпретация колебательного спектра бензильного радикала / Calculation and interpretation of vibrational spectra of the benzyl radical	631
J	Питература	636
Ι	П-8. Публикации по ион-молекулярным взаимодействиям / Publications on ion-molecular interactions	638
Ι	П-9. Новые инварианты взвешенных графов для расчета критических свойств фреонов / New invariants of weighted graphs for calculating the critical properties of freens.	640
	New invariants of weighted graphs for calculating the critical properties of freoris	
	11-9.1. Критические свойства фреонов как объект исследования / Critical properties of freons as objects of study	641
	П-9.2. Проблема выбора инвариантов и параметров / Choosing invariants and parameters	643
	П-9.3. Обоснование индекса парасочетаний / Substantiating the matching index	645
	П-9.4. Вычисление индекса парасочетаний / Calculating the matching index	647
	П-9.5. Параметризация и расчет T_c и P_c фреонов / Parameterizing and calculating the T_c and P_c of freens	650
	П-9.5.1. Этап 1: Неравенства / Stage 1: Inequalities	650
	П-9.5.2. Этап 2: Оптимизация / Stage 2: Optimization	653
	П-9.5.3. Этап 3: Расширение / Stage 3: Extension	653
	П-9.5.4. Этап 4: Усложнение / Stage 4: Complication	659
	П-9.6. Параметризация и расчет V_c фреонов / Parameterizing and calculating the V_c of freons	660
J	П-9.7. Выводы / Conclusions Питература / References	663 664

I. Методы расчета электронной структуры молекул

Введение

"The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws lead to equations much too complicated to be soluble." P. A. M. Dirac Proc. Royal Soc. (London), **123A**, 714 (1929)

В настоящее время ситуация с решением молекулярного уравнения Шредингера, в том числе релятивистского, резко изменилась в результате взрывного экспоненциального роста (закон Мура) вычислительной мощности компьютеров в ходе стремительного развития полупроводниковой кремниевой технологии, микро- и наноэлектроники и спинтроники. В самом начале 70-х годов прошлого века, когда в Киеве создавалась первая в СССР программа ФУГА неэмпирического расчета молекул [1 – 4], расчеты велись на самой скоростной в то время ЭВМ БЭСМ-6. Расчет одной молекулы H_2O в весьма ограниченных базисах гауссовых функций занимал 5 *мин*, а димера (H_2O)₂ – уже 45 *мин*, и это только для одной геометрической конфигурации атомных ядер. Сегодня время расчета молекул *ab initio* уменьшилось на много порядков. Квантовохимические расчеты в нано- и мезофизике, в химии, фармакологии и молекулярной биологии стали рутинными.

Предельное значение длины полевого транзистора в Si-нанотехнологии, когда транспорт электрона от истока к стоку протекает без туннелирования, определен в 13 *нм* [5], тогда как фундаментальный предел длины канала проводимости составляет 1.5 *нм* при T = 300 K [6]. Он следует из принципа неопределенности Гейзенберга и принципа Ландауэра стирания одного бита информации [7 – 9], согласно которому соответствующая энергия

 $E = kT \ln 2 = 0.017 \ \Im B \quad (T = 300 \ K)$

и который сравнительно недавно был подтвержден экспериментально [10]. Нет основания полагать, что этот фундаментальный предел длины канала проводимости будет достигнут в ближайшем будущем. Надежды в крупномасштабных квантовохимических расчетах возлагают в будущем на квантовые компьютеры [11, 12]. Методические вопросы квантово-химических вычислений отработаны при расчете основного хартри – фоковского состояния молекулы H₂ в ограниченном базисе с использованием оптического квантового компьютера [13, 14], а затем и основного состояния молекулы LiH [15].

27

Эта глава вводная и содержит такие общеизвестные результаты и понятия как приближение Борна – Оппенгеймера для молекулярного уравнения Шредингера, спин-орбитали и многоэлектронные спиновые состояния, детерминанты Слэтера и вычисление матричных элементов одно- и двухэлектронных операторов на слэтеровских детерминантах.

Для углубленного изучения квантовой химии рекомендуем учебники [16 – 20].

Далее повсеместно используется система атомных единиц как это обычно удобно в физике атомов и молекул (табл. 1).

Таблица 1

Атомные единицы	Величины	Значения в СИ
$1\hbar - \frac{h}{h}$	Редуцированная	1.055×10^{-36} Дж $\cdot c$
$\frac{m-2\pi}{2\pi}$	постоянная Планка	
$1m_e$	Масса электрона	9.109×10 ⁻³¹ кг
1 <i>e</i>	Заряд протона	1.602×10 ⁻¹⁹ Кл
$1a_0$	Боровский радиус	$5.292 \times 10^{-11} M$
$1E_h$	Энергия Хартри	$4.360 \times 10^{-18} \square \mathcal{A} \mathcal{K}$
$1k - \frac{1}{1}$	Коэффициент	$8.988 \times 10^9 H \cdot M^2 / K \pi^2$
$i\kappa = \frac{1}{4\pi\varepsilon_0}$	пропорциональности в	
	законе Кулона для	
	вакуума	

Атомные единицы и их значения в системе СИ

Численные значения атомных единиц в системе СИ основаны на значениях фундаментальных констант, приведенных в Приложении П-1.

Глава 1. Гамильтонианы и волновые функции

1.1. Приближение Борна – Оппенгеймера

Поскольку электроны намного легче атомных ядер, они «ВИДЯТ» мгновенные положения ядер атомов и «движутся» быстрее чем ядра, тогда как ядра уже «чувствуют» только усредненный потенциал пространственно распределенного электронного облака. Электронная энергия будет разной при различных конфигурациях ядер. Эта электронная энергия, дополненная взаимного отталкивания энергией ядер, определяет гиперповерхность потенциальной энергии (ППЭ), управляющую движением ядер. Такой подход называют разделением электронных и ядерных движений по Борну и Оппенгеймеру, или иначе приближением Борна – Оппенгеймера [21]. На самом электронно-колебательное взаимодействие, леле имеет место так ЧТО уравнения, описывающие движения электронов и ядер, связаны между собой. В большинстве задач квантовой химии это взаимодействие мало и им обычно пренебрегают.

Запишем независящее от времени уравнение Шредингера:

$$\hat{H}(R,r)\Psi(R,r) = E\Psi(R,r), \qquad (1)$$

где {*R*} и {*r*} есть наборы координат ядер и электронов, соответственно, а полный молекулярный гамильтониан в нерелятивистском приближении

$$\hat{H}(R,r) = -\sum_{\alpha=1}^{N_N} \frac{\hbar^2}{2M_{\alpha}} \Delta_{\alpha} + \left(-\sum_{i=1}^{N_e} \frac{\hbar^2}{2m_e} \Delta_i\right) + V(R,r), \qquad (2)$$

где суммы есть операторы кинетической энергии ядер \hat{T}_{N} и электронов \hat{T}_{e} , соответственно, а потенциальная энергия в атомных единицах (табл. 1)

$$V \equiv V(R,r) = -\sum_{\alpha=1}^{N_N} \sum_{i=1}^{N_e} \frac{Z_{\alpha}}{r_{\alpha i}} + \sum_{\alpha < \beta} \frac{Z_{\alpha} Z_{\beta}}{R_{\alpha \beta}} + \sum_{i < j} \frac{1}{r_{ij}} \equiv V_{eN} + V_{NN} + V_{ee}.$$
 (3)

Запишем решение уравнения (1) в виде произведения электронной волновой функции в поле закрепленных ядер ($\{R\} = Const$) и ядерной волновой функции

$$\Psi(R,r) \approx \Psi_e(r;R)\Psi_N(R), \qquad (4)$$

где смысл значка «≈» поясним позже, а параметрическая зависимость электронной волновой функции от координат ядер подчеркнута в (4) значком «;». Такая запись полной волновой функции в виде произведения чисто электронной и ядерной волновых функций позволяет свести решение (1) к решению двух отдельных уравнений – электронного и ядерного.

Электронное уравнение Шредингера имеет вид

$$\hat{H}_e \Psi_e(r; R) = E(R) \Psi_e(r; R), \qquad (5)$$

где электронный гамильтониан учитывает также энергию межъядерного отталкивания:

$$\hat{H}_e = \hat{T}_e + V(R, r) = -\sum_{i=1}^{N_e} \frac{\hbar^2}{2m_e} \Delta_i + V(R, r)$$

или в атомных единицах

$$\hat{H}_{e} = \hat{T}_{e} + V(R, r) = -\sum_{i=1}^{N_{e}} \frac{1}{2} \Delta_{i} + V(R, r).$$
(6)

Электронное уравнение (5) имеет множество решений $\Psi_e(r;R)$, каждое из которых определяет ППЭ E(R) для основного и возбужденных состояний, каждая из которых может быть далее использована как потенциальная энергия для изучения движения ядер.

Ядерное уравнение имеет вид

$$\hat{H}_N \Psi_N(R) = E_N \Psi_N(R), \qquad (7)$$

в котором ядерный гамильтониан

$$\hat{H}_{N} = \hat{T}_{N} + E(R) = -\sum_{\alpha=1}^{N_{N}} \frac{\hbar^{2}}{2M_{\alpha}} \Delta_{\alpha} + E(R), \qquad (8)$$

а волновая функция $\Psi_N(R)$ зависит только от ядерных координат.

Покажем почему выражение (4) не может быть точным равенством. Подставим (4) в полное уравнение Шредингера (1), а именно:

$$\hat{H}(R,r)\Psi(R,r) = \hat{H}(R,r)\Psi_e(r;R)\Psi_N(R).$$
(9)

При исследовании этого уравнения проблемы вызывает кинетическая энергия ядер

$$\hat{T}_N = -\sum_{\alpha} \frac{\hbar^2}{2M_{\alpha}} \Delta_{\alpha} , \qquad (10)$$

в записи которой, как и везде далее, опущены значения индекса суммирования, поскольку они очевидны, а оператор Лапласа

$$\Delta_{\alpha} = \frac{\partial^2}{\partial X_{\alpha}^2} + \frac{\partial^2}{\partial Y_{\alpha}^2} + \frac{\partial^2}{\partial Z_{\alpha}^2} \equiv \nabla_{\alpha}^2.$$
(11)

При раскрытии уравнения (9) встретятся вторые производные по декартовым координатам ядер. Например, производная по X_{α} -координатам имеет вид:

$$\frac{\partial^2}{\partial X_{\alpha}^2} [\Psi_e(r; R) \Psi_N(R)] = \Psi_N \frac{\partial^2 \Psi_e}{\partial X_{\alpha}^2} + 2 \frac{\partial \Psi_e}{\partial X_{\alpha}} \frac{\partial \Psi_N}{\partial X_{\alpha}} + \Psi_e \frac{\partial^2 \Psi_N}{\partial X_{\alpha}^2}, \quad (12)$$

и аналогично по координатам Y_{α} и Z_{α} . Собирая все вместе, получаем:

$$-\sum_{\alpha} \frac{\hbar^2}{2M_{\alpha}} \Delta_{\alpha} [\Psi_e(r; R) \Psi_N(R)] = -\sum_{\alpha} \frac{\hbar^2}{2M_{\alpha}} [\Psi_N \Delta_{\alpha} \Psi_e + 2(\nabla_{\alpha} \Psi_e \nabla_{\alpha} \Psi_N) + \Psi_e \Delta_{\alpha} \Psi_N],$$
(13)

где первые два слагаемых в квадратных скобках содержат производные электронной волновой функции по координатам ядер, а второе и третье слагаемые содержат производные ядерной волновой функции по координатам ядер. Подобные производные не входят ни в электронное уравнение (5), ни в ядерное (7). Это означает, что решая сначала уравнение (5), а потом (7), как мы сейчас увидим, невозможно получить точное решение полного уравнения Шредингера (1). Эти неувязки, возникающие за счет движения ядер, приводят к не всегда пренебрежимо малому зацеплению между различными электронными состояниями, рассчитанными в приближении Борна – Оппенгеймера.

Обозначим сумму всех таких зацепляющихся неувязок

$$-\sum_{\alpha} \frac{\hbar^2}{2M_{\alpha}} [\Psi_N \Delta_{\alpha} \Psi_e + 2(\nabla_{\alpha} \Psi_e \nabla_{\alpha} \Psi_N)] \equiv \Sigma, \qquad (14)$$

тогда опуская в записи очевидные переменные и параметры, получаем

$$\hat{H}\Psi_{e}\Psi_{N} = \sum +\Psi_{e} \left(-\sum_{\alpha} \frac{\hbar^{2}}{2M_{\alpha}} \Delta_{\alpha}\Psi_{N} \right) + \left(-\sum_{i} \frac{\hbar^{2}}{2m_{e}} \Delta_{i}\Psi_{e}\Psi_{N} \right) + V\Psi_{e}\Psi_{N} =$$

$$= \sum +\Psi_{e}\hat{T}_{N}\Psi_{N} + \Psi_{N}(\hat{T}_{e}\Psi_{e} + V\Psi_{e}) = \sum +\Psi_{e}\hat{T}_{N}\Psi_{N} + \Psi_{N}E(R)\Psi_{e} = (15)$$

$$= \sum +\Psi_{e}[\hat{T}_{N} + E(R)]\Psi_{N} = \sum +E_{N}\Psi_{e}\Psi_{N},$$

откуда следует, что произведение $\Psi_e(r; R) \Psi_N(R)$ не может быть точной собственной функцией полного уравнения Шредингера (1).

В рутинных расчетах обычно пренебрегают зацепляющимися неувязками (14). В них фигурируют производные электронной волновой функции, деленные на массы ядер, которые намного больше массы электрона. Поэтому неувязки малы. Они обычно намного меньше чем ошибки, которые всегда имеют место при решении самих уравнений, получающихся в приближении Борна – Оппенгеймера, особенно вблизи равновесных конфигураций молекул.

В случае проведения расчетов в т. наз. адиабатическом приближении (адиабатические процессы в термодинамике не имеют никакого отношения к этой не совсем удачной, но уже устоявшейся в квантовой химии терминологии) вычисляются средние значения неувязок по рассматриваемому электронному состоянию Ψ_e , а именно:

$$-\sum_{\alpha} \frac{\hbar^2}{2M_{\alpha}} \left(\left\langle \Psi_e \right| \Delta_{\alpha} \left| \Psi_e \right\rangle + 2 \left\langle \Psi_e \right| \nabla_{\alpha} \left| \Psi_e \right\rangle \nabla_{\alpha} \right), \tag{16}$$

где, удобства ради, используются дираковские обозначения для матричных элементов (см. Приложение П-2), в этом случае диагональных. Эти средние добавляют к ядерному гамильтониану (8). Второе слагаемое в (16) является

линейным дифференциальным оператором ∇_{α} , зависящим от {*R*} и действующим на ядерную волновую функцию $\Psi_{N}(R)$.

Полезно сравнить доступные точные результаты, полученные в разных приближениях для наиболее легкой молекулы – молекулы водорода. В табл. 2 сопоставлены энергии диссоциации H₂, HD и D₂, посчитанные в разных приближениях с учетом нулевой энергии колебаний.

Таблица 2 Энергии диссоциации молекул H₂, HD и D₂ из наинизшего колебательного и наинизшего вращательного состояний, *см*⁻¹ [22].

Метод	H_2	HD	D_2
Эксперимент	36113.6	36400.5	36744.2
Приближение Борна – Оппенгеймера	36112.2	36401.5	36745.6
Адиабатическое приближение	36118.0	36405.7	36748.3
Неадиабатические расчеты	36114.7	36402.4	36746.2

Это сопоставление показывает, что приближение Борна – Оппенгеймера дает блестящие результаты, по-видимому, за счет случайной компенсации ошибок вычислений. Неожиданно худшие результаты, полученные в неадиабатических расчетах связывают с тем, что в расчетах не был достигнут абсолютный минимум. Можно ожидать, что для молекул с более тяжелыми ядрами приближение Борна – Оппенгеймера будет работать еще точнее.

Большинство термических химических реакций протекают адиабатически в том смысле, что система участвующих в реакции атомов остается на ППЭ, отвечающей обычно основному электронному состоянию. Под неадиабатическими реакциями обычно подразумевают реакции с переходом с одной ППЭ на другую. Это имеет место при таких конфигурациях ядер, когда две ППЭ подходят достаточно близко друг к другу. Подробное обсуждение приближения Борна – Оппенгеймера можно найти в [18].

1.2. Волновые функции

1.2.1. Спин-орбитали

Спин-орбиталью принято называть одноэлектронную волновую функцию, зависящую от пространственных координат электрона x, y, z (радиус-вектора \vec{r}), так и от спиновой переменной σ :

$$\psi = \psi(\vec{r}, \sigma) \equiv \psi(x, y, z, \sigma).$$
(17)

Собственный момент импульса электрона, иначе спин, может принимать только два значения проекции спина на выделенную ось $z: \pm \hbar/2$. В атомных единицах переменная σ принимает два значения: $\pm 1/2$. Одноэлектронную волновую функцию рассматривают как вектор-столбец

$$\psi = \begin{pmatrix} \psi_1(\vec{r}) \\ \psi_2(\vec{r}) \end{pmatrix},\tag{18}$$

в котором первая строка соответствует спину $\sigma = +1/2$, а вторая строка – спину $\sigma = -1/2$:

$$\psi = \begin{pmatrix} \psi_1(\vec{r}) = \psi(\vec{r}, +\frac{1}{2}) \\ \psi_2(\vec{r}) = \psi(\vec{r}, -\frac{1}{2}) \end{pmatrix}.$$
 (19)

Зависимость от спина выражают с помощью спиновых функций α и β :

$$\alpha \equiv \alpha(\sigma) = \begin{pmatrix} 1\\ 0 \end{pmatrix}, \quad \beta \equiv \beta(\sigma) = \begin{pmatrix} 0\\ 1 \end{pmatrix}, \tag{20}$$

или иначе, $\alpha\left(+\frac{1}{2}\right)=1$, $\alpha\left(-\frac{1}{2}\right)=0$, а $\beta\left(+\frac{1}{2}\right)=0$, $\beta\left(-\frac{1}{2}\right)=1$. Тогда спин-орбиталь общего вида

$$\psi(\vec{r},\sigma) = \psi_1(\vec{r})\,\alpha(\sigma) + \psi_2(\vec{r})\,\beta(\sigma)\,. \tag{21}$$

На практике обычно используют спин-орбитали, соответствующие чистым одноэлектронным спиновым состояниям со спином «вверх» и «вниз»: $\psi(\vec{r})\alpha(\sigma)$ и $\psi(\vec{r})\beta(\sigma)$.

Спиновые операторы действуют в двухмерном пространстве спиновых функций α и β и представляются матрицами размера 2×2:

$$\hat{s}_x = \frac{1}{2}\boldsymbol{\sigma}_x, \quad \hat{s}_y = \frac{1}{2}\boldsymbol{\sigma}_y, \quad \hat{s}_z = \frac{1}{2}\boldsymbol{\sigma}_z, \quad (22)$$

где они записаны в атомных единицах через матрицы Паули:

$$\boldsymbol{\sigma}_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \boldsymbol{\sigma}_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \boldsymbol{\sigma}_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
(23)

Заметим, что матрицы Паули в стандартных учебниках квантовой механики вводятся постулативно; вывод выражений для матриц Паули можно найти в [9].

Свойства спиновых операторов (22):

a)
$$\hat{s}^2 = \hat{s}_x^2 + \hat{s}_y^2 + \hat{s}_z^2 = \frac{3}{4} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};$$
 (24)

б) спиновые операторы как операторы момента импульса подчиняются коммутационным соотношениям:

$$[\hat{s}_{x}\hat{s}_{y}] = \hat{s}_{x}\hat{s}_{y} - \hat{s}_{y}\hat{s}_{x} = i\hat{s}_{z}, [\hat{s}_{y}\hat{s}_{z}] = \hat{s}_{y}\hat{s}_{z} - \hat{s}_{z}\hat{s}_{y} = i\hat{s}_{x}, [\hat{s}_{z}\hat{s}_{x}] = \hat{s}_{z}\hat{s}_{x} - \hat{s}_{x}\hat{s}_{z} = i\hat{s}_{y};$$

$$(25)$$

в) спиновые функции α и β являются собственными функциями оператора \hat{s}_z с собственными значениями $+\frac{1}{2}$ и $-\frac{1}{2}$, соответственно, а также оператора \hat{s}^2 с собственным значением S(S+1), где S – суммарный спин системы электронов; для единственного электрона $S = \frac{1}{2}$, так что в этом случае

$$S(S+1) = \frac{1}{2} \left(\frac{1}{2} + 1\right) = \frac{3}{4}.$$
 (26)

Спиновые функции α и β ортонормированы:

$$\sum_{\sigma} \alpha^{*}(\sigma) \alpha(\sigma) = \sum_{\sigma} \beta^{*}(\sigma) \beta(\sigma) = 1,$$

$$\sum_{\sigma} \alpha^{*}(\sigma) \beta(\sigma) = \sum_{\sigma} \beta^{*}(\sigma) \alpha(\sigma) = 0,$$
(27)

или в матричных обозначениях (20)

$$\alpha^{\dagger}\alpha = \beta^{\dagger}\beta = 1, \quad \alpha^{\dagger}\beta = \beta^{\dagger}\alpha = 0.$$
(28)

Поскольку спиновая переменная σ принимает только дискретные значения $+\frac{1}{2}$ и $-\frac{1}{2}$, при вычислении средних значений матричных элементов операторов физических величин, зависящих как от спиновых переменных, так и от пространственных переменных, по спиновым переменным нужно просто суммировать:

$$\sum_{\sigma} \int \cdots dv \equiv \int \cdots d\tau. \quad (dv = dx \, dy \, dz)$$
⁽²⁹⁾

Использование спин-орбиталей, построенных из чистых спиновых функций α и β , в силу ортонормировки (27) существенно упрощает суммирование по спину, а именно: ненулевое значение получаем только тогда,

когда в бра- и кет-скобке для каждого электрона имеем одну и ту же спиновую функцию, и тогда суммирование по спину дает единичный множитель.

Пусть спин-орбиталь $\psi_i(\vec{r},\sigma) = \varphi_i(\vec{r})\gamma_i(\sigma)$, где γ_i есть либо α , либо β , для матричного элемента безспинового оператора \hat{L} имеем:

$$\langle \psi_{1}(\vec{r},\sigma) | \hat{L} | \psi_{2}(\vec{r},\sigma) \rangle = \langle \varphi_{1}(\vec{r})\gamma_{1}(\sigma) | \hat{L} | \varphi_{2}(\vec{r})\gamma_{2}(\sigma) \rangle = \int d\tau \, \varphi_{1}^{*}(\vec{r})\gamma_{1}^{*}(\sigma) \hat{L} \varphi_{2}(\vec{r})\gamma_{2}(\sigma) =$$

$$= \sum_{\sigma} \gamma_{1}^{*}(\sigma)\gamma_{2}(\sigma) \int dv \, \varphi_{1}^{*}(\vec{r}) \hat{L} \varphi_{2}(\vec{r}) = \delta_{\gamma_{1}\gamma_{2}} \int dv \, \varphi_{1}^{*}(\vec{r}) \hat{L} \varphi_{2}(\vec{r}) = \langle \varphi_{1}(\vec{r}) | \hat{L} | \varphi_{2}(\vec{r}) \rangle \delta_{\gamma_{1}\gamma_{2}}.$$

$$(30)$$

Для двухэлектронного матричного элемента двухчастичного оператора, не зависящего от спина, имеем:

 $\langle \psi_1(1)\psi_2(2) | \hat{g}(1,2) | \psi_3(1)\psi_4(2) \rangle = \delta_{\gamma_1\gamma_3} \delta_{\gamma_2\gamma_4} \langle \varphi_1(\vec{r_1})\varphi_2(\vec{r_2}) | \hat{g}(1,2) | \varphi_3(\vec{r_1})\varphi_4(\vec{r_2}) \rangle$, (31) где для всех пространственных и спиновых переменных электронов 1 и 2 использовались сокращенные обозначения «1» и «2», а именно:

$$\psi_i(1) \equiv \psi_i(\vec{r}_1, \sigma_1), \quad (i = 1, 3) \quad \psi_j(2) \equiv \psi_j(\vec{r}_2, \sigma_2). \quad (j = 2, 4)$$
 (32)

1.2.2. Многоэлектронные спиновые состояния

Гамильтониан Борна – Оппенгеймера (6) безспиновый и поэтому коммутирует со спиновыми операторами \hat{S}_{2} и \hat{S}^{2} . Как следствие этого, собственные функции гамильтониана (6) можно классифицировать по собственным значениям операторов $\hat{S}_{,}$ и \hat{S}^{2} . Пусть для заданного собственного состояния оператора \hat{S}^2 наибольшее собственное значение оператора \hat{S}_z есть $|S_{z}|_{max} = S$. Значение S целое, если число электронов четное, и полуцелое при нечетном числе электронов. Тогда собственное значение оператора \hat{S}^2 есть характеризуется a соответствующее состояние спиновой S(S+1), мультиплетностью 2S+1, поскольку для данного S возможны 2S+1 проекций, а именно: -S,-S+1,...,0,...,S-1,S. Для этих спиновых состояний приняты названия: синглет (S = 0), дублет (S = 1/2), триплет (S = 1), ...

Подробно о построении многоэлектронных спиновых функций см. [23, 24].

1.2.3. Детерминанты Слэтера

Электроны являются фермионами. При одновременной перестановке пространственных и спиновых координат любой пары электронов многоэлектронная волновая функция должна менять знак на противоположный, т. е. должна быть антисимметричной по всем парам электронов:

$$\Psi(1,2,...,i,...,j,...,N) = -\Psi(1,2,...,j,...,i,...,N).$$
(33)
Разработаны различные методы антисимметризации многоэлектронной волновой функции, однако, в практических расчетах пространственные и спиновые координаты отдельных электронов удобно описывать совместно в виде детерминанта Слэтера [25], построенного из спин-орбиталей $\psi_k(i) \equiv \psi_k(\vec{r}_i, \sigma_i)$, в которых оба индекса пробегают независимо друг от друга один и тот же набор значений 1,2,3,...,*N*, что и обеспечивает антисимметричность, поскольку речь идет об определителе:

$$\Psi(1,2,3,...,N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_1(1) & \psi_2(1) & \psi_3(1) & \cdots & \psi_N(1) \\ \psi_1(2) & \psi_2(2) & \psi_3(2) & \cdots & \psi_N(2) \\ \psi_1(3) & \psi_2(3) & \psi_3(3) & \cdots & \psi_N(3) \\ \vdots & \vdots & \vdots & \vdots \\ \psi_1(N) & \psi_2(N) & \psi_3(N) & \cdots & \psi_N(N) \end{vmatrix} .$$
(34)

Позже при рассмотрении правил Слэтера вычисления матричных элементов операторов мы убедимся в том, что множитель $1/\sqrt{N!}$ обеспечивает нормировку волновой функции (34) на единицу при условии, что волновая функция построена из ортонормированных одноэлектронных спин-орбиталей.

Из свойств определителей следует, что все спин-орбитали, используемые для построения волновой функции, должны быть линейно-независимые, в противном случае $\Psi \equiv 0$. К такому же результату приводит появление в определителе одной и той же спин-орбитали дважды, т.е. в любом состоянии может существовать только один электрон (принцип Паули), а каждая пространственная орбиталь может быть занята максимум двумя электронами: один со спином α , второй со спином β .

Волновую функцию (34) компактно записывают через антисимметризатор

$$\Psi = \hat{A}[\psi_1(1)\psi_2(2)\psi_3(3)\cdots\psi_N(N)], \qquad (35)$$

действующий на хартриевское произведение спин-орбиталей, а сам оператор антисимметризации Â определяется как

$$\hat{A} = \frac{1}{\sqrt{N!}} \sum_{\hat{P} \in S_N} (-1)^p \hat{P} , \qquad (36)$$

где суммирование ведется по всем перестановкам \hat{P} , возможным для N различных чисел 1,2,3,...,N. Все эти перестановки образуют симметрическую группу S_N . Множитель $(-1)^p$ называют четностью перестановки \hat{P} . Основные свойства перестановок приведены в Приложении П-3.

Запись волновой функции в виде (35) с антисимметризатором (36) есть просто иной способ записи детерминанта Слэтера (34), поскольку при действии оператора антисимметризации Â на хартриевское произведение $\psi_1(1)\psi_2(2)\psi_3(3)\cdots\psi_N(N)$ получаем

$$\Psi = \frac{1}{\sqrt{N!}} \sum_{\hat{P} \in S_N} (-1)^p [\psi_1(P_1)\psi_2(P_2)\psi_3(P_3)\cdots\psi_N(P_N)],$$

что есть ничто иное как запись определителя (34) в виде суммы по всем перестановкам симметрической группы.

Одно из свойств определителя состоит в том, что строки и столбцы можно менять местами без изменения определителя. Это означает, что правую часть предыдущего выражения можно также записать как действие оператора антисимметризации на индексы спин-орбиталей, а именно:

$$\hat{A}[\psi_1(1)\psi_2(2)\psi_3(3)\cdots\psi_N(N)] = \frac{1}{\sqrt{N!}} \sum_{\hat{Q}\in S_N} (-1)^q [\psi_{Q_1}(1)\psi_{Q_2}(2)\psi_{Q_3}(3)\cdots\psi_{Q_N}(N)], (37)$$

что доказывается без труда прямой подстановкой.

антисимметризации Оператор Â С точностью ДО постоянного коэффициента является проекционным оператором, который действуя на функцию какую-либо волновую извлекает ИЗ нее составляющую, антисимметричную по перестановкам любых пар электронов. Напомним, что оператор является проекционным тогда и только тогда, когда он является эрмитовым и идемпотентным (Приложение П-2).

Легко показать прямой подстановкой, что

$$\hat{A}\hat{A} = \sqrt{N!}\,\hat{A}\,.\tag{38}$$

Другими словами, строго идемпотентным проектором является $\frac{1}{\sqrt{N!}} \hat{A}$, т.е. оператор

$$\frac{1}{N!} \sum_{\hat{P} \in S_N} (-1)^p \hat{P} \tag{39}$$

вместо (36).

Также можно показать прямой подстановкой, что для любых *N*-электронных функций Ф и Ψ имеет место равенство

$$\left\langle \hat{A}\Phi(1,2,3,...,N) \middle| \Psi(1,2,3,...,N) \right\rangle = \left\langle \Phi(1,2,3,...,N) \middle| \hat{A}\Psi(1,2,3,...,N) \right\rangle,$$
 (40)

что и служит доказательством эрмитовости оператора антисимметризации.

Оператор антисимметризации Â коммутирует с любым оператором, симметричным относительно координат всех электронов. Такими операторами являются гамильтониан Борна – Оппенгеймера (6), операторы полного спина

$$\hat{S}^{2} = \hat{S}_{x}^{2} + \hat{S}_{y}^{2} + \hat{S}_{z}^{2},
\begin{cases}
\hat{S}_{x} = \sum_{i} \hat{S}_{x}(i), \\
\hat{S}_{y} = \sum_{i} \hat{S}_{y}(i), \\
\hat{S}_{z} = \sum_{i} \hat{S}_{z}(i)
\end{cases}$$
(41)

и его проекции \hat{S}_z .

Еще одним важным свойством детерминантных волновых функций является следующее. При смешивании занятых спин-орбиталей в детерминантной волновой функции $\Psi = \hat{A}[\varphi_1(1)\varphi_2(2)\varphi_3(3)\cdots\varphi_N(N)]$, т. е. при выполнении над детерминантом любого неособенного (имеющего ненулевой определитель) линейного преобразования, которое сводится к замене исходных спин-орбиталей φ_i на спин-орбитали

$$\psi_j = \sum_{k=1}^N T_{kj} \varphi_k, \qquad (42)$$

исходная детерминантная волновая функция изменится лишь на физически несущественный нормировочный множитель, равный определителю линейного преобразования:

$$\Psi' = \hat{A}[\psi_1(1)\psi_2(2)\psi_3(3)\cdots\psi_N(N)] = \text{Det}(\boldsymbol{T})\Psi.$$
(43)

В случае унитарности преобразования T = U ($U^{\dagger} = U^{-1}$), поскольку определитель любой унитарной матрицы равен по абсолютной величине единице, имеем:

$$|\operatorname{Det}(\boldsymbol{U})| \equiv |\operatorname{Det}(\boldsymbol{T})| = 1.$$
(44)

Итак, детерминантная волновая функция инвариантна относительно унитарного преобразования занятых орбиталей с точностью до физически несущественного фазового множителя, по модулю равного единице. Это свойство инвариантности является обобщением известного свойства определителя, согласно которому его значение не изменяется, если к каждому элементу столбца (строки) добавить элементы другого столбца (строки), умноженные на произвольное число. Следствием предыдущего вывода (44) является то обстоятельство, что любую детерминантную волновую функцию всегда можно построить (с точностью до постоянного множителя) из ортонормированных спинорбиталей. Например, симметричной ортогонализации по Лёвдину [26] соответствует использование в (42) матрицы преобразования $T = S^{-1/2}$, где $S_{ij} = \langle \varphi_i | \varphi_j \rangle$ есть интегралы перекрывания спин-орбиталей, используемых для построения детерминанта Ψ . В общем случае ортонормированные орбитали можно получить используя любую матрицу преобразования $T = S^{-1/2}V$, где V – произвольная унитарная матрица.

Итак, детерминантная волновая функция с точностью до физически несущественного постоянного множителя определяется подпространством, растянутым занятыми спин-орбиталями. Детерминантную волновую функцию можно строить из любого набора линейно независимых одноэлектронных функций, лежащих полностью в этом подпространстве.

1.3. Матричные элементы между слэтеровскими детерминантами

Технику вычисления матричных элементов различных операторов между слэтеровскими (детерминантными) волновыми функциями, построеными из ортонормированных спин-орбиталей, предложил Слэтер [25, 27]. Лёвдин рассмотрел более общий случай неортогональных орбиталей [28].

Нам понадобится общая формула Лёвдина для перекрывания детерминантных волновых функций

$$U = \hat{A}[u_1(1)u_2(2)u_3(3)\cdots u_N(N)]$$
(45)

И

$$V = \hat{A}[v_1(1)v_2(2)v_3(3)\cdots v_N(N)],$$
(46)

построенных из спин-орбиталей u_i и v_i . Перекрывание этих функций равно

$$\langle U | V \rangle = \langle \hat{A}[u_{1}(1)u_{2}(2)u_{3}(3)\cdots u_{N}(N)] | \hat{A}[v_{1}(1)v_{2}(2)v_{3}(3)\cdots v_{N}(N)] \rangle = = \sqrt{N!} \langle u_{1}(1)u_{2}(2)u_{3}(3)\cdots u_{N}(N) | \hat{A}[v_{1}(1)v_{2}(2)v_{3}(3)\cdots v_{N}(N)] \rangle = = \sqrt{N!} \langle u_{1}(1)u_{2}(2)u_{3}(3)\cdots u_{N}(N) | \frac{1}{\sqrt{N!}} \sum_{\hat{Q} \in S_{N}} (-1)^{q} [v_{Q_{1}}(1)v_{Q_{2}}(2)v_{Q_{3}}(3)\cdots v_{Q_{N}}(N)] \rangle =$$
(47)
 =
$$\sum_{\hat{Q} \in S_{N}} (-1)^{q} \langle u_{1}(1)u_{2}(2)u_{3}(3)\cdots u_{N}(N) | v_{Q_{1}}(1)v_{Q_{2}}(2)v_{Q_{3}}(3)\cdots v_{Q_{N}}(N) \rangle,$$

где мы воспользовались тем, что оператор $\hat{H}^{(1)}$ коммутирует с оператором антисимметризации \hat{A} , эрмитовостью $\hat{H}^{(1)}$ и его идемпотентностью (38), а

также записью оператора Â в том виде (37), когда он действует на индексы спин-орбиталей.

Остается проинтегрировать в (47) по координатам всех электронов и просуммировать по проекциям спинов. Каждый интеграл в последней сумме (47) распадается на произведение интегралов по отдельным электронам, так что переменные интегрирования можно и не указывать, а именно:

$$\langle U | V \rangle = \sum_{\hat{Q} \in S_N} (-1)^q \langle u_1 | v_{Q_1} \rangle \langle u_2 | v_{Q_2} \rangle \langle u_3 | v_{Q_3} \rangle \cdots \langle u_N | v_{Q_N} \rangle, \qquad (48)$$

где правая часть есть фактически формула, дающая определитель D, составленный из перекрываний $\langle u_i | v_j \rangle$ отдельных пар спин-орбиталей. Это и есть интересующая нас формула Лёвдина перекрывания двух волновых функций:

$$\langle U | V \rangle = \operatorname{Det}(S^{uv}) \equiv \operatorname{Det}(\langle u_i | v_j \rangle) \equiv D, \qquad (49)$$

где матрица взаимного перекрывания спин-орбиталей S^{uv} построена из интегралов перекрывания $S_{ii}^{uv} = \langle u_i | v_j \rangle$.

Далее нам потребуется так называемое представление факторизации $\langle U | V \rangle$ такое, в котором будет выделено интегрирование по какой-либо одной переменной или же максимум по каким-либо двум переменным.

Выберем в (48) какой-либо индекс i ($1 \le i \le N$) и вынесем в начало суммы сомножитель, появляющийся при интегрировании по координатам i-го электрона:

$$\langle U | V \rangle = \sum_{\hat{Q} \in S_N} (-1)^q \langle u_i | v_{Q_i} \rangle \langle u_1 | v_{Q_1} \rangle \cdots \langle u_{i-1} | v_{Q_{i-1}} \rangle \langle u_{i+1} | v_{Q_{i+1}} \rangle \cdots \langle u_N | v_{Q_N} \rangle =$$

$$= \sum_{j=1}^N \langle u_i | v_j \rangle \sum_{\hat{Q} \in S_N} \delta_{jQ_i} (-1)^q \langle u_1 | v_{Q_1} \rangle \cdots \langle u_{i-1} | v_{Q_{i-1}} \rangle \langle u_{i+1} | v_{Q_{i+1}} \rangle \cdots \langle u_N | v_{Q_N} \rangle,$$
(50)

где в первой сумме изменен лишь порядок сомножителей, а во второй сумме использован тот факт, что индекс Q_i есть одно из целых чисел между 1 и N, так что $\sum_{j=1}^{N} \langle u_i | v_j \rangle \delta_{jQ_i} = \langle u_i | v_{Q_i} \rangle$. В записи (50) легко узнать теорему Лапласа о

разложении определителя *D* по *i*-ой строке:

$$\langle U | V \rangle \equiv D \equiv \text{Det} |\langle u_i | v_j \rangle| = \sum_{j=1}^N \langle u_i | v_j \rangle D(i | j), \qquad (51)$$

где *i,j*-ое алгебраическое дополнение определителя $D \quad D(i \mid j) = (-1)^{i+j} M(i \mid j)$, а $M(i \mid j)$ есть минор, полученный вычеркиванием *i*-ой строки и *j*-го столбца из исходного определителя D. Итак, коэффициент при $\langle u_i \mid v_j \rangle$ в (50) и (51) есть

$$D(i \mid j) = \sum_{\hat{Q} \in S_N} \delta_{jQ_i} (-1)^q \langle u_1 \mid v_{Q_1} \rangle \cdots \langle u_{i-1} \mid v_{Q_{i-1}} \rangle \langle u_{i+1} \mid v_{Q_{i+1}} \rangle \cdots \langle u_N \mid v_{Q_N} \rangle.$$
(52)

Теперь выберем два любых индекса i и j ($1 \le i < j \le N$) и выделим сомножители, отвечающие интегрированию по координатам i-го и j-го электронов. Поступаем как и в предыдущем случае, но теперь дополнительное суммирование и символы Кронекера введем для двух индексов:

$$\langle U | V \rangle = \sum_{\hat{Q} \in S_{N}} (-1)^{q} \langle u_{i} | v_{Q_{i}} \rangle \langle u_{j} | v_{Q_{j}} \rangle \langle u_{1} | v_{Q_{1}} \rangle \cdots \langle u_{i-1} | v_{Q_{i-1}} \rangle \langle u_{i+1} | v_{Q_{i+1}} \rangle \cdots \\ \cdots \langle u_{j-1} | v_{Q_{j-1}} \rangle \langle u_{j+1} | v_{Q_{j+1}} \rangle \cdots \langle u_{N} | v_{Q_{N}} \rangle =$$

$$= \sum_{k,l=1}^{N} \langle u_{i} | v_{k} \rangle \langle u_{j} | v_{l} \rangle \sum_{\hat{Q} \in S_{N}} \delta_{kQ_{i}} \delta_{lQ_{j}} (-1)^{q} \langle u_{1} | v_{Q_{1}} \rangle \cdots \langle u_{i-1} | v_{Q_{i-1}} \rangle \langle u_{i+1} | v_{Q_{i+1}} \rangle \cdots$$

$$\cdots \langle u_{j-1} | v_{Q_{j-1}} \rangle \langle u_{j+1} | v_{Q_{j+1}} \rangle \cdots \langle u_{N} | v_{Q_{N}} \rangle,$$

$$(53)$$

где индексы суммирования *k* и *l* изменяются независимо друг от друга. Только слагаемые с $k \neq l$ дают вклад в сумму, поскольку для каждой перестановки \hat{Q} имеем $Q_i \neq Q_j$; тогда $\delta_{kQ_i}\delta_{lQ_j} = 0$, если k = l. В последней сумме для данной пары чисел *k* и *l* имеются два слагаемых, отличающихся лишь перестановкой *k* и *l*. Эта перемена индексов означает, что соответствующие перестановки \hat{Q} отличаются одной транспозицией, так что их четности противоположны по знаку: $(-1)^q$ для одной перестановки и $-(-1)^q$ для другой. В остальном же коэффициенты при этих слагаемых одинаковы, а именно:

$$\langle U | V \rangle = \sum_{k < l=1}^{N} \left| \langle u_{i} | v_{k} \rangle \langle u_{j} | v_{l} \rangle - \langle u_{i} | v_{l} \rangle \langle u_{j} | v_{k} \rangle \right| \times$$

$$\times \sum_{\hat{Q} \in S_{N}} \delta_{kQ_{i}} \delta_{lQ_{j}} (-1)^{q} \langle u_{1} | v_{Q_{1}} \rangle \cdots \langle u_{i-1} | v_{Q_{i-1}} \rangle \langle u_{i+1} | v_{Q_{i+1}} \rangle \cdots \langle u_{j-1} | v_{Q_{j-1}} \rangle \langle u_{j+1} | v_{Q_{j+1}} \rangle \cdots \langle u_{N} | v_{Q_{N}} \rangle,$$

$$(54)$$

где слагаемое в прямых скобках есть определитель второго порядка

$$\begin{vmatrix} \langle u_i | v_k \rangle & \langle u_i | v_l \rangle \\ \langle u_j | v_k \rangle & \langle u_j | v_l \rangle \end{vmatrix},$$
(55)

или иначе, минор второго порядка для определителя D. Итак, перекрывание $\langle U | V \rangle$ можно записать как сумму таких определителей второго порядка с коэффициентами, происходящими из интегрирования по координатам других электронов, отличных от *i*-го и *j*-го. Конструкция (54) есть частный случай обобщенной теоремы Лапласа: для пары строк *i* < *j* любой определитель может быть разложен в сумму всех его миноров второго порядка, образованных элементами строк *i* и *j*, и всех возможных столбцов k < l, умноженных на их алгебраические дополнения, т. е. на миноры порядка N - 2, полученных

исключением строк i, j и столбцов k, l из исходного определителя и умножением на $(-1)^{i+j+k+l}$:

$$D(ij | kl) = (-1)^{i+j+k+l} M(ij | kl),$$
(56)

а именно:

$$\langle U | V \rangle \equiv \text{Det} | \langle u_i | v_j \rangle | = \sum_{k < l = 1}^{N} \begin{vmatrix} \langle u_i | v_k \rangle & \langle u_i | v_l \rangle \\ \langle u_j | v_k \rangle & \langle u_j | v_l \rangle \end{vmatrix} D(ij | kl).$$
(57)

Теорема Лапласа, естественно, обобщается на миноры любого порядка и их соответствующие алгебраические дополнения.

Из сравнения с (57) следует, что коэффициент в формуле (54) при $|\langle u_i | v_k \rangle \langle u_j | v_l \rangle - \langle u_i | v_l \rangle \langle u_j | v_k \rangle|$ есть

$$\sum_{\hat{Q}\in S_{N}} \delta_{kQ_{i}} \delta_{lQ_{j}}(-1)^{q} \langle u_{1} | v_{Q_{1}} \rangle \cdots \langle u_{i-1} | v_{Q_{i-1}} \rangle \langle u_{i+1} | v_{Q_{i+1}} \rangle \cdots \langle u_{j-1} | v_{Q_{j-1}} \rangle \langle u_{j+1} | v_{Q_{j+1}} \rangle \cdots \langle u_{N} | v_{Q_{N}} \rangle = D(ij | kl).$$
(58)

При вычислении матричных элементов операторов физических величин орбитали двух детерминантов удобнее располагать таким образом, чтобы обе последовательности орбиталей совпадали максимально. Для этого изменяют порядок следования орбиталей, вводя множитель +1 или –1. Далее предполагается, что эти перестановки орбиталей уже выполнены.

Возьмем волновую функцию $\Psi = \hat{A}[\varphi_1(1)\varphi_2(2)\varphi_3(3)\cdots\varphi_N(N)]$ и найдем интеграл ее нормировки $\langle \Psi | \Psi \rangle$. Воспользуемся (49) для случая $U = V = \Psi$ и $u_i = v_i = \varphi_i$. Тогда $S_{ii}^{uv} = S_{ii} = \langle \varphi_i | \varphi_i \rangle$ и нормировка

$$\langle \Psi | \Psi \rangle = \text{Det}|S| \tag{59}$$

с элементами S_{ij} . В случае ортонормированных орбиталей φ_i недиагональные элементы матрицы перекрывания зануляются ($S_{ij} = \delta_{ij}$) и Det| $S \models 1$: слэтеровский детерминант, построенный из ортонормированных спин-орбиталей, нормирован на единицу. Именно это условие нормировки обусловливает выбор множителя $1/\sqrt{N!}$ в определении детерминанта Слэтера (34) и оператора антисимметризации (36).

Если одна из функций U или V содержит одну или более спин-орбиталей, ортогональных всем спин-орбиталям другой волновой функции, то S^{uv} будет содержать одну или более строк (столбцов), все элементы которых равны нулю. Тогда, согласно свойствам определителя, $Det(S^{uv}) = 0$: детерминантные волновые функции U и V также ортогональны.

Итак, ненулевые интегралы перекрывания, если используется ортонормированный набор спин-орбиталей, имеются лишь между теми

детерминантными функциями, которые содержат те же самые спин-орбитали. Если порядок следования орбиталей в обоих детерминантах одинаков или становится одинаковым после четного числа транспозиций, то интеграл перекрывания $\langle U | V \rangle = +1$; если же порядок следования орбиталей в двух детерминантах связан нечетным числом транспозиций, то перекрывание $\langle U | V \rangle = -1$.

1.3.1. Матричные элементы одноэлектронного оператора

Рассмотрим одноэлектронный оператор

$$\hat{H}^{(1)} = \sum_{i=1}^{N} \hat{h}(i), \qquad (60)$$

в котором каждый $\hat{h}(i)$ действует только на функции, зависящие от координат *i*-го электрона. Примером может служить одноэлектронная часть оператора Борна – Оппенгеймера (6), а именно:

$$\hat{h}(i) = -\frac{1}{2}\Delta_i - \sum_{\alpha=1}^{N_N} \frac{Z_\alpha}{r_{\alpha i}}.$$
(61)

Вычислим матричный элемент $\langle U | \hat{H}^{(1)} | V \rangle$ с волновыми функциями (45) и (46). Оператор $\hat{H}^{(1)}$ коммутирует с оператором антисимметризации \hat{A} , воспользуемся также его эрмитовостью и идемпотентностью (38):

$$\langle U | \hat{H}^{(1)} | V \rangle = \langle \hat{A} [u_1(1)u_2(2)u_3(3)\cdots u_N(N)] | \hat{H}^{(1)} | \hat{A} [v_1(1)v_2(2)v_3(3)\cdots v_N(N)] \rangle =$$

$$= \sqrt{N!} \langle u_1(1)u_2(2)u_3(3)\cdots u_N(N) | \hat{H}^{(1)} | \hat{A} [v_1(1)v_2(2)v_3(3)\cdots v_N(N)] \rangle.$$
(62)

Воспользуемся далее записью оператора антисимметризации в том виде (37), когда он действует на индексы спин-орбиталей, и получим:

$$\langle U | \hat{H}^{(1)} | V \rangle = \sqrt{N!} \langle u_1(1) u_2(2) \cdots u_N(N) | \sum_{i=1}^N \hat{h}(i) | \frac{1}{\sqrt{N!}} \sum_{\hat{\varrho} \in S_N} (-1)^q [v_{\varrho_1}(1) v_{\varrho_2}(2) \cdots v_{\varrho_N}(N)] \rangle =$$

$$= \sum_{i=1}^N \sum_{\hat{\varrho} \in S_N} (-1)^q \langle u_1(1) u_2(2) \cdots u_i(i) \cdots u_N(N) | \hat{h}(i) | v_{\varrho_1}(1) v_{\varrho_2}(2) \cdots v_{\varrho_i}(i) \cdots v_{\varrho_N}(N)] \rangle.$$

$$(63)$$

Каждый из интегралов в последней сумме расписывается в виде произведения интегралов. Все эти интегралы, за исключением одного, относящегося к *i*-му электрону, являются теми же самыми интегралами перекрывания между спин-орбиталями, которые уже встречались при расчете перекрывания $\langle U | V \rangle$. Перенесем интеграл

$$\langle u_i(i) | \hat{h}(i) | v_{Q_i}(i) \rangle \equiv \langle u_i | \hat{h} | v_{Q_i} \rangle$$

на первое место в (63), при этом указывать явно переменные уже нет необходимости, и воспользуемся, как и в случае (50), тождеством

$$\langle u_i \, | \, \hat{h} \, | \, v_{Q_i} \rangle \equiv \sum_{j=1}^N \langle u_i \, | \, \hat{h} \, | \, v_j \rangle \mathcal{S}_{jQ_i} \,,$$

вводящим δ-функцию. Тогда

$$\langle U | \hat{H}^{(1)} | V \rangle = \sum_{i=1}^{N} \sum_{\hat{Q} \in S_{N}} (-1)^{q} \langle u_{i} | \hat{h} | v_{Q_{i}} \rangle \langle u_{1} | v_{Q_{1}} \rangle \langle u_{2} | v_{Q_{2}} \rangle \cdots \langle u_{i-1} | v_{Q_{i-1}} \rangle \langle u_{i+1} | v_{Q_{i+1}} \rangle \cdots \langle u_{N} | v_{Q_{N}} \rangle = \\ = \sum_{i=1}^{N} \sum_{\hat{Q} \in S_{N}} (-1)^{q} \sum_{j=1}^{N} \langle u_{i} | \hat{h} | v_{j} \rangle \delta_{jQ_{i}} \langle u_{1} | v_{Q_{1}} \rangle \langle u_{2} | v_{Q_{2}} \rangle \cdots \langle u_{i-1} | v_{Q_{i-1}} \rangle \langle u_{i+1} | v_{Q_{i+1}} \rangle \cdots \langle u_{N} | v_{Q_{N}} \rangle = (64) \\ = \sum_{i,j=1}^{N} \langle u_{i} | \hat{h} | v_{j} \rangle \sum_{\hat{Q} \in S_{N}} (-1)^{q} \delta_{jQ_{i}} \langle u_{1} | v_{Q_{1}} \rangle \cdots \langle u_{i-1} | v_{Q_{i-1}} \rangle \langle u_{i+1} | v_{Q_{i+1}} \rangle \cdots \langle u_{N} | v_{Q_{N}} \rangle,$$

где вторая сумма в последней строке (64) есть ничто иное как алгебраическое дополнение

$$D(i|j) = (-1)^{i+j} M(i|j)$$
(65)

определителя матрицы перекрывания S^{uv} , выраженное через минор M(i|j)этого определителя. Окончательно имеем

$$\langle U | \hat{H}^{(1)} | V \rangle = \sum_{i,j=1}^{N} \langle u_i | \hat{h} | v_j \rangle D(i | j).$$
 (66)

Перейдем к формулировке правил Слэтера вычисления матричных элементов одноэлектронного оператора $\hat{H}^{(1)}$ на детерминантных волновых функциях. Пусть волновая функция $\Psi = \hat{A}[\psi_1(1)\psi_2(2)\psi_3(3)\cdots\psi_N(N)]$ строится из ортонормированных спин-орбиталей $\psi_i \equiv \psi_i(\vec{r},\sigma) = \varphi_i(\vec{r})\gamma_i(\sigma)$, где γ_i есть α или β . Воспользуемся (66), положив $U = V = \Psi$, $u_i = v_i = \psi_i$. Матрица $S^{uv} \equiv S = I$, так что $D(i \mid j) = \delta_{ij}$ и только главные миноры отличны от нуля и они равны единице. Имеем окончательно:

$$\langle \Psi | \hat{H}^{(1)} | \Psi \rangle = \langle \Psi | \sum_{i=1}^{N} \hat{h}(i) | \Psi \rangle = \sum_{i,j=1}^{N} \langle \psi_i | \hat{h}(i) | \psi_j \rangle D(i | j) =$$

$$= \sum_{i,j=1}^{N} \langle \psi_i | \hat{h}(i) | \psi_j \rangle \delta_{ij} = \sum_{i=1}^{N} \langle \psi_i | \hat{h}(i) | \psi_i \rangle = \sum_{i=1}^{N} \langle \varphi_i | \hat{h}(i) | \varphi_i \rangle,$$

$$(67)$$

где в последней сумме уже выполнено суммирование по спиновым переменным.

Сделаем одно полезное замечание. Благодаря ортонормированности спиновых функций α и β условие ортонормировки спин-орбиталей можно переписать следующим образом: $\langle \psi_i | \psi_j \rangle = \langle \varphi_i | \varphi_j \rangle \delta_{\gamma_i \gamma_j} = \delta_{ij}$. Тогда достаточно потребовать, чтобы пространственные орбитали φ_i , относящиеся к спин-орбиталям, имеющим один и тот же спин, были ортогональны, а на пространственные орбитали спин-орбиталей, относящихся к разным проекциям спина, требование ортогональности можно не налагать, поскольку эти спин-орбитали и так ортогональны за счет разных проекций спина, и такие пространственные орбитали часто берутся попарно идентичными. В этом случае появляются дважды занятые (пространственные) орбитали

$$\psi_{2i-1} = \varphi_i(\vec{r})\alpha(\sigma),$$

$$\psi_{2i} = \varphi_i(\vec{r})\beta(\sigma),$$
(68)

и более общее выражение (67)

$$\langle \Psi \mid \sum_{i=1}^{N} \hat{h}(i) \mid \Psi \rangle = \sum_{i=1}^{N} \langle \varphi_i \mid \hat{h}(i) \mid \varphi_i \rangle$$

сводится к

$$\langle \Psi^{(R)} | \sum_{i=1}^{N} \hat{h}(i) | \Psi^{(R)} \rangle = 2 \sum_{i=1}^{N/2} \langle \varphi_i | \hat{h}(i) | \varphi_i \rangle,$$
 (69)

где индекс (*R*) указывает на использование в волновой функции дважды занятых пространственных орбиталей, что имеет место в ограниченном (Restricted) методе Хартри – Фока.

Рассмотрим вычисление матричного элемента между детерминантами, отличающимися одной спин-орбиталью. Пусть в (66) кет-функция

$$V \equiv \Psi = \hat{A}[\psi_1(1)\psi_2(2)\psi_3(3)\cdots\psi_N(N)],$$
(70)

как и при вычислении среднего значения выше, а бра-функция

$$U \equiv \Psi^{(1)}(\psi_k \to \psi'_k) = \hat{A}[\psi_1(1)\psi_2(2)\cdots\psi_{k-1}(k-1)\psi'_k(k)\psi_{k+1}(k+1)\cdots\psi_N(N)]$$
(71)

отличается от Ψ (70) заменой спин-орбитали $\psi_k(k)$ на $\psi'_k(k)$, ортогональную ко всем остальным спин-орбиталям ψ_i . При этом, естественно, $\psi'_k(k)$ и $\psi_k(k)$ должны иметь один и тот же спин, ибо в противном случае U и V соответствовали бы разным проекциям спина S_z и матричный элемент бесспинового оператора между ними обратился бы в нуль. Другими словами, пространственная орбиталь спин-орбитали ψ'_k должна быть ортогональна ко всем пространственным орбиталям с тем же спином: $\langle \varphi'_k | \varphi_i \rangle = 0$ при $\gamma_k = \gamma_i$. Матрица взаимного перекрывания S^{uv} в рассматриваемом случае отличается от единичной матрицы I только в одном месте: k-й диагональный элемент равен нулю, поскольку $\langle \psi'_k | \psi_k \rangle = 0$. Как следствие этого, все миноры M(i|j) определителя матрицы S^{uv} равны нулю, за исключением единственного, который получается вычеркиванием k-й строки и k-го столбца, и этот минор равен единице: $D(i|j) = (-1)^{i+j} M(i|j) = \delta_{ik} \delta_{jk}$. Подстановка этого результата в (66) и суммирование по спиновым переменным дает

$$\langle \Psi^{(1)}(\psi_k \to \psi'_k) | \sum_{i=1}^N \hat{h}(i) | \Psi \rangle = \langle \psi'_k | \hat{h} | \psi_k \rangle = \langle \varphi'_k | \hat{h} | \varphi_k \rangle.$$
(72)

Если спин-орбитали ортонормированы как в нашем случае (речь идет о правилах Слэтера), то матричный элемент $\langle U | \hat{H}^{(1)} | V \rangle$ зануляется, если определители U и V отличаются двумя или более спин-орбиталями: все миноры M(i | j) определителя матрицы перекрывания S^{uv} зануляются, поскольку они содержат одну или более строк (столбцов) со всеми нулями.

1.3.2. Матричные элементы двухэлектронного оператора

В качестве двухэлектронного оператора возьмем двухэлектронную часть оператора Борна – Оппенгеймера (3)

$$\hat{H}^{(2)} = \sum_{i< j}^{N} \hat{g}(i, j), \qquad (73)$$

симметричную по отношению к перестановкам всех электронов:

$$\hat{g}(i,j) \equiv \frac{1}{|\vec{r}_i - \vec{r}_j|} = \hat{g}(j,i) \equiv \frac{1}{r_{ji}}.$$
(74)

Как и ранее, возьмем детерминанты U (45) и V (46), воспользуемся эрмитовостью и свойством идемпотентности антисимметризатора \hat{A} , а также тем, что он коммутирует с оператором $\hat{H}^{(2)}$, тогда:

$$\langle U | \hat{H}^{(2)} | V \rangle = \langle \hat{A} [u_{1}(1)u_{2}(2)u_{3}(3)\cdots u_{N}(N)] | \hat{H}^{(2)} | \hat{A} [v_{1}(1)v_{2}(2)v_{3}(3)\cdots v_{N}(N)] \rangle = = \sqrt{N!} \langle u_{1}(1)u_{2}(2)u_{3}(3)\cdots u_{N}(N) | \hat{H}^{(2)} | \hat{A} [v_{1}(1)v_{2}(2)v_{3}(3)\cdots v_{N}(N)] \rangle = = \sqrt{N!} \langle u_{1}(1)u_{2}(2)u_{3}(3)\cdots u_{N}(N) | \sum_{i < j}^{N} \hat{g}(i,j) | \frac{1}{\sqrt{N!}} \sum_{\hat{Q} \in S_{N}} (-1)^{q} v_{Q_{1}}(1)v_{Q_{2}}(2)v_{Q_{3}}(3)\cdots v_{Q_{N}}(N) \rangle = (75) = \sum_{i < j}^{N} \sum_{\hat{Q} \in S_{N}} (-1)^{q} \langle u_{1}(1)\cdots u_{i}(i)\cdots u_{j}(j)\cdots u_{N}(N) | \hat{g}(i,j) | v_{Q_{1}}(1)\cdots v_{Q_{i}}(i)\cdots v_{Q_{j}}(j)\cdots v_{Q_{N}}(N) \rangle,$$

где мы уже воспользовались записью оператора антисимметризации в том виде (37), когда он действует на индексы спин-орбиталей. Интегралы в последней сумме распадаются на произведения интегралов перекрывания, содержащих интегрирование по координатам отдельных электронов, за исключением координат *i*-го и *j*-го электронов. Удобно вынести соответствующие интегралы на первое место под знаком суммы и ввести два символа Кронекера, тогда

$$\langle U | \hat{H}^{(2)} | V \rangle = \sum_{i < j}^{N} \sum_{\hat{Q} \in S_{N}} (-1)^{q} \langle u_{i}(i)u_{j}(j) | \hat{g}(i,j) | v_{Q_{i}}(i)v_{Q_{j}}(j) \rangle \times \\ \times \langle u_{1} | v_{Q_{1}} \rangle \cdots \langle u_{i-1} | v_{Q_{i-1}} \rangle \langle u_{i+1} | v_{Q_{l+1}} \rangle \cdots \langle u_{j-1} | v_{Q_{j-1}} \rangle \langle u_{j+1} | v_{Q_{j+1}} \rangle \cdots \langle u_{N} | v_{Q_{N}} \rangle = \\ = \sum_{i < j}^{N} \sum_{k,l=1}^{N} \sum_{\hat{Q} \in S_{N}} \delta_{kQ_{i}} \delta_{lQ_{j}} (-1)^{q} \langle u_{i}(i)u_{j}(j) | \hat{g}(i,j) | v_{k}(i)v_{l}(j) \rangle \times \\ \times \langle u_{1} | v_{Q_{1}} \rangle \cdots \langle u_{i-1} | v_{Q_{i-1}} \rangle \langle u_{i+1} | v_{Q_{l+1}} \rangle \cdots \langle u_{j-1} | v_{Q_{j-1}} \rangle \langle u_{j+1} | v_{Q_{j+1}} \rangle \cdots \langle u_{N} | v_{Q_{N}} \rangle.$$

$$(76)$$

Несколько упростим последующие выражения, заменив *i* и *j* на 1 и 2. При 1 2 подразумеваются ЭТОМ под И совокупности (\vec{r}_1, σ_1) И (\vec{r}_2, σ_2) пространственных и спиновых координат этих двух электронов. Так же как и при переходе от (53) к (54), объединим два случая когда k и l переставлены местами, а все другие индексы перестановок \hat{Q} одинаковы; эти два случая соответствуют перестановкам с противоположной четностью, однако имеют один и тот же коэффициент. Итак,

$$\langle U | \hat{H}^{(2)} | V \rangle = \sum_{i < j}^{N} \sum_{k < l}^{N} [\langle u_{i}(1)u_{j}(2) | \hat{g}(1,2) | v_{k}(1)v_{l}(2) \rangle - \langle u_{i}(1)u_{j}(2) | \hat{g}(1,2) | v_{l}(1)v_{k}(2) \rangle] \times$$

$$\times \sum_{\hat{Q} \in S_{N}} \delta_{kQ_{i}} \delta_{lQ_{j}}(-1)^{q} \langle u_{1} | v_{Q_{1}} \rangle \cdots \langle u_{i-1} | v_{Q_{i-1}} \rangle \langle u_{i+1} | v_{Q_{l+1}} \rangle \cdots \langle u_{j-1} | v_{Q_{j-1}} \rangle \langle u_{j+1} | v_{Q_{j+1}} \rangle \cdots \langle u_{N} | v_{Q_{N}} \rangle,$$

$$(77)$$

а после сравнения последней суммы в (77) с (58) окончательно получаем

$$\langle U | \hat{H}^{(2)} | V \rangle = \sum_{\substack{i < j \\ k < l}}^{N} [\langle u_i(1) u_j(2) | \hat{g}(1,2) | v_k(1) v_l(2) \rangle - \langle u_i(1) u_j(2) | \hat{g}(1,2) | v_l(1) v_k(2) \rangle] D(ij | kl), (78)$$

где алгебраическое дополнение D(ij | kl) дается формулой (56).

Выражение (78) можно переписать более компактно в виде

$$\langle U | \hat{H}^{(2)} | V \rangle = \frac{1}{2} \sum_{i,j,k,l=1}^{N} \langle u_i(1) u_j(2) | \hat{g}(1,2) | v_k(1) v_l(2) \rangle D(ij | kl),$$
(79)

если воспользоваться симметрией интегралов в (78) относительно перестановки переменных интегрирования,

$$\langle u_i(1)u_j(2) | \hat{g}(1,2) | v_k(1)v_l(2) \rangle \equiv \langle u_j(1)u_i(2) | \hat{g}(1,2) | v_l(1)v_k(2) \rangle$$
(80)

и обобщить определение миноров D(ij | kl) на случай i > j и (или) k > l, полагая миноры D(ij | kl) антисимметричными по обеим парам индексов i, j и k, l.

Формула (79) была получена Лёвдиным. Запись ее в виде (78) более удобна в практических расчетах.

Теперь легко получить формулы для вычисления средних значений оператора $\hat{g}(1,2)$ в случае слэтеровских детерминантов.

Поступаем так же, как и при вычислении средних оператора $\hat{H}^{(1)}$ (§ 1.3.1): $U = V = \Psi$, $u_i = v_i = \psi_i = \varphi_i(\vec{r})\gamma_i(\sigma)$. Как и прежде, только главные миноры определителя матрицы $S^{uv} = I$ отличны от нуля и они равны единице. Вычеркивая строку *i*, нужно вычеркнуть и столбец с тем же номером и наоборот. Другими словами $D(ij | kl) = \delta_{ik} \delta_{jl}$, в предположении, что i < j и k < l. Теперь (78) можно переписать таким образом:

$$\langle \Psi | \hat{H}^{(2)} | \Psi \rangle = \sum_{i < j}^{N} [\langle \psi_i(1)\psi_j(2) | \hat{g}(1,2) | \psi_i(1)\psi_j(2) \rangle - \langle \psi_i(1)\psi_j(2) | \hat{g}(1,2) | \psi_j(1)\psi_i(2) \rangle], \quad (80)$$

где легко просуммировать по спиновым переменным. В первом интеграле при переходе к пространственным орбиталям имеем просто единичный множитель, поскольку для обоих электронов видим одну и ту же спин-орбиталь как в бра-, так и в кет-частях. Суммирование по спину во втором интеграле дает множитель $\delta_{\gamma_i \gamma_j}$: единицу, если спин-орбитали ψ_i и ψ_j для данного электрона имеют одинаковые проекции спина, и нуль, если их проекции спина различны:

$$\langle \Psi | \hat{H}^{(2)} | \Psi \rangle = \sum_{i < j}^{N} [\langle \varphi_i(1)\varphi_j(2) | \hat{g}(1,2) | \varphi_i(1)\varphi_j(2) \rangle - \langle \varphi_i(1)\varphi_j(2) | \hat{g}(1,2) | \varphi_j(1)\varphi_i(2) \rangle \delta_{\gamma_i \gamma_j}].(81)$$

Это же выражение удобнее использовать в виде, когда индексы *i* и *j* входят симметрично:

$$\langle \Psi | \hat{H}^{(2)} | \Psi \rangle = \frac{1}{2} \sum_{i,j=1}^{N} [\langle \varphi_i(1)\varphi_j(2) | \hat{g}(1,2) | \varphi_i(1)\varphi_j(2) \rangle - \langle \varphi_i(1)\varphi_j(2) | \hat{g}(1,2) | \varphi_j(1)\varphi_i(2) \rangle \delta_{\gamma_i \gamma_j}], (82)$$

где слагаемые с i = j сокращаются автоматически.

В случае ограниченного метода Хартри – Фока (дважды занятые пространственные орбитали) переходим к суммам по разным пространственным орбиталям и вместо (81) и (82) имеем:

$$\langle \Psi^{(R)} | \hat{H}^{(2)} | \Psi^{(R)} \rangle = \sum_{i < j}^{N/2} [4 \langle \varphi_i(1) \varphi_j(2) | \hat{g}(1,2) | \varphi_i(1) \varphi_j(2) \rangle - 2 \langle \varphi_i(1) \varphi_j(2) | \hat{g}(1,2) | \varphi_j(1) \varphi_i(2) \rangle] + \\ + \sum_{i=1}^{N/2} \langle \varphi_i(1) \varphi_i(2) | \hat{g}(1,2) | \varphi_i(1) \varphi_i(2) \rangle = \\ = \sum_{i, j=1}^{N/2} [2 \langle \varphi_i(1) \varphi_j(2) | \hat{g}(1,2) | \varphi_i(1) \varphi_j(2) \rangle - \langle \varphi_i(1) \varphi_j(2) | \hat{g}(1,2) | \varphi_j(1) \varphi_i(2) \rangle].$$

$$(83)$$

Перейдем к вычислению матричных элементов между детерминантами, отличающимися одной спин-орбиталью.

Поступаем аналогично случаю вычисления средних для одноэлектронного оператора $\hat{H}^{(1)}$. Рассматривая (78), становится очевидным, что одна из строк и

столбцов определителя матрицы *S^{иv}*, вычеркиваемых ОДИН ИЗ при формировании алгебраического дополнения D(ij | kl), должны совпасть со столбцом. соответствующим той орбитали. строкой И которой два детерминанта отличаются друг от друга (предполагаем, что это k-ая орбиталь). иначе остались бы только нулевые строка и столбец. По этой же причине и вторые строка и столбец, вычеркнутые при образовании минора, должны иметь одинаковый номер. Тогда получаются ненулевые алгебраические дополнения D(ik | ik) для i < k и D(ki | ki) для i > k, которые, очевидно, равны единице. относительно Поскольку двухэлектронные интегралы симметричны перестановок переменных интегрирования, то нет необходимости далее различать эти случаи. Получаем

$$\langle \Psi^{(1)}(\psi_{k} \to \psi_{k}') | \hat{H}^{(2)} | \Psi \rangle = \sum_{i \neq k}^{N} [\langle \psi_{k}'(1)\psi_{i}(2) | \hat{g}(1,2) | \psi_{k}(1)\psi_{i}(2) \rangle - \langle \psi_{k}'(1)\psi_{i}(2) | \hat{g}(1,2) | \psi_{i}(1)\psi_{k}(2) \rangle], (84)$$

где ограничение $i \neq k$ можно опустить, поскольку соответствующее слагаемое с i = k автоматически зануляется. Тогда формула (84) переписывается через пространственные орбитали следующим образом:

$$\langle \Psi^{(1)}(\psi_{k} \to \psi_{k}') | \hat{H}^{(2)} | \Psi \rangle = \sum_{\substack{i=1 \\ (i \neq k)}}^{N} \left[\langle \varphi_{k}'(1)\varphi_{i}(2) | \hat{g}(1,2) | \varphi_{k}(1)\varphi_{i}(2) \rangle - \langle \varphi_{k}'(1)\varphi_{i}(2) | \hat{g}(1,2) | \varphi_{i}(1)\varphi_{k}(2) \rangle \delta_{\gamma_{i}\gamma_{k}} \right]. (85)$$

В случае дважды занятых орбиталей формулу (85) перепишем так:

$$\langle \Psi^{(R1)}(\psi_k \to \psi'_k) | \hat{H}^{(2)} | \Psi^{(R)} \rangle = \sum_{i=1}^{N/2} [2 \langle \varphi'_k(1) \varphi_i(2) | \hat{g}(1,2) | \varphi_k(1) \varphi_i(2) \rangle - \langle \varphi'_k(1) \varphi_i(2) | \hat{g}(1,2) | \varphi_i(1) \varphi_k(2) \rangle],$$
(86)

где сумма берется по различным пространственным орбиталям и упрощения ради опущено ограничение $i \neq k$, иначе нужно было бы рассматривать отдельно слагаемое $\langle \varphi'_k(1)\varphi_k(2) | \hat{g}(1,2) | \varphi_k(1)\varphi_k(2) \rangle$, появляющееся в случае, когда ψ_k и ψ_i в (84) соответствуют одной и той же пространственной орбитали, занятой электронами с разными проекциями спина.

В случае, когда матричные элементы берутся между детерминантами, отличающимися двумя спин-орбиталями, $U = \Psi^{(2)}(\psi_k \rightarrow \psi'_k, \psi_l \rightarrow \psi'_l)$, имеется единственное ненулевое алгебраическое дополнение D(kl | kl) и оно равно единице, получаем

$$\langle \Psi^{^{(2)}} \begin{pmatrix} \psi_{k} \to \psi'_{k} \\ \psi_{l} \to \psi'_{l} \end{pmatrix} | \hat{H}^{^{(2)}} | \Psi \rangle = \langle \psi'_{k}(1)\psi'_{l}(2) | \hat{g}(1,2) | \psi_{k}(1)\psi_{l}(2) \rangle - \langle \psi'_{k}(1)\psi'_{l}(2) | \hat{g}(1,2) | \psi_{l}(1)\psi_{k}(2) \rangle =$$

$$= \langle \varphi'_{k}(1)\varphi'_{l}(2) | \hat{g}(1,2) | \varphi_{k}(1)\varphi_{l}(2) \rangle - \langle \varphi'_{k}(1)\varphi'_{l}(2) | \hat{g}(1,2) | \varphi_{l}(1)\varphi_{k}(2)\delta_{\gamma_{k}\gamma_{l}} \rangle,$$

$$(87)$$

где проведено также суммирование по спиновым переменным.

В рассматриваемом случае ортонормированных орбиталей матричный элемент $\langle U | \hat{H}^{(2)} | V \rangle$ зануляется, если детерминанты U и V отличаются тремя

или более спин-орбиталями, поскольку тогда ненулевых миноров M(ij | kl) не существует.

Литература

- М. Д. Долгушин, Ю. А. Кругляк. Метод разложения в теории ССП и проблема выбора базисных функций в атомных и молекулярных расчетах, Препринт ИТФ АН УССР, № 57, 1974: <u>https://www.researchgate.net/publication/216156868 Metod razlozenia v teorii SSP i problema vybora bazisnyh funkcij v atomnyh i molekularnyh rascetah.</u>
- М. Д. Долгушин, Ю. А. Кругляк. Расчет атомов методом разложения и выбор гауссовых базисных функций. Конфигурации 1s²2s²2pⁿ, Препринт ИТФ АН УССР, № 58, 1974: <u>https://www.researchgate.net/publication/216156866_Rascet_atomov_metodom_razlozenia</u> _i_vybor_gaussovyh_bazisnyh_funkcij_Konfiguracii_1s22s22pn.
- 3. М. Д. Долгушин, Ю. А. Кругляк. Расчет электронной структуры молекул в базисе гауссовых функций, *Препринт ИТФ АН УССР*, № 59, 1974: <u>https://www.researchgate.net/publication/216156841_Rascet_elektronnoj_struktury_moleku_1_v_bazise_gaussovyh_funkcij</u>.
- 4. М. Д. Долгушин. Эвристические методы квантовой химии или о смысле научных занятий. Москва: Эдиториал УРСС, 2001.
- M. Luisier, A. Schenk, W. Fichtner. Full-Band Atomistic Study of Source-to-Drain Tunneling in Si Nanowire Transistors. In *Simulation of Semiconductor Processes and Devices*, Eds. T. Grasser and S. Selberherr. Berlin: Springer, 2007.
- 6. V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, G.I. Bourianoff. Limits to Binary Logic Switch Scaling A Gedanken Model, *Proc. IEEE*, v. 91: 11, 1934 (2003).
- 7. R. Landauer. Irreversibility and heat generation in the computing process, *IBM J. Res. Dev.*, v. 5, 183 191 (1961).
- 8. C. H. Bennett. Notes on Landauer's principle. Reversible Computation and Maxwell's Demon, *History Phil. Mod. Phys.*, v. 34, 501 510 (2003).
- 9. Ю. А. Кругляк. Наноэлектроника "снизу вверх". Одесса: ТЭС, 2015.
- A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz. Experimental verification of Landauer's principle linking information and thermodynamics, *Nature*, v. 483, 187 – 189 (2012).
- К. А. Валиев. Квантовые компьютеры и квантовые вычисления, *УФН*, т. 175: 1, 3 – 39 (2005).
- 12. S. Kais. Introduction to quantum information and computation for chemistry, *Adv. Chem. Phys.*, v. 154, 1 38 (2014).
- 13. B. P. Lanyon, J. D. Whitfield, G. G. Gillet *et al*. Towards quantum chemistry on a quantum computer, *Nature chemistry*, v. 2, 106 111 (2010).
- 14. J. D. Whitfield, J. Biamonte, A. Aspuru-Guzik. Simulation of electronic structure Hamiltonians using quantum computers, *Mol. Phys.*, v. 109, 735 750 (2011).
- 15. N. C. Jones, J. D. Whitfield, L. Peter *at al.* Simulating chemistry efficiently on fault-tolerant quantum computers, *New Journal Phys.*, v. 14, 115023 (2012).
- 16. И. В. Абаренков, В. Ф. Братцев, А. В. Тулуб. *Начала квантовой химии*. Москва: Высшая школа, 1989.
- 17. Н. Ф. Степанов. Квантовая механика и квантовая химия. Москва: МГУ, 2001.
- 18. Istvan Mayer. *Simple theorems, proofs, and derivations in quantum chemistry*. New York: Kluwer Academic, 2003.
- 19. В. В. Иванов, Л. А. Слета. Квантовая химия. Харьков: Фолио, 2007.

- 20. В. И. Барановский. Квантовая механика и квантовая химия. Москва: Academia, 2008.
- 21. M. Born, J. R. Oppenheimer. Zur Quantentheorie der Molekeln, Ann. Phys., v. 84: 20, 457 – 484 (1927).
- J. O. Hirschfelder, W. J. Meath. The Nature of Intermolecular Forces, In Advances in Chemical Physics, eds. I. Prigogine, S. Rice, v. 12. New York: John Wiley & Sons, 1967.
- 23. Р. МакВини, С. Сатклиф. Квантовая механика молекул. Москва: Мир, 1973.
- 24. R. Pauncz. Spin Eigenfunctions. New York: Plenum Press, 1979.
- 25. J. C. Slater. The Theory of Complex Spectra, Phys. Rev., v. 34, 1293 1323 (1929).
- 26. P.-O. Lowdin. On the Non-Orthogonality problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals, *J. Chem. Phys.*, v. 18, 365 375 (1950).
- 27. J. C. Slater. Molecular energy levels and valence bonds, *Phys. Rev.*, v. 38, 1109 (1931).
- 28. P.-O. Lowdin. Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction, *Phys. Rev.*, v. 97, 1474 1489 (1955).

Глава 2. Методы решения молекулярного уравнения Шредингера

Введение

Точное решение уравнения Шредингера получено лишь для небольшого числа задач, в основном модельных. При расчете конкретных молекулярных систем используются различные приближенные методы. Мы рассмотрим такие приближенные методы решения молекулярного уравнения Шредингера, которые позволяют придать многоэлектронной волновой функции наглядную одночастичную интерпретацию и вместе с тем позволяют учесть значительную часть электронного взаимодействия. Эти методы составляют содержание теории самосогласованного поля (ССП), основы которой были заложены в работах Хартри и Фока [1 – 3]. Рассмотрению некоторых важных результатов, полученных в этом направлении, посвящена эта глава.

Начнем мы с обобщенного метода самосогласованного поля, развитого Годдардом. Дадим свойства решений разных вариантов обобщенного метода ССП и приведем примеры применений. Далее мы рассмотрим метод Хартри – Фока, неограниченные по спину уравнения ХФ, ограниченный метод ХФ и его развитие, метод Хартри – Фока – Рутана.

2.1. Обобщенный метод самосогласованного поля Годдарда и его варианты

Волновая функция системы взаимодействующих электронов в общем случае должна обладать следующими свойствами симметрии. Прежде всего, чтобы теория согласовывалась с экспериментальными данными, волновая функция должна быть антисимметричной относительно перестановки любой пары электронов. В отсутствии зависимости молекулярного гамильтониана от спиновых переменных многоэлектронная волновая функция должна быть собственной функцией оператора квадрата полного спина системы \hat{S}^2 и оператора проекции полного спина \hat{S}_z на выделенную ось *z*.

Один из способов построения многоэлектронных волновых функций, обладающих требуемой симметрией, сводится к применению математического аппарата теории групп перестановок [4 – 6]. Неприводимые представления группы перестановок N символов S_N классифицируются по схемам Юнга: каждая схема Юнга из N клеток однозначно соответствует определенному неприводимому представлению симметрической группы S_N . Поэтому неприводимые представления принято нумеровать символом [λ] = [$\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n$] соответствующих им схем Юнга [4], где λ_i – длина *i*-ой строки схемы Юнга, причем $\lambda_{i+1} \leq \lambda_i$. Размерность неприводимого представления [λ] определяется

53

числом стандартных таблиц Юнга, возможных для данной схемы Юнга [λ], и равна [4, 6]

$$f^{[\lambda]} = \frac{N! \prod_{i < j} (h_i - h_j)}{h_1! h_2! h_3! \dots h_m!},$$
(1)

где $h_i = \lambda_i + m - i$, а *m* есть число строк в схеме Юнга [λ].

Представим волновую функцию N электронов в виде

$$\Psi = \hat{G}\Phi X, \qquad (2)$$

где Φ – некоторая функция пространственных координат *N* электронов, X – функция спиновых координат электронов, \hat{G} – оператор, выбираемый таким образом, чтобы функция Ψ обладала необходимыми свойствами симметрии. В частности, оператор \hat{G} можно выбрать в виде [7 – 13]

$$\hat{G} \equiv \hat{G}_i^{\mu} = \sum_r \xi_{\hat{\sigma}_{ri}} \hat{O}_{ri}^{\mu} \hat{\omega}_{\bar{r}\bar{l}}^{\bar{\mu}}, \qquad (3)$$

где индекс μ задает неприводимое представление группы S_N , индекс *i* соответствует *i*-ой стандартной таблице Юнга для схемы Юнга μ , $\xi_{\hat{\sigma}_n}$ есть четность перестановки $\hat{\sigma}_{n}$, а операторы Юнга \hat{O}_n^{μ} и $\hat{\omega}_{\bar{r}\bar{i}}^{\bar{\mu}}$ определяются соотношениями [4 – 6]:

$$\hat{O}_{rs}^{\mu} = \frac{f^{\mu}}{N!} \sum_{\hat{\tau}} U_{rs}^{\mu}(\hat{\tau})\hat{\tau},$$

$$\hat{\omega}_{\bar{rs}}^{\bar{\mu}} = \frac{f^{\bar{\mu}}}{N!} \sum_{\hat{\tau}} U_{\bar{rs}}^{\bar{\mu}}(\hat{\tau})\hat{\tau},$$
(4)

где $U_{rs}^{\mu}(\hat{\tau})$ – матричные элементы матриц стандартного ортогонального представления Юнга – Яманути, а суммированные в (4) производится по всем N! перестановкам группы S_N , индексом $\bar{\mu}$ обозначено неприводимое представление, сопряженное к μ , операторы \hat{O}_{ri}^{μ} действуют на пространственные координаты электронов, а $\hat{\omega}_{ri}^{\mu}$ – на спиновые. Поскольку спиновые координаты электронов принимают лишь два значения, то схема Юнга $\bar{\mu}$ может содержать не более двух строк, а схема μ – не более двух столбцов: $\mu = [2^m, 1^{n-m}], \bar{\mu} = [n,m]$, причем $n \ge m, n+m = N$. Размерность этого представления согласно (1) равна:

$$f^{[2^{m},1^{n-m}]} = f^{[n,m]} \equiv f = \frac{N!(2S+1)}{\left(\frac{N}{2} + S + 1\right)!\left(\frac{N}{2} - S\right)!},$$
(5)

где 2S = n - m.

На рис. 1 приведены две сопряженные стандартные таблицы Юнга $S_f^{[2^m, 1^{n-m}]}$ и $S_1^{[n,m]}$.

Рис. 1. Стандартные таблицы Юнга $S_f^{[2^m,1^{n-m}]}$ (слева) и $S_1^{[n,m]}$ (справа).

Стандартные таблицы нумеруются в порядке отклонения последовательности чисел в клетках схемы Юнга от натурального ряда, если читать по строкам сверху вниз.

Рассмотрим структуру операторов $\hat{O}_{ff}^{[2^m,1^{n-m}]}$ и $\hat{O}_{11}^{[n,m]}$, которые понадобятся нам в дальнейшем. Пусть $\hat{\tau}_a$ – некоторая перестановка первых *n* символов (поднабор *a*), $\hat{\tau}_b$ – некоторая перестановка последних *m* символов (поднабор *b*). Далее, пусть $\hat{\tau}_r$ есть произведение *r* разных транспозиций, каждая из которых переставляет один символ из поднабора *a* с одним из символов поднабора *b*. Любую перестановку группы S_N для некоторых $\hat{\tau}_a, \hat{\tau}_b, \hat{\tau}_r$ можно представить в виде

$$\hat{\tau} = \hat{\tau}_a \hat{\tau}_b \hat{\tau}_r. \tag{6}$$

Соответствующие матричные элементы имеют вид [7]

$$U_{ff}^{[2^{m},1^{n-m}]}(\hat{\tau}_{a}\hat{\tau}_{b}\hat{\tau}_{r}) = \xi_{\hat{\tau}_{a}}\xi_{\hat{\tau}_{b}}\binom{n}{r}^{-1},$$
(7)

$$U_{11}^{[n,m]}(\hat{\tau}_a \hat{\tau}_b \hat{\tau}_r) = (-1)^r \binom{n}{r}^{-1},$$
(8)

где биномиальные коэффициенты $\binom{n}{r} \equiv \frac{n!}{(n-r)!r!}$.

Как показано Годдардом [7], функция $\hat{G}_{i}^{\mu} \Phi X$ удовлетворяет принципу Паули

$$\hat{\tau}\hat{G}_{i}^{\mu}\Phi X = \xi_{\hat{\tau}}\hat{G}_{i}^{\mu}\Phi X$$

и является собственной функцией оператора \hat{S}^2 , а именно:

$$\hat{S}^2 \hat{G}_i^\mu \Phi X = S(S+1) \hat{G}_i^\mu \Phi X$$
.

Отсюда следует, что выбор схемы Юнга определяется значением полного спина *S*. Выбор i = 1, 2, 3, ..., f для построения функции

$$\Psi^{(GI)} = \hat{G}_i^{\mu} \Phi \mathbf{X} \tag{9}$$

до некоторой степени произволен; позже мы рассмотрим влияние этого выбора на результаты вычислений.

Отметим также, что операторы \hat{G}_{i}^{μ} удовлетворяют соотношению [7]

$$\sum_{\mu} \frac{1}{f^{\mu}} \sum_{i} \hat{G}_{i}^{\mu} = \hat{\Omega}_{11}^{[1^{N}]} \equiv \frac{1}{N!} \sum_{\hat{\tau}} \hat{\xi}_{\hat{\tau}} \hat{\tau} , \qquad (10)$$

где антисимметризатор $\hat{\Omega}_{11}^{[1^N]}$ есть оператор Юнга, соответствующий схеме Юнга из одного столбца.

Молекулярный гамильтониан \hat{H} (6/гл.1) не зависит от спинов и коммутирует со всеми перестановками координат электронов. Тогда значение энергии [8]

$$E = \left\langle \hat{G}_{i}^{\mu} \Phi \mathbf{X} \middle| \hat{H} \middle| \hat{G}_{i}^{\mu} \Phi \mathbf{X} \right\rangle / \left\langle \Psi^{(GI)} \middle| \Psi^{(GI)} \right\rangle = \left\langle \Phi \middle| \hat{H} \middle| \hat{O}_{ii}^{\mu} \Phi \right\rangle / \left\langle \Phi \middle| \hat{O}_{ii}^{\mu} \Phi \right\rangle.$$
(11)

В дальнейшем нас будет интересовать такая аппроксимация функций вида (9), когда функции Ф и Х можно записать следующим образом:

$$\Phi = \varphi_1(\vec{r}_1)\varphi_2(\vec{r}_2)\cdots\varphi_N(\vec{r}_N),$$

$$X = \chi_1(s_1)\chi_2(s_2)\cdots\chi_N(s_N),$$
(12)

где

$$\chi_i(s_i) = \begin{cases} \alpha(s_i), \\ \beta(s_i). \end{cases}$$

Подставляя (12) в (11) и варьируя функционал

$$I = E - \sum_{j} \varepsilon_{j} \left\langle \varphi_{j} \, | \, \varphi_{j} \right\rangle$$

по φ_j , получим уравнение для нормированных орбиталей, минимизирующих (11), а именно [8]:

$$\hat{H}_{k}(\vec{r})\varphi_{k}(\vec{r}) = \mathcal{E}_{k}\varphi_{k}(\vec{r}), \quad (k = 1, 2, 3, ..., N)$$
(13)

где $\hat{H}_k(\vec{r})$ – довольно сложный эффективный гамильтониан, зависящий от функций φ_k . Уравнения (13) представляют собой набор нелинейных интегродифференциальных уравнений ССП на вариационной функции (2). Иначе говоря, орбитали $\varphi_k(\vec{r})$ можно рассматривать как функции, описывающие состояние электрона в поле ядер и некотором усредненном поле остальных *N* – 1 электронов.

Легко установить связь между функцией (9) и вариационной функцией Фока [3] в виде детерминанта Слэтера [14, 15]. Для этого выберем Ф и Х в виде

$$\Phi_{0} = \hat{\tau}_{1i} \varphi_{1}(\vec{r}_{1}) \varphi_{1}(\vec{r}_{2}) \cdots \varphi_{m}(\vec{r}_{2m-1}) \varphi_{m}(\vec{r}_{2m}) \varphi_{m+1}(\vec{r}_{2m+1}) \cdots \varphi_{n}(\vec{r}_{N}),$$

$$X_{0} = \hat{\tau}_{fi} \alpha(1) \beta(2) \cdots \alpha(2m-1) \beta(2m) \alpha(2m+1) \cdots \alpha(n+m),$$
(14)

где $\hat{\tau}_{ji}$ – перестановка, при помощи которой из таблицы *j* получается таблица *i*. Функция $\hat{G}_i^{\mu} \Phi_0 X_0$ совпадает с точностью до фазового множителя со слэтеровским детерминантом. Таким образом, уравнения (13) являются обобщением уравнений Хартри – Фока, поскольку при переходе от (12) к (14) мы налагаем дополнительные ограничения на вид вариационной функции. Из этого следует, что

$$E^{(GI)} = \frac{\left\langle \hat{G}_{i}^{\mu} \Phi X \middle| \hat{H} \middle| \hat{G}_{i}^{\mu} \Phi X \right\rangle}{\left\langle \hat{G}_{i}^{\mu} \Phi X \middle| \hat{G}_{i}^{\mu} \Phi X \right\rangle} \leq \frac{\left\langle \Psi^{(HF)} \middle| \hat{H} \middle| \Psi^{(HF)} \right\rangle}{\left\langle \Psi^{(HF)} \middle| \Psi^{(HF)} \right\rangle}.$$
(15)

При решении уравнений (67) удобно использовать метод Рутана [16]. Разложим орбитали φ_k по некоторому базису χ_v :

$$\varphi_k = \sum_{\nu=1}^M C_{\nu k} \chi_{\nu}. \quad (M \ge N)$$
(16)

Тогда из (13) получим уравнения для коэффициентов разложения С_{ик} вида

$$\sum_{\nu=1}^{M} H_{\mu\nu}^{(k)} C_{\nu k} = \sum_{\nu=1}^{M} \varepsilon_k S_{\mu\nu} C_{\nu k} , \qquad (17)$$

где $S_{\mu\nu} = \langle \mu | \nu \rangle$ – интегралы перекрывания базисных функций. Уравнения (17) решаются методом последовательных приближений [16]. Следует отметить, что в общем случае (для произвольного *i* в формуле (9)) матрицы $H_{\mu\nu}^{(k)}$ зависят от *k* [8], что значительно усложняет решение уравнений (17) по сравнению с аналогичными уравнениями на вариационной функции Фока. Однако, если i = f, т.е. речь идет о вариационной функции $\hat{G}_{f}^{\mu} \Phi X$, уравнения (17) принимают вид [9]

$$\sum_{\nu=1}^{M} H^{(a)}_{\mu\nu} C^{(a)}_{\nu k} = \sum_{\nu=1}^{M} \varepsilon^{(a)}_{k} S_{\mu\nu} C^{(a)}_{\nu k} , \qquad (18)$$

$$\sum_{\nu=1}^{M} H^{(b)}_{\mu\nu} C^{(b)}_{\nu k} = \sum_{\nu=1}^{M} \varepsilon^{(b)}_{k} S_{\mu\nu} C^{(b)}_{\nu k} .$$
(19)

Таким образом, если использовать оператор \hat{G}_{f}^{μ} для построения волновой функции (9), то получаем всего два набора уравнений для коэффициентов разложения $C_{\nu k}$. Решив систему уравнений (18) – (19), получим два ортонормированных набора векторов $\{C_{\nu k}^{(a)}\}$ и $\{C_{\nu k}^{(b)}\}$. Если же $i \neq f$, то в общем случае векторы $C_{\nu k}$ не будут ортогональными. Исходя из сказанного, волновую функцию метода *GF* представим в виде

$$\Psi^{(GF)} = \hat{G}^{\mu}_f \Phi_1 X_1, \qquad (20)$$

где

$$\Phi_1 = \varphi_{1a}(1) \cdots \varphi_{na}(n) \varphi_{1b}(n+1) \cdots \varphi_{mb}(N), \qquad (21)$$

$$X_1 = \alpha(1) \cdots \alpha(n) \beta(n+1) \cdots \beta(n+m), \qquad (22)$$

$$\varphi_{ia} = \sum_{\nu} C_{\nu i}^{(a)} \chi_{\nu}, \quad \varphi_{ib} = \sum_{\nu} C_{\nu i}^{(b)} \chi_{\nu} .$$
(23)

Векторы различных поднаборов, вообще говоря, не будут ортогональны, т.е.

$$\left\langle \varphi_{ia} \left| \varphi_{jb} \right\rangle \neq 0 \quad (i, j = 1, 2, ..., M).$$
 (24)

Амос и Холл показали [17], что всегда можно сделать такое унитарное преобразование функций, входящих в (21), а именно:

$$\varphi_{ia}' = \sum_{l=1}^{n} \varphi_{la} V_{li} \quad (\hat{V}\hat{V}^{+} = \hat{I}),$$
(25)

$$\varphi'_{jb} = \sum_{l=1}^{m} \varphi_{lb} U_{lj} \quad (\hat{U}\hat{U}^{+} = \hat{I}),$$
(26)

что

$$\left\langle \varphi_{ia}^{\prime} \mid \varphi_{jb}^{\prime} \right\rangle = \lambda_i \delta_{ij}, \quad \lambda_i \leq 1 \quad \begin{pmatrix} i = 1, 2, ..., n \\ j = 1, 2, ..., m \end{pmatrix}.$$
 (27)

Способ получения матриц \hat{V} и \hat{U} в явном виде описан в работах [17, 18]. Функции, удовлетворяющие уравнениям (27), принято называть соответствующими орбиталями [19].

Годдард [9] показал, что функция (20) и матрицы операторов $\hat{H}^{(a)}$ и $\hat{H}^{(b)}$, входящих в уравнения (18) и (19), инвариантны относительно преобразования (25), (26). Однако если потребовать, чтобы самосогласованные решения уравнений (18) и (19) удовлетворяли (27), то будет потеряна одночастичная интерпретация решения. Иначе говоря, орбитали φ'_{ia} и φ'_{ib} нельзя интерпретировать как состояния электрона в поле ядер и усредненном поле остальных электронов. Более того, матрицы операторов $\hat{H}^{(a)}$ и $\hat{H}^{(b)}$, будут зависеть от k. C другой стороны, вычислять матрицы операторов $\hat{H}^{(a)}$, $\hat{H}^{(b)}$ и энергию гораздо проще на орбиталях φ'_{ia} и φ'_{ib} , чем на орбиталях φ_{ia} и φ_{ib} .

Матрица оператора $\hat{H}^{(a)}$ имеет вид [9]

$$H_{\mu\nu}^{(a)} = \left\langle \mu | \hat{h} | \nu \right\rangle \mathscr{D}_{a}^{a} + \sum_{i,\nu} \left[\left\langle \mu | \hat{h} | i \right\rangle \left\langle \nu b | \nu \right\rangle \mathscr{D}_{i,a}^{a,\nu b} + \left\langle \mu | \nu b \right\rangle \left\langle i | \hat{h} | \nu \right\rangle \mathscr{D}_{\nu b,a}^{a,i} \right] \right. \\ \left. + \sum_{u,\nu} \left\langle \mu | u b \right\rangle \left\langle \nu b | \nu \right\rangle \sum_{i,j} \left\langle i | \hat{h} | j \right\rangle \mathscr{D}_{ub,a,j}^{a,\nu b,i} + \sum_{i,j} \left[\left\langle \mu, i | \hat{g} | \nu, j \right\rangle \mathscr{D}_{a,j}^{a,i} + \left\langle \mu, i | \hat{g} | j, \nu \right\rangle \mathscr{D}_{j,a}^{a,i} \right] \right. \\ \left. + \sum_{i,j,t;\nu} \left[\left\langle \mu, i | \hat{g} | j, t \right\rangle \left\langle \nu b | \nu \right\rangle \mathscr{D}_{j,a,t}^{a,\nu b,i} + \left\langle \mu | \nu b \right\rangle \left\langle j, t | \hat{g} | \nu, i \right\rangle \mathscr{D}_{\nu b,a,i}^{a,j,t} \right] \right] \\ \left. + \sum_{u,\nu} \left\langle \mu | u b \right\rangle \left\langle \nu b | \nu \right\rangle \sum_{i < j; s, t} \left\langle i, j | \hat{g} | s, t \right\rangle \mathscr{D}_{ub,a,s,t}^{a,\nu b,i,j} - E \sum_{u,\nu} \left\langle \mu | u b \right\rangle \left\langle \nu b | \nu \right\rangle \mathscr{D}_{ub,a}^{a,\nu b} \right] \right.$$

и аналогично для $\hat{H}^{(b)}$, где

$$\begin{split} \left\langle \mu \left| \hat{A} \right| vb \right\rangle &= \int d\vec{r} \,\chi_{\mu}^{*}(\vec{r}) \hat{A}(\vec{r}) \varphi_{vb}(\vec{r}) \,, \\ \hat{h}(\vec{r}) &= -\frac{1}{2} \Delta + \hat{V}(\vec{r}) \,, \\ \left\langle i, j \left| \hat{g} \right| t, s \right\rangle &= \int d\vec{r}_{1} \, d\vec{r}_{2} \,\varphi_{i}^{*}(\vec{r}_{1}) \varphi_{t}(\vec{r}_{1}) \frac{1}{\left| \vec{r}_{1} - \vec{r}_{2} \right|} \varphi_{j}^{*}(\vec{r}_{2}) \varphi_{s}(\vec{r}_{2}) \,. \end{split}$$

Величины \wp есть сложные функции интегралов перекрывания λ_i , определенных в (27), например:

$$\mathscr{D}_{a}^{a} = \sum_{p=0}^{m-1} {\binom{n}{p}}^{-1} A_{p} \equiv T00,$$
$$A_{p} = \sum_{\substack{\{k_{1}, k_{2}, \dots, k_{p}\} \\ (k_{i} \neq k_{j})}} x_{k_{1}} x_{k_{2}} \cdots x_{k_{p}}, \quad x_{k} = \lambda_{k}^{2}.$$

Из (28) следует, что всего имеется 78 матриц операторов $\hat{\wp}$. Выражения для всех матриц, приведенных в [9] для $\hat{H}^{(a)}$ и $\hat{H}^{(b)}$, построены на орбиталях, удовлетворяющих (27). Интеграл нормировки для функции (20)

$$\left\langle \Psi^{(GF)} | \Psi^{(GF)} \right\rangle = T00.$$
 (29)

В предположении, что выполнены преобразования (25), (26) и $\varphi_i^* = \varphi_i$, среднее значение энергии на функции $\Psi^{(GF)}$ имеет вид [20]

$$\begin{split} E^{(GF)} &= \left\langle \Psi^{(GF)} | \hat{H} | \Psi^{(GF)} \right\rangle / T00 = \\ &= \left\{ \left\{ \sum_{i=1}^{m} \left[\left(\left\langle ia | \hat{h} | ia \right\rangle + \left\langle ib | \hat{h} | ib \right\rangle \right) T01(i) + 2\lambda_{i} \left\langle ia | \hat{h} | ib \right\rangle T11(i) \right] \right. \\ &+ \frac{1}{2} \sum_{i,j=1}^{m} \left\{ \begin{array}{l} T02(i, j) \left[\left(ia, ia + ib, ib | ja, ja + jb, jb \right) - \left(ia, ja | ja, ia \right) - \left(jb, ib | ib, jb \right) \right] \\ &+ T12(i, j) \left\{ 2\lambda_{i} \left[\left(ia, ib | ja, ja + jb, jb \right) - \left(ja, ia | ib, ja - \left(ia, jb | jb, ib \right) \right] \\ &+ 2\lambda_{j} \left[\left(ia, ia + ib, ib | ja, ja - \left(ia, jb | ja, ia \right) - \left(ib, ja | jb, ib \right) \right] \\ &+ 2\lambda_{i} \lambda_{j} (ia, ja | jb, ib) + \left(ib, ja | ja, ib \right) + \left(ia, jb | jb, ia \right) \\ &+ 2T22(i, j)\lambda_{i}\lambda_{j} \left[2(ia, ib | ja, jb) - \left(ia, jb | ja, ib \right) \right] \\ &+ \sum_{i=1}^{m} \left[T01(i)(ia, ia | ib, ib) + T11(i)(ia, ib | ib, ia) \right] \\ &+ \sum_{l=m+1}^{m} \sum_{i=1}^{m} \left\{ T01(i) \left[\left(ia, ia | l, l \right) + \left(ib, ib | l, l \right) - \left(ia, l | l, ia \right) \right] \\ &+ \sum_{l=m+1}^{n} \left\{ l | \hat{h} | l \right\} + \sum_{k>l=m+1}^{n} \left[\left(l, l | k, k \right) - \left(l, k | k, l \right) \right], \end{split} \right\} \right\} \times T00^{-1} \end{split}$$

где

$$(i, j | s, t) = \langle i, s | \hat{g} | j, t \rangle,$$

$$TIJ = \sum_{p=0}^{m-J} {\binom{n}{p+I}}^{-1} A_p,$$

$$TIJ(i) = \sum_{p=0}^{m-J} {\binom{n}{p+I}}^{-1} A_p(i),$$

$$TIJ(i, j) = \sum_{p=0}^{m-J} {\binom{n}{p+I}}^{-1} A_p(i, j),$$
(31)

$$A_{p}(i) = A_{p} - x_{i}A_{p-1}(i) = A_{p}|_{x_{i}=0},$$

$$A_{p}(i, j) = A_{p}(i) - x_{j}A_{p-1}(i, j) = A_{p}|_{x_{i}=x_{j}=0},$$

$$A_{0} = A_{0}(i) = A_{0}(i, j) = 1.$$
(32)

Итерационная процедура решения уравнений (18) и (19) состоит в следующем. Вычисляем собственные векторы $C_k^{(a)}(i)$ и $C_k^{(b)}(i)$ уравнений (18) и (19) на *i*-ой итерации. Затем, выполнив преобразования (25) и (26) и определив соответствующие векторы $C_k'^{(a)}(i)$ и $C_k'^{(b)}(i)$, строим на них новые матрицы $H^{(a)}(i+1)$ и $H^{(b)}(i+1)$. Вычисляем собственные векторы на (i+1)-ой итерации и

так до тех пор, пока не будут получены самосогласованные векторы $C_k^{(a)}$ и $C_k^{(b)}$. Таким образом, процедура решений уравнений (18) и (19) во многом аналогична процедуре решения уравнений Хартри – Фока (ХФ) для однодетерминантной волновой функции в алгебраическом приближении [16]. Отличие состоит в том, что необходимо решать две связанные системы уравнений (18) и (19) и на каждой итерации выполнять преобразования (25) и (26). Кроме того, матрицы операторов $\hat{H}^{(a)}$ и $\hat{H}^{(b)}$ имеют гораздо более сложный вид, чем соответствующая матрица в методе Хартри – Фока – Рутана (ХФР) [16]. Так, если последняя содержит три типа матричных элементов: одноэлектронные, кулоновские и обменные, то матрицы операторов $\hat{H}^{(a)}$ и $\hat{H}^{(b)}$ в общем случае содержат 2×78 типов матричных элементов.

В результате описанная процедура дает орбитали φ_{ia} И $\varphi_{_{ih}},$ минимизирующие выражение для энергии (30). Согласно (19), полученное при этом значение полной энергии системы будет всегда не выше энергии в методе ХФР. Отметим также, что средние значения электронной и спиновой плотности могут быть вычислены, как и энергия, на функции (20), построенной из соответствующих орбиталей, поскольку выражение (20)инвариантно относительно преобразований (25) и (26) [17].

Установим связь между методом *GF*-функций Годдарда и другими похожими методами, предложенными ранее. Попл и Несбет [21] предложили варьировать энергию на функции вида

$$\Psi^{(UHF)} = \hat{\Omega}_{11}^{[1^{N}]} \psi_{1\alpha}(1) \cdots \psi_{n\alpha}(n) \psi_{1\beta}(n+1) \cdots \psi_{m\beta}(N)$$

$$= \frac{1}{N!} \sum_{i=1}^{N!} \xi_{\hat{\tau}_{i}}[\hat{\tau}_{i} \varphi_{1a}(\vec{r}_{1}) \cdots \varphi_{na}(\vec{r}_{n}) \varphi_{1b}(\vec{r}_{n+1}) \cdots \varphi_{mb}(\vec{r}_{N})], \qquad (33)$$

$$\times [\hat{\sigma}_{i} \alpha(s_{1}) \cdots \alpha(s_{n}) \beta(s_{n+1}) \cdots \beta(s_{n+m})] = \hat{\Omega}_{11}^{[1^{N}]} \Phi_{1} X_{1}$$

где

$$\psi_{i\alpha}(k) = \varphi_{ia}(\vec{r}_k) \alpha(s_k),$$

$$\psi_{i\beta}(k) = \varphi_{ib}(\vec{r}_k) \beta(s_k), \quad (\varphi_{ia} \neq \varphi_{ib}),$$

 $\hat{\tau}_{i}$ – оператор перестановки пространственных координат электронов, $\hat{\sigma}_{i}$ – оператор перестановки спиновых координат электронов, суммирование производится по всем *N*! перестановкам группы S_{N} , $\xi_{\hat{\tau}_{i}}$ – четность перестановки $\hat{\tau}_{i}$.

Оптимизируя орбитали φ_{ia} и φ_{ib} , входящие в (33), можно получить значение энергии более низкое, чем хартри – фоковское. Этот метод принято называть *неограниченным методом Хартри – Фока* (HXФ/UHF). Однако, как

следует из (10), волновая функция (33) представляет собой смесь различных мультиплетов, т.е. не является собственной функцией оператора \hat{S}^2 . Поэтому применение вариационной функции (33) для расчетов электронной структуры молекул при строгом подходе не оправдано.

Для устранения этого недостатка Левдин [22 – 24] предложил выделять из функции (33) компоненту нужной мультиплетности с помощью операторов проектирования \hat{O}_l :

$$\Psi_l = \hat{O}_l \Psi^{(UHF)}, \qquad (34)$$

где

$$\hat{O}_{l} = \prod_{k \neq l} \frac{\hat{S}^{2} - k(k+1)}{l(l+1) - k(k+1)}.$$
(35)

Можно также варьировать орбитали φ_{ia} и φ_{ib} , входящие в функцию Ψ_l , с целью минимизации выражения

$$E^{(EHF)} = \left\langle \Psi_l | \hat{H} | \Psi_l \right\rangle / \left\langle \Psi_l | \Psi_l \right\rangle.$$
(36)

Такой подход принято называть *расширенным методом Хартри – Фока* (РХФ/ЕНF).

Волновую функцию (34) можно представить в виде [24]

$$\Psi_l^{(EHF)} = \hat{\Omega}_{11}^{[1^N]} \Phi_1 \hat{O}_l \chi_1 = \hat{\Omega}_{11}^{[1^N]} \Phi_1 \sum_{p=0}^m C_p(l, M_s) \chi_1^{(p)}, \qquad (37)$$

где $M_s = (n-m)/2$ – проекция полного спина системы электронов на выделенное направление,

$$\chi_1^{(p)} = \sum_{\sigma_p} \hat{\sigma}_p \chi_1, \qquad (38)$$

 $\hat{\sigma}_p$ – оператор, переставляющий *p* индексов поднабора *a* с *p* индексами поднабора *b*, т.е. $\hat{\sigma}_p$ аналогичен $\hat{\tau}_p$ в соотношении (6). Явный вид коэффициентов $C_p(l, M_s)$ для разных случаев был получен Левдиным [24], Сасаки и Оно [25] и Смитом [26]. Наиболее общая форма записи коэффициентов такова [25]:

$$C_{p}(S,M_{S}) = (2S+1)\frac{(m+S-M_{S}-p)!(S+M_{S})!}{(S-M_{S})!}\sum_{t}\frac{(-1)^{t}}{t!}\frac{[(S-M_{S}+t)!]^{2}}{(S-M_{S}+t-p)!(m-t)!(2S+1)!}$$

Для случая $S = M_s$ справедливо более простое соотношение [25]:

$$C_p(M_S, M_S) \equiv C_p(S) = (-1)^p \frac{2S+1}{n+1} {n \choose p}^{-1}.$$
 (39)

Вычисление средних значений операторов на функциях вида (34) громоздко даже в том случае, если операторы не зависят от спинов. Это связано с тем, что суммирование по спиновым переменным в выражениях типа (36) представляет довольно трудоемкую задачу. Тем не менее был получен целый ряд общих соотношений для метода РХФ: выражения для матриц электронной и спиновой плотности, а также для энергии [22, 23, 27 – 29].

Как показано Годдардом [8], волновую функцию (37) для случая $S = M_s$ можно представить в виде

$$\Psi^{(EHF)} = \hat{O}_{S} \hat{\Omega}_{11}^{[1^{N}]} \Phi_{1} X_{1} = \hat{\Omega}_{11}^{[1^{N}]} \Phi_{1} \hat{\omega}_{11}^{[n,m]} X_{1} = \frac{1}{f} \hat{G}_{f}^{[2^{m},1^{n-m}]} \Phi_{1} X_{1} = \frac{1}{f} \Psi^{(GF)}.$$
(40)

В этом легко убедиться, сравнив выражения (4) и (8) для операторов $\hat{\omega}_{ri}^{\mu}$ и матричных элементов $U_{11}^{[n,m]}$ с выражением (39) для коэффициентов $C_p(S)$ в (37). Таким образом, волновая функция РХФ эквивалентна волновой функции *GF*-метода Годдарда, если $S = M_s$.

Однако, учитывая выражение (11), отметим, что вычисление средних значений не зависящих от спинов операторов проще производить по методу Годдарда, поскольку суммирование по спиновым переменным в (11) выносится за скобки и сокращается. Кроме того, использование теории группы перестановок в общем случае облегчает сведение уравнений для оптимальных орбиталей φ_{ia} и φ_{ib} , входящих в $\Psi^{(EHF)}$, к уравнениям на собственные значения вида (18) – (19) [9].

В связи с описанными выше трудностями вычисления оптимальных орбиталей в методе РХФ для конкретных расчетов π -электронной структуры молекул гораздо шире применялся упрощенный вариант РХФ, получивший название *метода альтернантных молекулярных орбиталей* (АМО).

Метод АМО предложен Левдиным [22, 30 – 32]. Суть метода заключается в следующем. Предположим, что известен ортонормированный набор орбиталей $\{a_k\}$, являющихся решением уравнений ХФР [16] или, в крайнем случае, Хюккеля [33 – 35]. Пусть, далее, основному состоянию в рассматриваемой молекулярной системе соответствует в этом приближении однодетерминантная волновая функция, в которую входит *m* дважды заполненных орбиталей $a_1, a_2, a_3, ..., a_m$ и n-m однократно заполненных орбиталей $a_{m+1}, ..., a_n$.

При сделанных предположениях волновая функция метода АМО строится следующим образом. Каждой из дважды заполненных орбиталей

63

 $a_k(1 \le k \le m)$ по некоторому правилу сопоставляются одна из вакантных орбиталей $a_k(k \ge n)$ и два ортонормированных набора АМО:

$$\varphi_{ka} = \cos \theta_k a_k + \sin \theta_k a_{\bar{k}}, \quad (k = 1, 2, 3, ..., m)$$

$$\varphi_{kb} = \cos \theta_k a_k - \sin \theta_k a_{\bar{k}}, \quad (k = 1, 2, 3, ..., m)$$

$$\varphi_{ka} = a_k. \qquad (k = m + 1, ..., n)$$

$$(41)$$

Подставив в (37) Ф₁ в виде

$$\Phi_1 = \varphi_{1a}(1) \cdots \varphi_{na}(n) \varphi_{1b}(n+1) \cdots \varphi_{mb}(N),$$

получим волновую функцию $\Psi^{(AMO)}$ многопараметрического метода АМО. Поскольку орбитали (41) удовлетворяют (27) в силу ортогональности орбиталей a_k , то среднее значение энергии

$$E^{(AMO)} = \left\langle \Psi^{(AMO)} | \hat{H} | \Psi^{(AMO)} \right\rangle / \left\langle \Psi^{(AMO)} | \Psi^{(AMO)} \right\rangle$$
(42)

будет определяться выражением (30). Варьируя $E^{(AMO)}$ по θ_k , получим оптимальные AMO вида (41). Если описанная процедура выполняется с тем отличием, что все θ_k одинаковы ($\theta_k = \theta$), то соответствующий метод называют однопараметрическим методом AMO.

Рассмотрим для полноты некоторые особенности применения метода АМО к альтернантным системам. Альтернантными называются молекулярные системы, атомы которых можно разбить на два поднабора таким образом, что ближайшими соседями атома одного поднабора являются только атомы другого поднабора [36]. В случае π -электронной системы альтернантных углеводородов для получения АМО (41) спариваются комплементарные орбитали a_k и $a_{\bar{k}}$, для которых справедливы следующие соотношения [37]. Если

$$a_{k} = \sum_{\nu^{*}} C_{\nu k} \chi_{\nu} + \sum_{\nu^{**}} C_{\nu k} \chi_{\nu} , \qquad (43)$$

то

$$a_{\bar{k}} = \sum_{\nu^*} C_{\nu k} \chi_{\nu} - \sum_{\nu^{**}} C_{\nu k} \chi_{\nu} ,$$

где \sum_{v} означает, что суммирование ведется по атомам одного поднабора, а \sum_{v} – по атомам другого поднабора. Подробное описание метода АМО и его применений содержится в [29].

Легко установить связь между РХФ и методом АМО [17, 30]. Если выражение (42) минимизировать не только по θ_k , но и по орбиталям a_k , то мы получим волновую функцию и энергию РХФ. В самом деле, орбитали φ_{ka} и φ_{kb} , входящие в (37), можно всегда преобразовать так, чтобы выполнялись соотношения (27). Орбитали, удовлетворяющие (27), можно представить в виде (41), если положить [17]

$$\begin{array}{l} a_{k} = (\varphi_{ka} + \varphi_{kb})(2 + 2\lambda_{k})^{-1/2}, \quad (k = 1, 2, 3, ..., m) \\ a_{\bar{k}} = (\varphi_{ka} - \varphi_{kb})(2 - 2\lambda_{k})^{-1/2}, \quad (k = 1, 2, 3, ..., m) \\ a_{k} = \varphi_{ka}, \qquad \qquad (k = m + 1, ..., n) \end{array}$$

$$\begin{array}{l} (44)$$

где

$$\lambda_{k} = \left\langle \varphi_{ka} \middle| \varphi_{kb} \right\rangle = \cos 2\theta_{k} \,. \tag{45}$$

Минимизация выражения (42) представляет собой задачу на экстремум по многим нелинейным параметрам. В этом, как уже отмечалось выше, состоит основной недостаток вычислительной схемы метода АМО по сравнению с методом, предложенным Годдардом.

Установив, таким образом, связь различных формулировок теории ССП на вариационной функции с *«разными орбиталями для разных спинов* (POPC/DODS» – метода AMO, РХФ и метода GF, перейдем к рассмотрению свойств соответствующих решений и некоторых применений этих методов.

2.1.1. Свойства решений уравнений обобщенного метода ССП и примеры его применения

Рассмотрим свойства самосогласованных решений метода РХФ. Прежде всего остановимся на одночастичной интерпретации волновой функции РХФ (20). Уравнения (13) или (18), (19) для орбиталей φ_{ka} и φ_{kb} можно привести к виду [11]

$$(\hat{h} + \hat{V}_{ka}^{GF})\varphi_{ka} = \varepsilon_k^{(a)}\varphi_{ka},$$

$$(\hat{h} + \hat{V}_{kb}^{GF})\varphi_{kb} = \varepsilon_k^{(b)}\varphi_{kb},$$

$$(46)$$

где \hat{h} – оператор кинетической энергии электрона и его потенциальной энергии в поле ядер, \hat{V}^{GF} – оператор, описывающий эффективный потенциал остальных N - 1 электронов. Из (46) следует, что функции φ_{ka} и φ_{kb} можно интерпретировать как состояния электрона в поле ядер и усредненном поле остальных электронов. В этом смысле имеет место полная аналогия с методом Хартри – Фока. Этот важный результат означает следующее. Вместо того,

чтобы оперировать с *Ч*-функцией *N* электронов в абстрактном 3*N*-мерном пространстве, можно рассматривать некоторую одноэлектронную функцию в наглядном трехмерном пространстве. В общем случае это делать нельзя, даже если разлагать многоэлектронную волновую функцию по одноэлектронным. Необходимо иметь уравнения вида (46) для того, чтобы придать решениям смысл одночастичной интерпретации. Рассматривая молекулы или твердые тела, мы говорим, например, электрон атома кислорода, внутренний электрон, валентный электрон, электрон проводимости, локализованный электрон, π-электрон, σ-электрон, *d*-электрон и т.п. При этом всегда молчаливо предполагается, что существуют уравнения вида (46), поскольку различать сами электроны нельзя и поэтому нельзя сказать, что некоторый электрон находится в таком-то состоянии, которое может появиться в разложении точной многоэлектронной Ψ -функции. Уравнения (46), как и уравнения Хартри – Фока, не предполагают отнесения реальных электронов к определенным состояниям. Эти уравнения получены в результате аппроксимации точной волновой функции (20) и дальнейшего варьирования орбиталей, входящих в последнюю таким образом, чтобы минимизировать энергию. Исследуя полученные таким путем уравнения, замечаем, что каждая орбиталь есть некоторого оператора, собственная функция который совпадает с гамильтонианом электрона, движущегося в поле ядер и усредненном поле остальных N - 1 электронов. Естественно, что все приведенные аргументы, какими бы убедительными они ни были, строго не доказывают, что решения уравнений ССП имеют прямое отношение к физическим величинам и, следовательно, имеют смысл сами по себе. Однако ясно, что они обладают рядом удобных и полезных свойств.

Годдард показал [11], что энергию (30) системы *N* электронов можно представить в виде суммы двух слагаемых:

$$E^{(GF)} = E(N) = E(N-1) + e_k, \quad e_k = \varepsilon_k / D_k^k, \quad (47)$$

где слагаемое E(N-1) не зависит от состояния *N*-го электрона. Это выражение справедливо для всех орбиталей φ_{kb} , т.е. орбитальные энергии $\varepsilon_k^{(b)}$ есть предсказываемые теорией РХФ потенциалы ионизации. Это утверждение известно как теорема Купманса [38]. Справедливости ради отметим, что теорема Купманса носит приближенный характер: предсказываемые ею потенциалы ионизации близки к экспериментальным значениям, если дополнительная ошибка при описании N - 1 электронов компенсируется изменением корреляционной энергии для N - 1 и N электронов. Очевидно также, что при $N \to \infty$ теорема Купманса является асимптотически точной.

Если использовать метод Рутана [16], то каждое из уравнений (18) и (19) будет иметь $M \ge N$ решений φ_{ka} и φ_{kb} , соответственно. Возникает вопрос о том, какие из этих решений следует использовать для построения Ψ -функции РХФ. В работе [11] показано, что для этой цели следует отбирать *n* орбиталей φ_{ka} и *m* орбиталей φ_{kb} с минимальными множителями Лагранжа $\varepsilon_k^{(a)}$ и $\varepsilon_k^{(b)}$, т.е. порядок отбора орбиталей такой же, как и в методе Хартри – Фока – Рутана. Исключения из этого правила могут представлять случаи многократного вырождения [11] по ε_k , например, при рассмотрении тяжелых атомов.

Если одну из орбиталей, входящих в волновую функцию РХФ (20), например, $\varphi_{ka}(k \le n)$ или $\varphi_{kb}(k \le m)$ заменить на одну из вакантных орбиталей $\varphi_{k'a}(k' > n)$ или $\varphi_{k'b}(k' > m)$ соответственно, то получим некоторый аналог возбужденной конфигурации $\Psi^{(EHF)}(k,k')$, где k – номер замененной орбитали, а k' – номер заменившей ее орбитали. Годдард показал [11], что

$$\left\langle \Psi^{(EHF)}(k,k') \left| \hat{H} \right| \Psi^{(EHF)} \right\rangle = 0.$$
 (48)

Таким образом, в рамках РХФ выполняется теорема Бриллюэна [39 – 42], что эквивалентно вариационному принципу. Отметим также, что в общем случае

$$\left\langle \Psi^{(EHF)}(k,k') | \Psi^{(EHF)} \right\rangle \neq 0.$$
 (49)

Пространственная симметрия одноэлектронных орбиталей в рамках РХФ была рассмотрена Годдардом [11] и Поповым [43] для синглетного состояния. При этом показано, что требование невырожденности волновой функции основного состояния $\Psi^{(EHF)}$ налагает на свойства симметрии орбиталей ограничения одного из двух возможных типов. Первой возможности соответствует случай, когда орбитали каждого из наборов { φ_{ka} } и { φ_{kb} } должны быть базисными функциями неприводимых представлений группы симметрии молекулы *G*. При этом разбиения наборов на неприводимые поднаборы могут быть не эквивалентными. Собственные значения $\varepsilon_k^{(a)}$ и $\varepsilon_k^{(b)}$ в (18) и (19) также могут быть различны.

Вторая возможность осуществима для групп симметрии, имеющих хотя бы одну подгруппу *g* индекса 2. В этом случае орбитали каждого из наборов должны быть базисными функциями неприводимых представлений подгруппы *g*, причем разбиения наборов на неприводимые поднаборы должны быть эквивалентными. Собственные значения $\varepsilon_k^{(a)}$ и $\varepsilon_k^{(b)}$ в (18) и (19) должны совпадать, хотя соответствующие собственные функции φ_{ka} и φ_{kb} могут быть

различными. Таким образом, ограничения, налагаемые симметрией на орбитали в РХФ, являются менее жесткими, чем аналогичные ограничения в методе Хартри – Фока. Этот вывод справедлив для всех GI-методов $(I \neq F)$ [8].

Для иллюстрации рассмотренных выше методов и особенностей их решений рассмотрим несколько типичных примеров. Впервые разные орбитали для разных спинов φ_{ia} и φ_{ib} были предложены в работах Хиллерааса [44] и Эккарта [45] по атому Не. В этом случае для синглетного основного состояния координатная часть функции (2)

$$\Phi(\vec{r}_1, \vec{r}_2) = \frac{1}{\sqrt{2}} [\varphi_a(\vec{r}_1)\varphi_b(\vec{r}_2) + \varphi_b(\vec{r}_1)\varphi_a(\vec{r}_2)],$$

причем случай $\varphi_a = \varphi_b$ соответствует традиционному методу Хартри – Фока. С этой функцией в схеме РХФ учитывается 93% энергии радиальной корреляции [46, 47]. В рамках НХФ при выборе функций φ в экспоненциальном виде

$$\varphi_a(\vec{r}_i) \sim \exp(-\alpha \vec{r}_i), \quad \varphi_b(\vec{r}_i) \sim \exp(-\beta \vec{r}_i)$$

учитывается 80% энергии корреляции; при этом показатели экспонент $\alpha = 2.183$ и $\beta = 1.189$. В этом приближении вычисления для изоэлектронного ряда H⁻, Не и Li⁺ выполнены в работах [48, 49], а для больших значений заряда ядра Z вплоть до Z = 10 опубликованы в работе [50]. Оказалось, что с ростом Z расщепление орбиталей уменьшается. Показатели экспонент α И β не следует интерпретировать как эффективные заряды. В частности, предположение о том, что с ростом Z «эффективный заряд внешнего электрона» *в* будет стремится к Z-1 [48], не подтвердилось [50].

Рассмотрим расчет молекулы H_2 в рамках метода GF и сравним его с аналогичным расчетом методом ХФР [8]. Функция (9) основного состояния молекулы водорода имеет вид (m = n = 1)

$$\Psi^{(G1)} = \hat{G}_1^{[2]} \varphi_a(1) \varphi_b(2) \alpha(1) \beta(2).$$
(50)

В этом случае методы GF и G1 эквивалентны, так как имеется всего одна стандартная таблица Юнга. Молекулярные орбитали разлагались по базису, который состоял из слэтеровских атомных орбиталей (AO) *1s*, *2s* и *2p* σ каждого из атомов водорода. В табл. 1 приведены коэффициенты разложения самосогласованных орбиталей φ_a и φ_b , входящих в выражение (50), по базисным функциям для равновесного межъядерного расстояния R = 1.4 *am. ed.* и R = 6 *am. ed.* Буквами A и B обозначены разные атомы водорода. Во втором

столбце приведены используемые значения показателей экспонент слэтеровских функций.

Таблица 1

AO	Показатель	()	$arphi_b$		
	экспоненты	ψ_a			
	$\mathbf{R}=1.4 \ am. \ ed.$				
Als	1.3129	0.775023	0.121577		
A2s	1.1566	0.111130	0.042025		
A2po	1.9549	0.003120	0.037667		
B1s	1.3129	0.121577	0.775023		
B2s	1.1566	0.042025	0.111130		
B2pσ	1.9549	0.037667	0.003120		
	$\mathbf{R}=6.0\ am.\ e\partial.$				
Als	1.0045	0.993720	0.002525		
A2s	0.850	0.007571	0.002730		
A2po	0.820	0.001209	-0.000870		
B1s	1.0045	0.002525	0.993720		
B2s	0.850	0.002730	0.007571		
B2pσ	0.820	-0.000870	0.001209		

Орбитали РМХФ для молекулы водорода

Как видно из табл. 1, величина $|\varphi_a|^2$, как и $|\varphi_b|^2$, имеет разные значения на разных протонах даже при равновесном межъядерном расстоянии. При разведении ядер молекулярная орбиталь φ_a переходит в атомную орбиталь 1s, локализованную на одном протоне, а φ_b – в атомную орбиталь 1s, локализованную на другом протоне. Как отмечалось выше, такое поведение самосогласованных молекулярных орбиталей РХФ (GF) возможно благодаря тому, что пространственная симметрия (в данном случае симметрия молекул H₂) не налагает на орбитали РХФ требования

$$|\varphi_i(\vec{r}=\vec{R}_A)|^2 = |\varphi_i(\vec{r}=\vec{R}_B)|^2.$$

Поэтому вклад ионных конфигураций в волновую функцию основного состояния H₂ стремится к нулю по мере раздвижения ядер. В методе Хартри – Фока волновая функция основного состояния имеет вид

$$\Psi^{(HF)} = \hat{G}_{11}^{[1^2]} \varphi_1(1) \varphi_1(2) \alpha(1) \beta(2),$$

причем вследствие симметрии системы

$$|\varphi_1(\vec{r}=\vec{R}_A)|^2 = |\varphi_1(\vec{r}=\vec{R}_B)|^2.$$

В табл. 2 приведена энергия H₂ для различных межъядерных расстояний, полученная методом Хартри – Фока и методом GF. Атомный слэтеровский базис для обоих расчетов приведен в табл. 1.

Таблица 2

R	Метод				
	ΧΦ	GF	Точный		
1.4	-1.133449 [51]	-1.151526	-1.174475 [52]		
6.0	-0.82199 [51]	-1.000552			
∞	-0.7154 [23]	-1.000000	-1.000000		

Энергия молекулы водорода для различных межъядерных расстояний, *ат. ед.*

Как следует из табл. 2, метод GF (РХФ), в отличие от метода Хартри – Фока, дает правильную асимптотику для энергии H_2 при разведении ядер. Ниже увидим, что результат остается в силе и для N > 2. Это дает возможность применять его для расчета взаимодействия атомов и молекул, и в этом заключается одно из преимуществ РХФ.

Рассмотрим результаты расчета спиновой плотности на ядре атома Li [8]:

$$\rho_{z}(\vec{R}) = \left\langle \Psi \right| \sum_{i=1}^{N} \hat{s}_{z}(i) \,\delta(\vec{r}_{i} - \vec{R}) \left| \Psi \right\rangle / S \left\langle \Psi \right| \Psi \right\rangle, \tag{51}$$

где $\hat{s}_{z}(i)$ – оператор проекции спина *i*-го электрона, $\delta(\vec{r})$ – трехмерная δ -функция Дирака, *S* – значение полного спина (*S* ≠ 0), координата ядра \vec{R} = 0.

В табл. 3 приведены значения $4\pi \rho_z(0)$ и энергии в основном состоянии ²*S* атома лития, которые получены различными методами.

Таблица 3 Энергия и спиновая плотность на ядре атома Li

Метод	$4\pi \rho_z(0)$	Абсолютная	Энергия,
		ошибка, %	ат. ед.
ΧΦ	2.094	28	-7.432725
НХΦ	2.825	2.8	-7.432751
НХФ-СП	2.345	19.3	-7.432768
GF/PXΦ	3.020	3.9	-7.432813
Эксперимент	2.906	_	-7.4780

Из этой таблицы видно, что, в отличие от метода Хартри – Фока, РХФ и НХФ дает хорошие результаты для величины $\rho_z(0)$. Если выделить из функции РХФ (87) дублетную компоненту после варьирования входящих в нее орбиталей (НХФ с проектированием), то результат для $\rho_z(0)$ получается намного хуже, чем в традиционном НХФ.

Среди различных применений метода АМО к альтернантным углеводородам (АУ) отметим работу Сволэна и де Гира [53]. В ней сравниваются результаты применения однопараметрического и многопараметрического методов АМО к сопряженным АУ с различным числом *π*-электронов. Введем обозначение

$$\Delta \varepsilon = \frac{E^{(HF)} - E^{(AMO)}}{N} \ge 0.$$

В работе [53] показано, что в случае однопараметрического метода AMO величина $\Delta \varepsilon$ уменьшается с ростом *N*, а в случае многопараметрического метода AMO величина $\Delta \varepsilon$ растет с ростом *N* для того же ряда молекул. Отсюда можно сделать вывод, что однопараметрический метод AMO следует использовать только при расчете малых молекул, а применение его к большим системам не эффективно.

Перейдем теперь к вопросу о возможности дальнейшего обобщения РХФ. Как уже отмечалось, при использовании выражения (25) для построения Ψ -функции *N* электронов можно выбрать f различных операторов \hat{G}_{i}^{μ} (*i* = 1, 2, 3, ..., *f*). При этом выбор значения *i* с физической точки зрения может быть произвольным. Это связано с наличием так называемого спинового вырождения, обусловленного тем, что при заданном значении полного спина S системы N электронов и его проекции можно построить fправильных спиновых функций, где f определяется соотношением (21). Выбор значения iкак раз и определяет тип используемой спиновой функции [12]. Ладнер и Годдард [12] исследовали влияние выбора значения *i* на результаты для основного состояния Li, H₃ и H₄. Ими также было предложено обобщение метода, состоящее в том, что в выражении (9) для волновой функции вместо одного оператора \hat{G}_i^{μ} используется их линейная комбинация, коэффициенты которой оптимизируются, как и одноэлектронные орбитали. Этот метод был назван авторами оптимизированным по спиновой функции методом GI (SOGI). В рамках последнего также получены [12] уравнения для оптимальных орбиталей, которые, естественно, намного сложнее, чем в методах GI. Это обстоятельство затрудняет практическое применение метода SOGI. Основные результаты работы [12] состоят в следующем. Самосогласованные орбитали и
энергии методов GI слабо зависят от выбора значения *i*. Наибольшие изменения претерпевают матрицы плотности, в частности, спиновая плотность (51). В табл. 4 приведены значения энергии и спиновой плотности для основного состояния ²S атома лития.

Метод	$\rho_z(0)$	ρ (0)	Энергия,	
			ат. ед.	
G1	0.2096	13.8646	-7.447560	
G2 (GF/PXΦ)	0.2406	13.8159	-7.432813	
SOGI	0.2265	13.8646	-7.447565	
ΧΦ	0.1667	13.8160	-7.432725	
Эксперимент	0.2313		-7.47807	

Таблица 4 Зависимость энергии, спиновой и электронной плотностей на ядре атома Li от выбора спиновых функций

В третьей колонке табл. 4 приведены значения электронной плотности на ядре атома лития

$$\rho\left(\vec{R}\right) = \left\langle \Psi \right| \sum_{i=1}^{N} \delta(\vec{r}_{i} - \vec{R}) \left| \Psi \right\rangle / \left\langle \Psi \right| \Psi \right\rangle.$$

Как видно из табл. 4, метод G1 лучше передает значение энергии и электронной плотности, тогда как метод GF лучше описывает спиновую плотность. Зависимость энергии от выбора значения *i* в (9) связана с тем, что уравнения для оптимальных орбиталей (13) в разных методах GI различны. Однако, как следует из табл. 4, эти различия невелики.

Итак, можно сделать следующий вывод. Улучшение результатов, полученное при переходе от методов GI к методу SOGI, не столь существенно, как при переходе от метода Хартри – Фока к методу GI, в частности, GF/РХФ. С другой стороны, вычислительная процедура в методе SOGI намного сложнее, чем в РХФ. Поэтому, на наш взгляд именно метод РХФ в его различных модификациях и получил более широкое применение при практических расчетах электронного строения молекул.

Как отмечалось выше, НХФ является простейшим методом учета корреляции электронов и довольно широко применяется при расчетах электронного строения молекул и радикалов [8, 12, 17, 19, 54, 55]. Волновая функция НХФ (33) не является собственной функцией оператора \hat{S}^2 . Для устранения этого недостатка применяют полное или частичное проектирование волновой функции НХФ на состояние с требуемой мультиплетностью [17, 54]. Следует иметь в виду, что отпроектированная волновая функция уже не

является оптимальной в смысле вариационного принципа. Поэтому ее реальной ситуации, вообще говоря, не очевидна [17]. адекватность Последовательной процедурой следует считать дальнейшее варьирование отпроектированной волновой функции с целью получения минимума полной энергии, т.е. использование РХФ. Тем не менее, НХФ с частичным или полным проектированием нередко приводит к хорошему согласию с различными экспериментальными данными, в том числе и по сверхтонким расщеплениям в спектрах ЭПР свободных радикалов. В работах [19, 54, 55] приведены результаты расчетов в рамках HXФ с частичным проектированием волновой функции органических свободных радикалов с небольшим числом электронов. В качестве примера приведем также бензильный радикал С₆H₅CH₂, который содержит уже довольно большое число электронов. Для него был выполнен неэмпирический расчет (49 электронов) в базисе безузловых гауссовых функций по схеме НХФ как с полным проектированием на основное дублетное состояние [18], так и без него [56 – 58], который мы подробно рассмотрим позже в разделе III. Сейчас же мы только приведем основные результаты в обоих приближениях.

В непроектированной волновой функции $\Psi^{(UHF)}$ бензильного радикала [56 – 58] вклад дублетной компоненты получился равным 95.4%, а остальные 4.6% приходятся на квартетную и более высокие по спину компоненты. Вклад в $\langle \hat{S}^2 \rangle$ дублетной компоненты равен 84%, квартетной – 15.7% [18]. Это означает, что проектирование в схеме НХФ может существенно сказаться лишь на спиновых характеристиках радикала, а на распределение электронной плотности практически не влияет. Этот вывод подтверждается численными расчетами [18].

В табл. 5 приведено распределение спиновой плотности $\rho_z^{\pi}(C)$ и $\rho_z(H)$ на ядрах атомов С и Н бензильного радикала, вычисленное без проектирования [56 – 58], и проведено сопоставление вычисленных сверхтонких расщеплений на протонах с опытными данными.

Как и многие расчеты в π -электронном приближении [65 – 67], неэмпирические вычисления привели к близким значениям π -спиновой плотности $\rho_z^{\pi}(C)$ на *орто-* и *пара*-атомах углерода. Пользуясь далее простым уравнением Мак-Коннела [62, 63], получаем одинаковые расщепления на *орто*и *пара*-протонах, что не согласуется с опытными данными [59 – 61]. Вместе с тем прямое вычисление спиновой плотности на протонах приводит к правильному отношению соответствующих расщеплений.

73

Таблица 5

Атом	$\rho_z^{\pi}(C)$		$\rho_z(\mathrm{H})$	Атом				
		Расчет*	Опыт			Расчет**		
			[59]	[60]	[61]			
C _o	0.2760	-7.45	5.14	5.15	5.08	-5.88	-0.011_{6}	H _o
\mathbf{C}_m	-0.1916	5.17	1.79	1.75	1.7	3.95	0.0078	H_m
C_p	0.2757	-7.44	6.14	6.18	6.18	-6.18	-0.012_{2}	\mathbf{H}_{p}
C _α	0.7671	-18.72	16.35	16.35	15.7	-15.20	-0.030_{0}	H _α

Спиновая плотность и сверхтонкие расщепления *а^н* в бензильном радикале, вычисленные по схеме НХФ без проектирования

* Вычислено по уравнению Мак-Коннела [62, 63] с константами $Q_{CH}^{H} = -27$ и $Q_{CH_{2}}^{H} = -24.4$ Э [64].

** Вычислено по уравнению $a^{H} = Q^{H} \rho_{z}(H)$ с константой Q^{H} , равной сверхтонкому расщеплению в свободном атоме водорода (506.82 Э).

Из анализа чисел заполнения естественных орбиталей, вычисленных на волновых функциях НХФ до и после проектирования, следует [18], что для оценки спиновой плотности после проектирования можно практически без потери точности воспользоваться соответствующими непроектированными значениями, умноженными на S/(S+1). В работах [68 – 70] показано, что это правило является асимптотически точным при $N \rightarrow \infty$.

Существенный прогресс в понимании свойств полимерных карбоцепных систем был достигнут именно благодаря применению ОМХФ [71]. Так, простота уравнений НХФ позволила выполнить ряд аналитических расчетов бесконечных полиеновых цепей [72 – 76], длинных полиен-радикалов [68, 70], кумуленов, полиаценов и графита [77, 78], длинных полиеновых цепей с примесными атомами [79] и учесть концевые эффекты в длинных полиенах и кумуленах [69]. Эти расчеты позволили, в частности, сделать вывод о физической природе диэлектрических свойств таких систем [72], который затем был подтвержден для полиенов точными решениями [80]. Однако, применение НХФ в чистом виде оставляет место для сомнений прежде всего потому, что волновая функция в этом методе не обладает правильной спиновой симметрией. К счастью, эту трудность удалось преодолеть неожиданно легко в расчетах систем с большим числом электронов ($N \gg 1$). Оказалось [69], что уравнения для самосогласованных орбиталей в РХФ асимптотически ($N \rightarrow \infty$) совпадают с аналогичными уравнениями в этих методах:

$$E_0^{EHF} = E_0^{UHF} + \mathcal{O}\left(\frac{1}{N}\right).$$

Следовательно, энергетические характеристики длинных полиеновых цепочек (энергия основного состояния, спектр низколежащих возбуждений), полученные с помощью НХФ, сохраняются при переходе к РХФ. Эти и другие вопросы квантовомеханической теории квази-одномерных электронных систем [81 – 83] подробно обсуждаются в главе 9 раздела III.

2.2. Метод Хартри – Фока и теорема Бриллюэна

Метод Хартри – Фока [1 – 3] играет фундаментальную роль в квантовой механике многоэлектронных систем. Его иногда рассматривают в качестве модели «независимых электронов». Это не означает, что в методе ХФ не учитывается межэлектронное взаимодействие, а означает лишь то, что взаимодействие между электронами моделируется некоторым усредненным образом, а именно: волновая функция ХФ описывается одним слэтеровским детерминантом, в котором каждый электрон описывается своей одной спинорбиталью и все параметры которого определяются из вариационного принципа. Вариационная процедура определяет среднее эффективное поле, в котором движутся электроны. Поле, определяющее орбитали, само зависит от этих орбиталей: необходимо найти орбитали, порождающее такое поле, в котором решениями уравнений ХФ будут именно те орбитали, которые и порождают поле. математическом ЭТО В контексте ЭТО задача на псевдособственные значения. Если итерационная процедура решения такой собственные значения сошлась, говорят залачи на 0 вычисленном самосогласованном поле (ССП).

При расчете молекул с замкнутой оболочкой используются дважды заполненные пространственный орбитали. Это – ограниченный по спину метод ХФ (OXФ/RHF). Если это требование снимается, то имеем схему неограниченного по спину метода ХФ (HXФ/UHF).

2.2.1. Теорема Бриллюэна

Рассмотрим слэтеровский детерминант (35/гл. 1)

$$\Psi_0 = \hat{A}[\psi_1(1)\psi_2(2)\psi_3(3)\cdots\psi_N(N)],$$
(52)

соответствующий «основному» состоянию системы, и детерминант

$$\Psi_1 \equiv \Psi_1(\psi_i \to \psi_i'), \qquad (53)$$

соответствующий «возбужденному» состоянию, который получается из Ψ_0 путем замены спин-орбитали ψ_i на произвольную спин-орбиталь ψ'_i , ортогональную ко всем занятым спин-орбиталям ψ_i (j = 1, 2, 3, ..., N).

Утверждается, что «однократно-возбужденные» детерминанты Ψ_1 (53) «не взаимодействуют» с хартри-фоковской детерминантной волновой функцией Ψ_0 :

$$H_{01} \equiv \langle \Psi_0 | \hat{H} | \Psi_1 \rangle = 0, \qquad (54)$$

где \hat{H} – гамильтониан Борна – Оппенгеймера. Это утверждение известно как теорема Бриллюэна [39, 40]. Полезно доказать эту важную теорему для детерминанта ОХФ или НХФ со стационарной энергией, удовлетворяющей условию $\delta E = 0$.

Проварьируем волновую функцию

$$\Psi = \hat{A}[\psi_1(1)\psi_2(2)\psi_3(3)\cdots\psi_N(N)],$$
(55)

т.е. заменим каждую спин-орбиталь ψ_i на $\psi_i + \delta \psi_i = \psi_i + \eta \psi'_i$, где ψ'_i есть произвольная спин-орбиталь, а $\eta \to 0$ есть произвольный комплексный вариационный параметр. Тогда

$$\Psi + \delta \Psi = \hat{A} \{ [\psi_1(1) + \eta \psi_1'(1)] [\psi_2(2) + \eta \psi_2'(2)] \cdots [\psi_N(N) + \eta \psi_N'(N)] \},$$
(56)

где каждый столбец является суммой двух слагаемых ψ_i и $\eta \psi'_i$. Определитель (56) можно записать в виде суммы 2^N определителей, подавляющее большинство которых содержит квадраты и более высокие степени η , которыми можно пренебречь сравнительно с вкладами первого порядка по η , а именно:

$$\Psi + \delta \Psi = \Psi + \eta \sum_{i=1}^{N} \Psi_1(\psi_i \to \psi_i'), \qquad (57)$$

где ψ'_i – по прежнему произвольная спин-орбиталь. Таким образом, имеем наиболее общий вид вариации первого порядка однодетерминантной волновой функции Ψ :

$$\delta \Psi = \eta \sum_{i=1}^{N} \Psi_1(\psi_i \to \psi_i').$$
(58)

Её нужно подставить в вариационный принцип, согласно которому

$$\langle \delta \Psi | \hat{H} - E | \Psi \rangle = 0.$$
⁽⁵⁹⁾

Поскольку на $\delta \Psi$ не наложены никакие ограничения, вариационное уравнение (59) полностью эквивалентно уравнению Шредингера (1/гл. 1)

$$(\hat{H} - E)\Psi = 0. \tag{60}$$

Подстановка (58) в (59) даст условие стационарности энергии $\delta E = 0$:

$$\langle \eta^* \sum_{i=1}^N \Psi_1(\psi_i \to \psi_i') | \hat{H} - E | \Psi \rangle = 0.$$
(61)

Хотя вариационный параметр $\eta \to 0$, однако $\eta \neq 0$, и (61) можно разделить на η^* . Далее, вариации отдельных орбиталей $\delta \psi_i = \eta \psi'_i$ независимы, так что можно выбрать $\psi'_i \equiv 0$ для всех орбиталей, кроме одной. Тогда равенство

$$\langle \Psi_1(\psi_i \to \psi_i') | \hat{H} - E | \Psi \rangle = 0 \tag{62}$$

будет выполняться для каждого значения *i*. Вариационный принцип в форме (62) называют обобщенной теоремой Бриллюэна.

Для получения необходимых и достаточных условий стационарности энергии, вычисленной с детерминантной волновой функцией Ψ , достаточно ограничиться вариациями $\delta \psi_i = \eta \psi'_i$, которые ортогональны всем *занятым* спинорбиталям ψ_i . В этом случае $\Psi_1(\psi_i \to \psi'_i)$ также ортогональна Ψ , т. е.

$$\langle \Psi_1(\psi_i \to \psi_i') | \Psi \rangle = 0, \tag{63}$$

так что из (62) следует, что

$$\langle \Psi_1(\psi_i \to \psi_i') | \hat{H} | \Psi \rangle = 0.$$
(64)

Именно равенство нулю матричного элемента гамильтониана между «основным» детерминантом и «однократно возбужденным» известно как теорема Бриллюэна. Она выполняется для всех занятых спин-орбиталей ψ_i и произвольных спин-орбиталей ψ_i' , ортогональных занятым, и эквивалентна вариационному принципу $\delta E = 0$ для однодетерминантных волновых функций.

Теорема Бриллюэна (64) выполняется тривиально, если ψ_i и ψ'_i имеют разные проекции спина. Потребуем выполнения теоремы Бриллюэна для того случая, когда спин-орбиталь $\psi_i(\vec{r},\sigma) = \varphi_i(\vec{r})\gamma_i(\sigma)$ заменяется на произвольную спин-орбиталь $\psi'_i(\vec{r},\sigma) = \varphi'_i(\vec{r})\gamma_i(\sigma)$ с той же самой проекцией спина γ_i (γ_i есть либо α , либо β), пространственная часть $\varphi'_i(\vec{r})$ которой ортогональна ко всем пространственным орбиталям, занятым в детерминанте Ψ электронами с той же проекцией спина. Тогда для всех φ'_i таких, что

$$\langle \varphi_i' | \varphi_j \rangle \delta_{\gamma_i \gamma_j} = 0 \quad (i, j = 1, 2, 3, ..., N),$$
(65)

теорема Бриллюэна может быть записана следующим образом:

$$\langle \Psi_1(\varphi_i \gamma_i \to \varphi'_i \gamma_i) | \hat{H} | \Psi \rangle = 0.$$
(66)

2.3. Неограниченные по спину уравнения Хартри – Фока

Теорема Бриллюэна (66) обеспечивает необходимые и достаточные условия стационарности энергии, вычисленной с однодетерминантной волновой функцией Ψ_0 . Она дает основной детерминант Ψ_0 и все возможные однократно возбужденные детерминанты $\Psi_1(\psi_i \rightarrow \psi'_i)$, в которых спин-орбиталь ψ_i заменена произвольной спин-орбиталью ψ'_i , ортогональной ко всем занятым орбиталям. Записав теорему Бриллюэна (66) через одноэлектронные орбитали, получим уравнения, которым они должны удовлетворять.

Сразу будем рассматривать случай неограниченного метода ХФ. Распишем (66) с учетом результатов раздела 1.3 для матричных элементов одно- и двухэлектронных операторов гамильтониана, вычисленных на определителях Ψ_0 и Ψ_1 , построенных на ортонормированных спин-орбиталях $\psi_i(\vec{r},\sigma) = \varphi_i(\vec{r})\gamma_i(\sigma)$ и отличающихся лишь одной орбиталью ($\varphi_i \to \varphi'_i$). Имеем

$$\langle \Psi_1(\varphi_i\gamma_i \to \varphi_i'\gamma_i) | \hat{H} | \Psi \rangle = \langle \varphi_i' | \hat{h} | \varphi_i \rangle + \sum_{\substack{j=1\\(j\neq i)}}^N ([\varphi_i'\varphi_j | \varphi_i\varphi_j] - [\varphi_i'\varphi_j | \varphi_j\varphi_i] \cdot \delta_{\gamma_i\gamma_j}) = 0, \quad (67)$$

где для двухэлектронных интегралов межэлектронного отталкивания использовано стандартное обозначение

$$[\varphi_i \varphi_j | \varphi_k \varphi_l] = \iint \varphi_i^*(\vec{r}_1) \varphi_j^*(\vec{r}_2) r_{12}^{-1} \varphi_k(\vec{r}_1) \varphi_l(\vec{r}_2) dv_1 dv_2.$$
(68)

Перепишем правую часть (67) в виде

$$\int \varphi_i^{\prime*}(\vec{r}_1) \left\{ \left[\hat{h} + \sum_{\substack{j=1\\(j\neq i)}}^N \left(\hat{J}_j - \hat{K}_j \cdot \delta_{\delta_{\gamma_i \gamma_j}} \right) \right] \varphi_i(\vec{r}_1) \right\} dv_1 = 0$$
(69)

с кулоновским

$$\hat{J}_{j}\varphi(\vec{r}_{1}) = \int \varphi_{j}^{*}(\vec{r}_{2}) r_{12}^{-1} \varphi_{j}(\vec{r}_{2}) dv_{2} \varphi(\vec{r}_{1}), \qquad (70)$$

и обменным

$$\hat{K}_{j}\varphi(\vec{r}_{1}) = \int \varphi_{j}^{*}(\vec{r}_{2}) r_{12}^{-1}\varphi(\vec{r}_{2}) dv_{2}\varphi_{j}(\vec{r}_{1})$$
(71)

операторами, из которых нелокальный характер последнего заслуживает внимания.

Если бы функция φ'_i в (69) была бы произвольной, то из основной леммы вариационного исчисления, которая гласит, что функция, ортогональная к произвольной функции, зануляется почти всюду, следовало бы, что выражение в фигурных скобках в уравнении (69) обращается в нуль почти всюду. Однако,

в нашем случае функция φ'_i в (69) ограничена условием ортогональности ко всем орбиталям φ_j , которые заняты электронами в функции Ψ , и имеют ту же проекцию спина, что и функция φ_i . Поэтому функция в фигурных скобках в (69) может иметь вклады, пропорциональные орбиталям, занятым с теми же самыми проекциями спина, но не содержит вклады от ортогонального дополнения к ним. Это утверждение позволяет сразу записать уравнения метода НХФ в общем виде, а именно:

$$\left[\hat{h} + \sum_{\substack{j=1\\(j\neq i)}}^{N} \left(\hat{J}_{j} - \hat{K}_{j} \cdot \delta_{\delta_{\gamma_{i}\gamma_{j}}}\right)\right] \varphi_{i} = \sum_{j=1}^{N} \lambda_{ji} \varphi_{j} \cdot \delta_{\delta_{\gamma_{i}\gamma_{j}}}, \quad (i = 1, 2, 3, ..., N),$$
(72)

в котором коэффициенты λ_{ji} могут принимать произвольные значения. Это уравнение для однодетерминантной волновой функции обеспечивает не только необходимые, но и достаточные условия стационарности энергии.

Теперь займемся случаем, когда n_a орбиталей $a_i \equiv a_i(\vec{r})$ заняты электронами со спином α , а n_b орбиталей $b_i \equiv b_i(\vec{r})$ – со спином β . В этих обозначениях волновая функция

$$\Psi = \hat{A}[a_1(\vec{r}_1)\alpha(\sigma_1)b_1(\vec{r}_2)\beta(\sigma_2)a_2(\vec{r}_3)\alpha(\sigma_3)b_2(\vec{r}_4)\beta(\sigma_4)...].$$
(73)

По аналогии с определением кулоновских (70) и обменных (71) интегралов выпишем интегралы $\hat{J}_{i}^{a}, \hat{J}_{i}^{b}, \hat{K}_{i}^{a}, \hat{K}_{i}^{b}$, соответствующие новым орбиталям a_{i}, b_{i} :

$$\hat{J}_{j}^{a} \varphi(\vec{r}_{1}) = \int a_{j}^{*}(\vec{r}_{2}) r_{12}^{-1} a_{j}(\vec{r}_{2}) dv_{2} \varphi(\vec{r}_{1}), \qquad (74)$$

$$\hat{J}_{j}^{b}\varphi(\vec{r}_{1}) = \int b_{j}^{*}(\vec{r}_{2}) r_{12}^{-1} b_{j}(\vec{r}_{2}) dv_{2} \varphi(\vec{r}_{1}), \qquad (75)$$

$$\hat{K}_{j}^{a} \varphi(\vec{r}_{1}) = \int a_{j}^{*}(\vec{r}_{2}) r_{12}^{-1} \varphi(\vec{r}_{2}) dv_{2} a_{j}(\vec{r}_{1}), \qquad (76)$$

$$\hat{K}_{j}^{b}\varphi(\vec{r}_{1}) = \int b_{j}^{*}(\vec{r}_{2})r_{12}^{-1}\varphi(\vec{r}_{2})dv_{2}b_{j}(\vec{r}_{1}).$$
(77)

Теперь уравнения метода НХФ переписываются следующим образом:

$$\left[\hat{h} + \sum_{\substack{j=1\\(j\neq i)}}^{n_a} \left(\hat{J}_j^a - \hat{K}_j^a\right) + \sum_{j=1}^{n_b} \hat{J}_j^b\right] a_i = \sum_{j=1}^{n_a} \varepsilon_{ji}^a a_j, \quad (i = 1, 2, 3, ..., n_a)$$
(78)

$$\left[\hat{h} + \sum_{\substack{j=1\\(j\neq i)}}^{n_b} \left(\hat{J}_j^b - \hat{K}_j^b\right) + \sum_{j=1}^{n_a} \hat{J}_j^a\right] b_i = \sum_{j=1}^{n_b} \varepsilon_{ji}^b b_j. \quad (i = 1, 2, 3, ..., n_b)$$
(79)

Выражения в квадратных скобках можно упростить, избавившись от ограничения $j \neq i$ при суммировании. Действительно, поскольку

$$\hat{J}_i^a a_i = \hat{K}_i^a a_i, \qquad (80)$$

$$\hat{J}_i^b b_i = \hat{K}_i^b b_i, \qquad (81)$$

то слагаемые самоотталкивания

$$(\hat{J}_{i}^{a} - \hat{K}_{i}^{a})a_{i} = 0, \qquad (82)$$

$$(\hat{J}_{i}^{b} - \hat{K}_{i}^{b})b_{i} = 0 \tag{83}$$

можно добавить в выражения в квадратных скобках уравнений (78) и (79). В результате операторы в квадратных скобках становятся одними и теми же для всех орбиталей. Эти операторы Фока

$$\hat{F}^{a} = \hat{h} + \sum_{j=1}^{n_{a}} \left(\hat{J}_{j}^{a} - \hat{K}_{j}^{a} \right) + \sum_{j=1}^{n_{b}} \hat{J}_{j}^{b},$$

$$\hat{F}^{b} = \hat{h} + \sum_{j=1}^{n_{b}} \left(\hat{J}_{j}^{b} - \hat{K}_{j}^{b} \right) + \sum_{j=1}^{n_{a}} \hat{J}_{j}^{a}$$
(84)

еще называют фокианами и уравнения метода НХФ (78) и (79) с ними записываются более компактно, а именно:

$$\hat{F}^{a} a_{i} = \sum_{j=1}^{n_{a}} \varepsilon_{ji}^{a} a_{j}, \quad (i = 1, 2, 3, ..., n_{a})$$

$$\hat{F}^{b} b_{i} = \sum_{j=1}^{n_{b}} \varepsilon_{ji}^{b} b_{j}. \quad (i = 1, 2, 3, ..., n_{b})$$
(85)

Фокианы \hat{F}^a и \hat{F}^b зависят от всех орбиталей, заселенных электронами с обеими проекциями спина в функции Ψ (73), но зависимость эта специфичная – такова, что фокианы определяются двумя подпространствами, растянутыми наборами лишь занятых орбиталей $\{a_i\}$ и $\{b_i\}$. Дело в том, что фокианы \hat{F}^a и \hat{F}^b инвариантны относительно унитарных преобразований орбиталей, заселенных электронами с той же самой проекцией спина [84].

Величины ε_{ji}^{a} и ε_{ji}^{b} в (85) есть элементы эрмитовых матриц ε_{a} и ε_{b} размера $n_{a} \times n_{a}$ и $n_{b} \times n_{b}$, соответственно, так что фокианы также эрмитовы. Эти матрицы есть матрицы операторов Фока \hat{F}^{a} и \hat{F}^{b} в подпространстве занятых орбиталей $\{a_{i}\}$ и $\{b_{i}\}$ и они могут быть диагонализованы, так что вместо (85) имеем уравнения метода НХФ в каноническом виде

$$\hat{F}^{a} a_{i} = \varepsilon_{i}^{a} a_{i}, \quad (i = 1, 2, 3, ..., n_{a})$$

$$\hat{F}^{b} b_{i} = \varepsilon_{i}^{b} b_{i}. \quad (i = 1, 2, 3, ..., n_{b})$$
(86)

В итоге мы имеем систему двух зацепляющихся задач на псевдособственные значения ε_i^a и ε_i^b , называемые обычно орбитальными энергиями, поскольку они похожи на энергии одноэлектронной системы во внешнем поле, и эта связь выражается теоремой Купманса [38].

2.3.1. Теорема Купманса

Сначала выпишем выражение для энергии методе НΧФ для В ортонормированных орбиталей комбинируя (67) (82)И И используя обозначение (68) для интегралов, а именно:

$$E = \sum_{i=1}^{n_a} \langle a_i | \hat{h} | a_i \rangle + \sum_{i=1}^{n_b} \langle b_i | \hat{h} | b_i \rangle + \frac{1}{2} \sum_{i,j=1}^{n_a} ([a_i a_j | a_i a_j] - [a_i a_j | a_j a_i]) + \frac{1}{2} \sum_{i,j=1}^{n_b} ([b_i b_j | b_i b_j] - [b_i b_j | b_j b_i]) + \sum_{i=1}^{n_a} \sum_{j=1}^{n_b} [a_i b_j | a_i b_j].$$
(87)

Это выражение для энергии E_N системы с $N = n_a + n_b$ электронами. Перепишем его, выделив слагаемые, содержащие орбиталь a_k , а именно:

$$\begin{split} E_{N} &= \sum_{\substack{i=1\\(i\neq k)}}^{n_{a}} \langle a_{i} | \hat{h} | a_{i} \rangle + \langle a_{k} | \hat{h} | a_{k} \rangle + \sum_{i=1}^{n_{b}} \langle b_{i} | \hat{h} | b_{i} \rangle + \\ &+ \frac{1}{2} \sum_{\substack{i,j=1\\(i,j\neq k)}}^{n_{a}} \left([a_{i}a_{j} | a_{i}a_{j}] - [a_{i}a_{j} | a_{j}a_{i}] \right) + \frac{1}{2} \sum_{j=1}^{n_{a}} \left([a_{k}a_{j} | a_{k}a_{j}] - [a_{k}a_{j} | a_{j}a_{k}] \right) + \\ &+ \frac{1}{2} \sum_{i=1}^{n_{a}} \left([a_{i}a_{k} | a_{i}a_{k}] - [a_{i}a_{k} | a_{k}a_{i}] \right) + \frac{1}{2} \sum_{j=1}^{n_{a}} \left([b_{i}b_{j} | b_{i}b_{j}] - [b_{i}b_{j} | b_{j}b_{i}] \right) + \\ &+ \sum_{\substack{i=1\\(i\neq k)}}^{n_{a}} \sum_{j=1}^{n_{b}} [a_{i}b_{j} | a_{i}b_{j}] + \sum_{j=1}^{n_{b}} \left([a_{k}b_{j} | a_{k}b_{j}] \right). \end{split}$$

$$(88)$$

Вычленим слагаемые, не содержащие a_k . Они в точности соответствуют энергии $E_{N-1}(a_k) N - 1$ -электронной системы с волновой функцией, получаемой из (73) удалением орбитали a_k . Воспользовавшись тождествами типа

 $[ab|cd] \equiv [ba|dc], [a_ka_j|a_ka_j] \equiv \langle a_k | \hat{J}_j^a | a_k \rangle, [a_ka_j|a_ja_k] \equiv \langle a_k | \hat{K}_j^a | a_k \rangle,$ (89) преобразуем слагаемые в (88), содержащие a_k , и получим

$$E_{N} = E_{N-1}(a_{k}) + \langle a_{k} | \hat{h} | a_{k} \rangle + \sum_{j=1}^{n_{a}} (\langle a_{k} | \hat{J}_{j}^{a} | a_{k} \rangle - \langle a_{k} | \hat{K}_{j}^{a} | a_{k} \rangle) + \sum_{j=1}^{n_{b}} \langle a_{k} | \hat{J}_{j}^{b} | a_{k} \rangle =$$

$$= E_{N-1}(a_{k}) + \langle a_{k} | \hat{F}^{a} | a_{k} \rangle = E_{N-1}(a_{k}) + \varepsilon_{k}^{a},$$
(90)

что и дает нам теорему Купманса

$$E_N = E_{N-1}(a_k) + \varepsilon_k^a.$$
(91)

Итак, диагональные элементы матриц ε_a и ε_b равны изменению энергии системы при удалении электрона с некоторой орбитали при сохранении остальных занятых орбиталей в неизменном виде. Обычно энергии $\varepsilon_k^{a^{(b)}}$ отрицательны и называются вертикальными потенциалами ионизации, т. е. вычисленными без учета изменения геометрии атомных ядер системы, которое сопровождается орбитальной релаксацией.

Важно иметь в виду, что сумма всех орбитальных энергий системы, рассчитанной при неизменной геометрии ядер, не равна полной электронной энергии этой системы. Орбитальная энергия ε_k^a учитывает полную энергию взаимодействия электрона, находящегося на орбитали a_k , со всеми остальными электронами, тогда как энергия $E_{N-1}(a_k)$ не содержит никаких слагаемых, связанных с орбиталью a_k . При простом суммировании орбитальных энергий энергий энергий анергия электрон-электронного взаимодействия E_{ee} учитывается дважды, тогда как кинетическая энергия и энергия электрон-ядерного притяжения учитывается только один раз:

$$E = \sum_{i=1}^{n_a} \varepsilon_i^a + \sum_{i=1}^{n_b} \varepsilon_i^b - E_{ee}.$$
(92)

Можно поступить иначе: вместо вычитания *E_{ee}* из суммы орбитальных энергий добавим еще раз одноэлектронную часть энергии и разделим результат пополам, а именно:

$$E = \frac{1}{2} \left[\sum_{i=1}^{n_a} (\varepsilon_i^a + \langle a_i | \hat{h} | a_i \rangle) + \sum_{i=1}^{n_b} (\varepsilon_i^b + \langle b_i | \hat{h} | b_i \rangle) \right] = \frac{1}{2} \left(\sum_{i=1}^{n_a} \langle a_i | \hat{F}^a + \hat{h} | a_i \rangle + \sum_{i=1}^{n_b} \langle b_i | \hat{F}^b + \hat{h} | b_i \rangle \right). (93)$$

Занятые орбитали обычно характеризуются наинизшими орбитальными энергиями. В расчетах нейтральных систем орбитальная энергия высшей заполненной молекулярной орбитали (B3MO) обычно отрицательная, а низшей вакантной молекулярной орбитали (HBMO) – положительная. Это связано с тем, что к операторам Фока добавлены слагаемые самоотталкивания (82) и (83), чтобы привести их к виду (84), единому для всех орбиталей. Однако, при действии фокианов на виртуальную орбиталь a_j^v они содержат отличные от нуля слагаемые вида ($\hat{J}_i^a - \hat{K}_i^a$) $a_j^v \neq 0$. Электрон, заселяющий виртуальную орбиталь, как бы видит на один электрон больше, чем электрон на занятой орбитали, и это выталкивает наверх энергии виртуальных орбиталей. Другими словами, включение самоотталкивания в операторы Фока приводит к тому, что энергии виртуальных орбиталей учитывают взаимодействие еще с одним электроном. Поэтому виртуальные орбитали ближе к состояниям отрицательного иона, а не к возбужденным состояниям исходной нейтральной системы. Энергии виртуальных состояний связывают со сродством системы к электрону. Как правило, нельзя получить надежное описание связанных состояний отрицательных молекулярных ионов без учета орбитальной релаксации в результате оптимизации геометрии ядер в системе и без явного учета электронной корреляции.

2.4. Ограниченный метод Хартри – Фока и его развитие

Для расчета синглетных состояний молекул с замкнутой электронной оболочкой обычно используется ограниченный метод ХФ (ОХФ/RHF). В этом случае N = 2n с одинаковым числом *n* спинов α и β . Однодетерминантная волновая функция такова:

$$\Psi = \hat{A}[\phi_1(1)\alpha(1)\phi_1(2)\beta(2)\phi_2(3)\alpha(3)\phi_2(4)\beta(4)\dots\phi_n(2n-1)\alpha(2n-1)\phi_n(2n)\beta(2n)].$$
(94)

Уравнения метода ОХФ получаются из канонических уравнений НХФ (86) заменой

$$a_i = b_i = \varphi_i, \quad n_a = n_b = n, \quad \varepsilon_i^a = \varepsilon_i^b = \varepsilon, \dots,$$
(95)

так что

$$\hat{F}\varphi_i = \varepsilon_i\varphi_i, \quad (i = 1, 2, 3, ..., n)$$
(96)

а фокиан

$$\hat{F} = \hat{h} + \sum_{j=1}^{n} (2\hat{J}_{j} - \hat{K}_{j}).$$
(97)

В области равновесных геометрий молекул с замкнутыми оболочками решение НХФ нередко совпадает с решением ОХФ. Это означает, что волновая функция ОХФ обеспечивает минимум энергии среди всех однодетерминантных волновых функций. Обратная ситуация может наблюдаться при больших межатомных расстояниях вдали от равновесия. В этом случае решение НХФ дает меньшую энергию, чем решение ОХФ, являющимся лишь седловой точкой.

Волновая функция (94) метода ОХФ для замкнутой оболочки, построенной из дважды заселенных орбиталей, является чистым синглетом, т. е. собственной функцией операторов $\hat{S}_x, \hat{S}_y, \hat{S}_z$ и как следствие этого также и оператора \hat{S}^2 с собственными значениями, равными нулю. В случае же метода НХФ, называемого также методом разных орбиталей для разных спинов (РОРС)

однодетерминантная волновая функция является собственной функцией оператора \hat{S}_z , но не оператора \hat{S}^2 . Это означает, что функции НХФ нельзя приписать определенную спиновую мультиплетность, и такая функция есть смесь синглетных, триплетных и более высоких по суммарному спину компонент.

Как уже упоминалось ранее (§ 2.1), чтобы избавиться от спинового загрязнения Лёвдин ввел оператор спинового проектирования (СП/SP)

$$\hat{O}^{S} = \prod_{l \neq S} \frac{\hat{S}^{2} - l(l+1)}{S(S+1) - l(l+1)},$$
(98)

который позволяет получить чистую спиновую компоненту из волновой функции НХФ, принадлежащую нужному собственному значению оператора \hat{s}^2 . Этот оператор уничтожает все нежелательные спиновые компоненты, оставляя неизменной только искомую. Действительно, любую волновую функцию Ψ можно представить в виде суммы $\Psi = \sum_{l} {}^{l} \Psi$ слагаемых ${}^{l} \Psi$ с разными спиновыми мультиплетностями 2l+1. В операторе \hat{O}^{s} сомножитель в числителе $\hat{s}^2 - l(l+1)$ уничтожает компоненту ${}^{l} \Psi$:

$$[\hat{S}^2 - l(l+1)]^l \Psi = \hat{S}^{2l} \Psi - l(l+1)^l \Psi = l(l+1)^l \Psi - l(l+1)^l \Psi = 0.$$
(99)

В результате действия произведения таких сомножителей все компоненты ${}^{l}\Psi$ с $l \neq S$ уничтожаются. Если же оператор $\hat{S}^{2} - l(l+1)$ действует на слагаемое ${}^{s}\Psi$ с нужной мультиплетностью 2*S*+1, то имеем:

$$[\hat{S}^2 - l(l+1)]^S \Psi = \hat{S}^{2S} \Psi - l(l+1)^S \Psi = S(S+1) - l(l+1)^S \Psi.$$
(100)

Коэффициент S(S+1) - l(l+1) перед ^{*s*} Ψ в правой части (100) уничтожается знаменателем в (98). В результате действия оператора \hat{O}^{s} на «грязную» волновую функцию НХФ уничтожаются все компоненты ^{*l*} Ψ кроме нужной компоненты ^{*s*} Ψ .

Хорошей иллюстрацией, демонстрирующей характерное поведение потенциальных кривых, полученных разными вариантами обобщенного метода ХФ, может служить рис. 2.

Метод ОХФ/RHF предсказывает равновесное межатомное расстояние с вполне приемлемой точностью, но переоценивает кривизну в минимуме энергии примерно на 15 – 20 %. Колебательные частоты в такой ситуации корректируются в сторону уменьшения. При бо́льших межатомных

расстояниях потенциальная кривая ОХФ резко возрастает и имеет неправильную асимптотику из-за наличия ионных вкладов.

Рис. 2. Потенциальные кривые молекулы ВН, полученные разными вариантами обобщенного метода ХФ [85].

Как и в этом расчете [85], стандартный метод НХФ/UHF не приводит к решению, отличному от ОХФ как при равновесном расстоянии, так и при несколько бо́льших расстояниях, а в этом расчете вплоть до $R \approx 3.4$ ат. ед. В этой области на потенциальной кривой есть точка бифуркации, в которой возникает нетривиальное новое решение НХФ, и потенциальная кривая НХФ плавно

отходит от кривой ОХФ. В этой точке бифуркации решения ОХФ и НХФ совпадают [85]. Далее кривая НХФ стремится к качественно правильному диссоциационному пределу. Заметим только, что она приближается к асимптотическому значению энергии слишком быстро, если сравнивать ее поведение с ходом асимптотики в расширенном методе ХФ (РХФ/ЕНF).

Волновая функция в результате спинового проектирования исходного детерминанта НХФ (НХФ-СП/UHF-SP) уже не является однодетерминантной. В результате спинового проектирования получается не только чистая спиновая функция, но и как правило наблюдается понижение энергии системы по сравнению с энергией НХФ, как это имеет место в рассматриваемом примере (рис. 2: кривая UHF-SP: область R > 3.4 ат. ед.) Это происходит только в тех областях потенциальной энергии, где реализуются настоящие решения НХФ (рис. 2: кривая UHF после R > 3.4 ат. ед.), отличающиеся от решений НХФ-СП, соответствующих чистому синглету (рис. 2: кривая UHF-SP после R > 3.4 ат. ед.). Причиной такого поведения является то, что вариационным путем оптимизируется не чистая по спину компонента волновой функции, полученная спиновым проектированием, а однодетерминантная волновая функция, которая была у нас перед этим (метод НХФ с последующей спиновой проекцией).

Более последовательным было бы варьирование самого спинспроектированного детерминанта в качестве вариационной пробной волновой функции (варьирование после проектирования). Эта процедура приводит к спин-спроектированному расширенному методу ХФ (РХФ/ЕНF). Как видим из рис. 2, метод РХФ дает качественно правильное описание гомолитической диссоциации химической связи В–Н.

Важной особенностью спин-спроектированных волновых функций является то обстоятельство, что они хорошо описывают электронную структуру антиферромагнитных систем, представляющих собой совокупность спинов, направленных то вверх, то вниз, и состоящих из двух подрешеток наивысшего возможного спина, которые вместе образуют синглет.

Волновая функция ОХФ есть частное решение уравнений РХФ, однако, в отличие от случая НХФ, решение РХФ с энергией меньше, чем энергия ОХФ, существует всюду (рис. 2). Метод РХФ можно рассматривать как расширенную одноэлектронную модель, поскольку исходный определитель РОРС содержит столько же спин-орбиталей, сколько имеется электронов в системе.

Были предложены упрощенные варианты метода РХФ. Например, используется только один сомножитель в (98), соответствующий наинизшей и, как правило, наибольшей по весу нежелательной спиновой компоненте. В полуспроектированном варианте метода РХФ волновая функция берется в виде суммы или разности лишь двух определителей, отличающихся друг от друга перестановкой всех спин-функций α и β . Такая волновая функция содержит только каждую вторую спиновую компоненту, например, синглет, квинтет и т.д., но не триплет, септет и т.д., и представляет собой почти чистое по спину состояние.

2.5. Метод Хартри – Фока – Рутана

Уравнения Хартри – Фока представляют собой систему связанных интегро-дифференциальных уравнений, которые в случае свободных атомов и простейших молекул решаются численными методами. Применительно к произвольным молекулярным системам решение этих уравнений в виде одноэлектронных орбиталей приходится аппроксимировать конечной линейной комбинацией (ЛК) некоторых заранее выбранных базисных функций (базисных орбиталей). Их обычно, но не обязательно, связывают с отдельными атомами в молекуле (атомные орбитали, АО). Отсюда аббревиатура ЛКАО.

Итак, разлагаем одноэлектронные орбитали φ_i по конечному базису { χ_{μ} }:

$$\varphi_i = \sum_{\mu=1}^m c_{\mu i} \chi_{\mu}, \quad (i = 1, 2, 3, ..., m)$$
(101)

где коэффициенты $c_{\mu i}$ каждой молекулярной орбитали (MO) φ_i образуют вектор-столбец c_i . Базисные функции χ_{μ} обычно, но совсем не обязательно, нормированы на единицу. Как правило, они не ортогональны друг к другу, но должны быть линейно независимыми.

При использовании ограниченного базиса интегро-дифференциальные уравнения ХФ сводятся к матричным уравнениям на псевдособственные значения. Они были выведены Рутаном [16] и Холлом [86] независимо друг от друга и получили название уравнений Хартри – Фока – Рутана (ХФР).

Для вывода уравнений ХФР воспользуемся теоремой Бриллюэна (§ 2.2.1) для однодетерминантной волновой функции, а именно:

$$\langle \Psi_1(\varphi_i \to \varphi_i') | \hat{H} | \Psi \rangle = 0, \quad (i = 1, 2, 3, ..., n)$$
 (102)

где φ'_i ортогональна всем *n* занятым орбиталям

$$\langle \varphi_i' | \varphi_j \rangle = 0, \quad (j = 1, 2, 3, ..., n),$$
 (103)

и, как и φ_i , должна представляться в виде разложения по базисным функциям:

$$\varphi_i' = \sum_{\mu=1}^m q_\mu \chi_\mu, \tag{104}$$

где на коэффициенты разложения q_{μ} накладывается условие ортогональности (103).

Наиболее общая произвольная орбиталь вида (104), удовлетворяющая условиям ортогональности, строится следующим образом [84].

Рассмотрим оператор проектирования (Приложение П-2) на подпространство занятых орбиталей:

$$\hat{P} = \sum_{j=1}^{m} |\varphi_j\rangle \langle \varphi_j |.$$
(105)

Оператор $1-\hat{P}$ проектирует на ортогональное дополнение к этому подпространству, т. е. произвольная функция $|\varphi'_i\rangle = (1-\hat{P})|\sum_{\nu} p_{\nu}\chi_{\nu}\rangle$ с произвольными коэффициентами p_{ν} ортогональна ко всем занятым орбиталям. Коэффициенты p_{ν} произвольны и независимы друг от друга. Мы можем, например, предположить, что для каждой вариации только один из коэффициентов отличен от нуля. Необходимо потребовать выполнение теоремы Бриллюэна для каждой функции вида:

$$|\varphi_i'\rangle = (1 - \hat{P}) |\chi_v\rangle. \quad (v = 1, 2, 3, ..., m).$$
 (106)

Выражение теоремы Бриллюэна через одноэлектронные орбитали приводит к равенству:

$$\langle \varphi_i' | \hat{F} | \varphi_i \rangle = 0, \qquad (107)$$

где оператор Фока строится из орбиталей, которые можно разложить по данному одноэлектронному базису. Взяв функцию, сопряженную к (106), получаем:

$$\langle \varphi_i' | = [|\varphi_i'\rangle]^{\dagger} = [|(1-\hat{P})|\chi_{\nu}\rangle]^{\dagger} = \langle \chi_{\nu} | (1-\hat{P}).$$
 (108)

Подставим (108) в (107) и используем (105), а именно:

$$\langle \chi_{\nu} | (1 - \hat{P}) \hat{F} | \varphi_{i} \rangle = \langle \chi_{\nu} | \hat{F} | \varphi_{i} \rangle - \langle \chi_{\nu} | \sum_{j=1}^{m} | \varphi_{j} \rangle \langle \varphi_{j} | \hat{F} | \varphi_{i} \rangle =$$

$$= \langle \chi_{\nu} | \hat{F} | \varphi_{i} \rangle - \langle \chi_{\nu} | \sum_{j=1}^{m} | \varphi_{j} \rangle \varepsilon_{ji} = \langle \chi_{\nu} | \hat{F} | \varphi_{i} \rangle - \langle \chi_{\nu} | \sum_{j=1}^{m} | \varphi_{j} \rangle \varepsilon_{i} \delta_{ij} = 0,$$

$$(109)$$

так что

$$\langle \chi_{\nu} | \hat{F} | \varphi_i \rangle = \varepsilon_i \langle \chi_{\nu} | \varphi_i \rangle.$$
(110)

Остается в полученное равенство подставить (101), ввести обозначения

$$\begin{array}{l} \langle \chi_{\nu} \mid \dot{F} \mid \chi_{\mu} \rangle \equiv F_{\nu\mu}, \\ \langle \chi_{\nu} \mid \chi_{\mu} \rangle \equiv S_{\nu\mu}, \end{array}$$

$$(111)$$

и мы окончательно получаем уравнения ХФР в развернутом виде

$$\sum_{\mu=1}^{m} F_{\nu\mu} c_{\mu i} = \varepsilon_i \sum_{\mu=1}^{m} S_{\nu\mu} c_{\mu i} \quad (i = 1, 2, 3, ..., m)$$
(112)

или в матричной записи через матрицы *m*×*m*

$$Fc_i = \varepsilon_i Sc_i \tag{113}$$

или через полные матрицы C, столбцами которой являются векторы c_i , а именно:

$$FC = SC\varepsilon, \tag{114}$$

где матрица ε является диагональной матрицей орбитальных энергий. Если в матрице *C* учитываются как занятые, так и виртуальные орбитали, тогда матрицы *C* и ε имеют форму $m \times m$. Если ограничиться учетом только занятых орбиталей, тогда матрица *C* имеет прямоугольную форму $m \times n$, а матрица ε – квадратную форму $n \times n$.

По мере увеличения числа базисных функций энергия рассматриваемой молекулярной системы приближается к своему ХФ пределу [87].

2.5.1. Матрица плотности

Рассмотрим занятые орбитали φ_i (*i* = 1,2,3,...,*n*) и запишем оператор \hat{P} проектирования на занятое подпространство через коэффициенты ЛКАО в (101):

$$\hat{P} = \sum_{i=1}^{n} |\varphi_{i}\rangle\langle\varphi_{i}| = \sum_{i=1}^{n} \sum_{\mu=1}^{m} |c_{\mu i}\chi_{\mu}\rangle\langle\sum_{\nu=1}^{m} c_{\nu i}\chi_{\nu}| = \sum_{\mu,\nu=1}^{m} \sum_{i=1}^{n} c_{\mu i}c_{\nu i}^{*}|\chi_{\mu}\rangle\langle\chi_{\nu}| = \sum_{\mu,\nu=1}^{m} P_{\mu\nu}|\chi_{\mu}\rangle\langle\chi_{\nu}|, (115)$$

где матрица плотности

$$P_{\mu\nu} = \sum_{i=1}^{n} c_{\mu i} c_{\nu i}^{*}$$
(116)

или в матричных обозначениях в виде суммы диадных произведений

$$\boldsymbol{P} = \sum_{i=1}^{n} \boldsymbol{c}_{i} \boldsymbol{c}_{i}^{\dagger} \,. \tag{117}$$

В случае замкнутой оболочки применительно к ОХФ матрицу плотности еще записывают как

$$\boldsymbol{D} = 2\boldsymbol{P} = 2\sum_{i=1}^{n} \boldsymbol{c}_{i} \boldsymbol{c}_{i}^{\dagger}.$$
 (118)

Матрица *Р* является полноценной проектирующей (на подпространство занятых орбиталей) матрицей только в том случае, если базисные функции $\{\chi_{\mu}\}$ ортонормированы. В общем же случае, когда $S_{\mu\nu} = \langle \chi_{\mu} | \chi_{\nu} \rangle \neq \delta_{\mu\nu}$, матрица плотности эрмитова, но не идемпотентна, а свойством идемпотентности обладает матрица *PS* = (*PS*)². Действительно,

$$(\mathbf{PS})^{2} = \mathbf{PSPS} = \sum_{i=1}^{n} \mathbf{c}_{i} \mathbf{c}_{i}^{\dagger} \mathbf{S} \sum_{j=1}^{n} \mathbf{c}_{j} \mathbf{c}_{j}^{\dagger} \mathbf{S} = \sum_{i,j=1}^{n} \mathbf{c}_{i} \mathbf{c}_{j}^{\dagger} \mathbf{S} = \sum_{i,j=1}^{n} \mathbf{c}_{i} \delta_{ij} \mathbf{c}_{j}^{\dagger} \mathbf{S} = \sum_{i=1}^{n} \mathbf{c}_{i} \mathbf{c}_{i}^{\dagger} \mathbf{S} = \mathbf{PS} ,$$
(119)

где мы учли, что занятые орбитали ортонормированны:

$$\langle \varphi_i | \varphi_j \rangle = \langle \sum_{\mu=1}^m c_{\mu i} \chi_\mu | \sum_{\nu=1}^m c_{\nu i} \chi_\nu \rangle = \sum_{\mu,\nu=1}^m c_{\mu i}^* S_{\mu\nu} c_{\nu j} = \boldsymbol{c}_i^{\dagger} \boldsymbol{S} \boldsymbol{c}_j = \delta_{ij}.$$
(120)

Умножая обе стороны равенства PSPS = PS справа на матрицу S^{-1} , которая существует, поскольку невырождена, имеем иную запись идемпотентности в форме PSP = P. Поскольку матрица S в ортонормированном базисе равна единичной матрице, то матрица P в этом случае сама является идемпотентной проектирующей матрицей.

В методе НХФ вводят две матрицы плотности: одну для орбиталей со спином α , а другую для орбиталей со спином β . Пусть коэффициенты разложения для орбиталей $|a_i\rangle$ и $|b_i\rangle$ задаются векторами a_i и b_i , соответственно:

$$|a_{i}\rangle = \sum_{\mu=1}^{m} a_{\mu i} |\chi_{\mu}\rangle, \quad |b_{i}\rangle = \sum_{\mu=1}^{m} b_{\mu i} |\chi_{\mu}\rangle, \quad (121)$$

тогда

$$P^{a}_{\mu\nu} = \sum_{i=1}^{n_{a}} a_{\mu i} a^{*}_{\nu i}, \quad P^{b}_{\mu\nu} = \sum_{i=1}^{n_{b}} b_{\mu i} b^{*}_{\nu i}$$
(122)

или в матричной записи

$$\boldsymbol{P}^{a} = \sum_{i=1}^{n_{a}} \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{\dagger}, \quad \boldsymbol{P}^{b} = \sum_{i=1}^{n_{b}} \boldsymbol{b}_{i} \boldsymbol{b}_{i}^{\dagger}.$$
(123)

2.5.2. Матрица Фока и энергия

Сначала рассмотрим случай ОХФ. Элементы матрицы Фока в (112) $F_{\nu\mu} = \langle \chi_{\nu} | \hat{F} | \chi_{\mu} \rangle = \langle \chi_{\nu} | \hat{h} + \sum_{i=1}^{n} (2\hat{J}_{i} - \hat{K}_{i}) | \chi_{\mu} \rangle = h_{\nu\mu} + \sum_{i=1}^{n} (2\langle \chi_{\nu} | \hat{J}_{i} | \chi_{\mu} \rangle - \langle \chi_{\nu} | \hat{K}_{i} | \chi_{\mu} \rangle) . (124)$ Кулоновский матричный элемент, согласно (74),

$$\langle \chi_{\nu} | \hat{J}_{i} | \chi_{\mu} \rangle = \int \chi_{\nu}^{*}(1) \left(\int \varphi_{i}^{*}(2) r_{12}^{-1} \varphi_{i}(2) dv_{2} \right) \chi_{\mu}(1) dv_{1} =$$

$$= \int \int \chi_{\nu}^{*}(1) \left(\sum_{\rho=1}^{m} c_{\rho i}^{*} \chi_{\rho}^{*}(2) \right) r_{12}^{-1} \left(\sum_{\tau=1}^{m} c_{\tau i} \chi_{\tau}(2) \right) \chi_{\mu}(1) dv_{1} dv_{2} =$$

$$= \sum_{\rho,\tau=1}^{m} c_{\rho i}^{*} c_{\tau i} \int \int \chi_{\nu}^{*}(1) \chi_{\rho}^{*}(2) r_{12}^{-1} \chi_{\mu}(1) \chi_{\tau}(2) dv_{1} dv_{2} = \sum_{\rho,\tau=1}^{m} c_{\rho i}^{*} c_{\tau i} [\chi_{\nu} \chi_{\rho} | \chi_{\mu} \chi_{\tau}].$$

$$(125)$$

Аналогично, согласно (76), переписывается обменный матричный элемент:

$$\langle \chi_{\nu} | \hat{K}_{i} | \chi_{\mu} \rangle = \sum_{\rho,\tau=1}^{m} c_{\rho i}^{*} c_{\tau i} [\chi_{\nu} \chi_{\rho} | \chi_{\tau} \chi_{\mu}].$$
(126)

Подставляем (125) и (126) в (124) и пользуемся (116), тогда

$$F_{\nu\mu} = h_{\nu\mu} + \sum_{i=1}^{n} \left(2 \sum_{\rho,\tau=1}^{m} c_{\rho i}^{*} c_{\tau i} [\chi_{\nu} \chi_{\rho} | \chi_{\mu} \chi_{\tau}] - \sum_{\rho,\tau=1}^{m} c_{\rho i}^{*} c_{\tau i} [\chi_{\nu} \chi_{\rho} | \chi_{\tau} \chi_{\mu}] \right) =$$

$$= h_{\nu\mu} + \sum_{\rho,\tau=1}^{m} P_{\tau\rho} (2 [\chi_{\nu} \chi_{\rho} | \chi_{\mu} \chi_{\tau}] - [\chi_{\nu} \chi_{\rho} | \chi_{\tau} \chi_{\mu}]),$$
(127)

откуда видно, что для вычисления элементов матрицы Фока нужны матрица плотности *P*, одно- и двухэлектронные интегралы.

Для метода HXФ аналогичные выкладки дают

$$F_{\nu\mu}^{a} = h_{\nu\mu} + \sum_{\rho,\tau=1}^{m} \Big[(P_{\tau\rho}^{a} + P_{\tau\rho}^{b}) [\chi_{\nu}\chi_{\rho} \mid \chi_{\mu}\chi_{\tau}] - P_{\tau\rho}^{a} [\chi_{\nu}\chi_{\rho} \mid \chi_{\tau}\chi_{\mu}] \Big],$$
(128)
$$F_{\nu\mu}^{b} = h_{\nu\mu} + \sum_{\rho,\tau=1}^{m} \Big[(P_{\tau\rho}^{a} + P_{\tau\rho}^{b}) [\chi_{\nu}\chi_{\rho} \mid \chi_{\mu}\chi_{\tau}] - P_{\tau\rho}^{b} [\chi_{\nu}\chi_{\rho} \mid \chi_{\tau}\chi_{\mu}] \Big].$$

Несколько слов об обозначении двухэлектронных интегралов и их симметрии. Для интегралов

$$[\chi_{\mu}\chi_{\nu} | \chi_{\rho}\chi_{\tau}] \equiv \langle \chi_{\mu}(1)\chi_{\nu}(2) | r_{12}^{-1} | \chi_{\rho}(1)\chi_{\tau}(2) \rangle$$
(129)

удобно использовать обозначение [12|34], поскольку оно позволяет различать сомножители из бра-скобки и из кет-скобки. Если же используются вещественные орбитали, как это обычно имеет место при выполнении вычислений на компьютерах, тогда двухэлектронные интегралы удобнее обозначать (11|22), а именно:

$$(\chi_{\mu}\chi_{\nu} | \chi_{\rho}\chi_{\tau}) \equiv \iint \chi_{\mu}(1)\chi_{\nu}(1)r_{12}^{-1}\chi_{\rho}(2)\chi_{\tau}(2)dv_{1}dv_{2} = [\chi_{\mu}\chi_{\rho} | \chi_{\nu}\chi_{\tau}].$$
(130)

Из определения (130) очевидна инвариантность такой записи по отношению к перестановкам орбиталей χ_{μ} с χ_{ν} и χ_{ρ} с χ_{τ} , а также двух наборов орбиталей, соответствующих переменным интегрирования 1 и 2. Обозначая для краткости ($\chi_{\mu}\chi_{\nu} | \chi_{\rho}\chi_{\tau}$), как ($\mu\nu | \rho\tau$), имеем равенства:

 $(\mu\nu|\rho\tau) = (\nu\mu|\rho\tau) = (\mu\nu|\tau\rho) = (\nu\mu|\tau\rho) = (\rho\tau|\mu\nu) = (\rho\tau|\nu\mu) = (\tau\rho|\mu\nu) = (\tau\rho|\nu\mu).$ (131) Эту симметрию можно почувствовать, если рассматривать интеграл (130) как электростатическое взаимодействие двух зарядовых плотностей $\chi_{\mu}(\vec{r_1})\vec{\chi}_{\nu}(r_1)$ и $\chi_{\rho}(\vec{r_2})\vec{\chi}_{\tau}(r_2).$

В соответствии с цепочкой равенств (131), если все четыре индекса различны, то существует восемь интегралов, порядок индексов у которых в определении (130) различен, но значения их равны. При одной паре совпадающих индексов это число уменьшается до четырех, а при двух совпадающих парах – до двух, и до единицы, если все индексы одинаковы.

Используя элементы матрицы плотности D (118), а также обозначения (130), элементы фоковской матрицы в методе ОХФ вместо (127) записываются как:

$$F_{\nu\mu} = h_{\nu\mu} + \sum_{\rho,\tau=1}^{m} D_{\tau\rho} [(\chi_{\nu} \chi_{\mu} | \chi_{\rho} \chi_{\tau}) - \frac{1}{2} (\chi_{\nu} \chi_{\rho} | \chi_{\mu} \chi_{\tau})], \qquad (132)$$

которое можно получить из его аналога (128) для метода НХФ если учесть, что в случае ОХФ

$$\boldsymbol{P}^{a} = \boldsymbol{P}^{b} = \frac{1}{2}\boldsymbol{D}.$$
(133)

Электронную энергию однодетерминантной функции в случае НХФ, согласно (93), можно записать следующим образом:

$$E = \frac{1}{2} \Biggl(\sum_{i=1}^{n_a} \langle \sum_{\mu=1}^m a_{\mu i} \chi_{\mu} | \hat{h} + \hat{F}^a | \sum_{\nu=1}^m a_{\nu i} \chi_{\nu} \rangle + \sum_{i=1}^{n_b} \langle \sum_{\mu=1}^m b_{\mu i} \chi_{\mu} | \hat{h} + \hat{F}^b | \sum_{\nu=1}^m b_{\nu i} \chi_{\nu} \rangle \Biggr) =$$

$$= \frac{1}{2} \Biggl(\sum_{i=1}^{n_a} \sum_{\mu,\nu=1}^m a_{\mu i}^* a_{\nu i} \langle \chi_{\mu} | \hat{h} + \hat{F}^a | \chi_{\nu} \rangle + \sum_{i=1}^{n_b} \sum_{\mu,\nu=1}^m b_{\mu i}^* b_{\nu i} \langle \chi_{\mu} | \hat{h} + \hat{F}^b | \chi_{\nu} \rangle \Biggr) =$$

$$= \frac{1}{2} \sum_{\mu,\nu=1}^m \Biggl[P_{\mu\nu}^a (h_{\mu\nu} + F_{\mu\nu}^a) + P_{\mu\nu}^b (h_{\mu\nu} + F_{\mu\nu}^b) \Biggr] = \frac{1}{2} \Biggl\{ \operatorname{Tr} \Biggl[P^a (h + F^a) \Biggr] + \operatorname{Tr} \Biggl[P^b (h + F^b) \Biggr] \Biggr\}.$$
(134)

В случае ОХФ выражение для энергии упрощается до

$$E = \frac{1}{2} \operatorname{Tr} \left[\boldsymbol{D}(\boldsymbol{h} + \boldsymbol{F}) \right].$$
(135)

Подставляя выражения для элементов матрицы Фока (132) в (135), получаем электронную энергию в виде

$$E = \sum_{\mu,\nu=1}^{m} D_{\mu\nu} h_{\nu\mu} + \frac{1}{2} \sum_{\mu,\nu,\rho,\tau=1}^{m} (D_{\mu\nu} D_{\tau\rho} - \frac{1}{2} D_{\rho\nu} D_{\tau\mu}) (\chi_{\nu} \chi_{\mu} | \chi_{\rho} \chi_{\tau}), \quad (136)$$

в котором последнее слагаемое в обменной части матрицы Фока получено перестановкой индексов μ и ρ.

2.5.3. Метод ОХФО для открытых оболочек

Однодетерминантный метод НХФ часто используется для расчета молекулярных систем с открытыми электронными оболочками, таких как свободные радикалы (дублетные состояния) и триплетные состояния молекул. Его основной недостаток состоит в том, что волновая функция в этом методе не является собственной функцией оператора полного спина.

В методе ОХФО/ROHF замкнутые и открытые оболочки описываются по разному. Первые состоят из дважды занятых орбиталей и их расщепление не предполагается, а в случае открытых оболочек структура волновой функции определяется характером открытой оболочки. Так, волновая функция может быть однодетерминантной как в случае дублета или высокоспиновой компоненты ($S_z = 1$) триплета. Может быть и линейной комбинацией двух и более детерминантов как, например, для синглета с открытой оболочкой (бирадикал в синглетном состоянии) или компоненты триплет с $S_z = 0$.

В методе ОХФО разные случаи открытых оболочек описываются единообразно на основе достаточно общего выражения для энергии с численными коэффициентами для разных ситуаций. Считается, что мы имеем дело с некоторым числом N ортонормированных пространственных орбиталей φ_i , каждой из которых можно сопоставить присущее ей число заполнения ω_i , так что общее выражение для энергии будет таким:

$$E = \sum_{i=1}^{N} \omega_i h_{ii} + \sum_{i,j=1}^{N} (\alpha_{ij} J_{ij} - \beta_{ij} K_{ij}), \qquad (137)$$

где коэффициенты связи α_{ij} и β_{ij} определяются структурой открытой оболочки. Суммирование по *i* и по *j* выполняется независимо, $h_{ii} = \langle \varphi_i | \hat{h} | \varphi_i \rangle$ есть матричный элемент одноэлектронной части гамильтониана, $J_{ij} = [\varphi_i \varphi_j | \varphi_i \varphi_j]$ – кулоновский интеграл, а $K_{ij} = [\varphi_i \varphi_j | \varphi_j \varphi_j]$ – обменный.

Выражение для энергии (137) достаточно общее. Оно соответствует волновой функции ОХФ замкнутой оболочки при значениях параметров

$$N=n, \quad \omega_i=2, \quad \alpha_{ii}=2, \quad \beta_{ii}=1,$$

как и функции НХФ при

$$N = n_a + n_b, \quad \omega_i = 1, \quad \alpha_{ij} = 1/2, \quad \beta_{ij} = 1/2,$$

если *i* и *j* оба принадлежат к одному набору $\{a_i\}$ или $\{b_i\}$, и $\beta_{ij} = 0$ в противном случае.

Приведем значения коэффициентов связи для наиболее важных случаев открытых оболочек.

В простейшем случае высокоспиновой открытой оболочки (дублет, триплет с $S_z = 1$) достаточно однодетерминантной волновой функции. В этом случае имеем замкнутую оболочку с n_c дважды занятыми орбиталями, а поверх нее открытую оболочку с n_o орбиталями, однократно занятыми электронами со спином α . Энергию такой системы легко получить из общей формулы (87) для однодетерминантной волновой функции, подставляя в нее

$$n_{b} = n_{c}, n_{a} = n_{c} + n_{o}, a_{p} = b_{p} = \varphi_{p} (p \le n_{c}) \lor a_{p} = \varphi_{p} (n_{c} + 1 \le p \le n_{c} + n_{o})$$

а именно:

$$E = \sum_{p=1}^{n_c} 2h_{pp} + \sum_{q=n_c+1}^{n_c+n_o} h_{qq} + \sum_{p,q=1}^{n_c} (2J_{pq} - K_{pq}) + \sum_{p=1}^{n_c} \sum_{q=n_c+1}^{n_c+n_o} (2J_{pq} - K_{pq}) + \frac{1}{2} \sum_{p,q=n_c+1}^{n_c+n_o} (J_{pq} - K_{pq}) . (138)$$

Коэффициенты, введенные в (137), таковы:

 $\omega_c = 2, \, \omega_o = 1, \, \alpha_{cc} = 2, \, \alpha_{co} = \alpha_{oc} = 1, \, \alpha_{oo} = 1/2, \, \beta_{cc} = 1, \, \beta_{co} = \beta_{oc} = \beta_{oo} = 1/2,$

где индексы *с* и *о* указывают на закрытую оболочку {*C*} или открытую {*O*}, к которой принадлежат орбитали φ_i, φ_j . При определении этих коэффициентов учитывалось, что суммирование по *i* и *j* в (137) выполняется независимо, так что существует случай, когда $i \in \{C\}$ и $j \in \{O\}$, как и случай когда $j \in \{C\}$ и $i \in \{O\}$. В случае дублетного состояния ($n_o = 1$) в открытой оболочке есть только одна орбиталь и последняя сумма в (138) исчезает ($J_{pp} = K_{pp}$).

В случае открытой оболочки, описываемой двумя детерминантами, с двумя электронами в синглетном или в триплетном состоянии с $S_z = 0$ имеем:

$$^{1,3}\Psi = \frac{1}{\sqrt{2}}(\Psi_1 \pm \Psi_2), \qquad (139)$$

где

$$\Psi_{1} = \hat{A}[\varphi_{1}^{2}\varphi_{2}^{2}...\varphi_{n_{c}}^{2}\varphi_{i}^{\alpha}\varphi_{j}^{\beta}]$$
(140)

И

$$\Psi_{2} = \hat{A}[\varphi_{1}^{2}\varphi_{2}^{2}...\varphi_{n_{c}}^{2}\varphi_{j}^{\alpha}\varphi_{j}^{\beta}]$$
(141)

и верхний знак в (139) соответствует синглету, а нижний – триплету.

Вычислить необходимо

$${}^{1,3}E = \frac{1}{2} \langle \Psi_1 \pm \Psi_2 | \hat{H} | \Psi_1 \pm \Psi_2 \rangle, \qquad (142)$$

где $\langle \Psi_1 | \hat{H} | \Psi_1 \rangle = \langle \Psi_2 | \hat{H} | \Psi_2 \rangle$ есть энергии на однодетерминантных волновых функциях Ψ_1 и Ψ_2 , вычисляются которые по общей формуле (87) подстановкой

$$n_a = n_b = n_c + 1, a_p = b_p = \varphi_p (p \le n_c), a_{n_c+1} = \varphi_i \lor b_{n_c+1} = \varphi_j,$$

так что в итоге имеем:

$$\langle \Psi_1 | \hat{H} | \Psi_1 \rangle = \sum_{p=1}^{n_c} 2h_{pp} + h_{ii} + h_{jj} + \sum_{p,q=1}^{n_c} (2J_{pq} - K_{pq}) + \sum_{p=1}^{n_c} [2(J_{pi} + J_{pj}) - (K_{pi} + K_{pj})] + J_{ij}.$$
(143)

В предположении вещественности орбиталей

$$\langle \Psi_1 | \hat{H} | \Psi_2 \rangle = \langle \Psi_2 | \hat{H} | \Psi_1 \rangle = K_{ij}.$$
(144)

Для упрощения окончательной формулы переобозначим $i = n_c + 1$, $j = n_c + 2$, Тогда

$${}^{1,3}E = \sum_{p=1}^{n_c} 2h_{pp} + \sum_{q=n_c+1}^{n_c+2} h_{qq} + \sum_{p,q=1}^{n_c} (2J_{pq} - K_{pq}) + \sum_{p=1}^{n_c} \sum_{q=n_c+1}^{n_c+2} (2J_{pq} - K_{pq}) + J_{ij} \pm K_{ji} .$$
(145)

В итоге получились следующие значения коэффициентов – общие значения: $\omega_c = 2$, $\omega_o = 1$, $\alpha_{cc} = 2$, $\alpha_{co} = \alpha_{oc} = 1$, $\alpha_{oo} = 1/2$, $\beta_{cc} = 1$, $\beta_{co} = 1/2$; частные значения: для синглета $\beta_{oo} = -1/2$, а для триплета $\beta_{oo} = 1/2$.

Также констатируем, что компоненты триплета с $S_z = 1$ и $S_z = 0$ имеют одну и ту же энергию при том, что компонента триплета с $S_z = 1$ описывается однодетерминантной волновой функцией, а компонента с $S_z = 0$ – линейной комбинацией двух детерминантов.

Литература

- 1. D. R. Hartree. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods, *Proc. Cambridge Phil. Soc.*, v. 24: 1, 89 – 110 (1928).
- 2. D. R. Hartree. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion, *Proc. Cambridge Phil. Soc.*, v. 24: 1, 111 – 132 (1928).
- 3. V. A. Fock. An approximate method for solving the quantum many-body problem, *Z. Physik*, v. 61: 1-2, 126 148 (1930).
- 4. D. E. Rutherford. Substitutional Analysis. London: Edinburgh University Press, 1948.

- 5. M. Hammermesh. *Group theory and its application to physical problems*. Reading: Addison-Wesley, 1962.
- 6. И. Г. Каплан. Симметрия многоэлектронных систем. Москва: Наука, 1969.
- 7. W. A. Goddard III. Improved quantum theory of many-electron systems: I. Construction of eigenfunctions of \hat{S}^2 which satisfy Pauli's principle, *Phys. Rev.*, v. 157: 1, 73 80 (1967).
- 8. W. A. Goddard III. Improved quantum theory of many-electron systems: II. The basic method, *Phys. Rev.*, v. 157: 1, 81 – 93 (1967).
- 9. W. A. Goddard III. Improved quantum theory of many-electron systems: III. The GF method, *J. Chem. Phys.*, v. 48: 1, 450 461 (1968).
- 10. W. A. Goddard III. Wavefunctions and correlation energies for two-, three-, and four-electron atoms, *J. Chem. Phys.*, v. 48: 3, 1008 1017 (1968).
- 11. W. A. Goddard III. Improved quantum theory of many-electron systems: IV. Properties of GF wavefunctions, *J. Chem. Phys.*, v. 48: 12, 5337 5347 (1968).
- 12. R. C. Ladner, W. A. Goddard III. Improved quantum theory of many-electron systems: V. The spin-coupling optimized GI method, *J. Chem. Phys.*, v. 51: 3, 1073 – 1087 (1969).
- 13. W. A. Goddard III. The symmetric group and the spin generalized SCF method, *Intern. J. Quantum Chem.*, v. IIIS, 593 600 (1970).
- 14. J. C. Slater. The theory of complex spectra, *Phys. Rev.*, v. 34, 1293 1323 (1929).
- 15. J. C. Slater. Quantum theory of molecules and solids, Phys. Rev., v. 35: 2, 210 211 (1930).
- 16. C. C. J. Roothaan. New developments in molecular orbital theory, *Rev. Modern Phys.*, v. 23, 69 (1951).
- 17. A. T. Amos, G. G. Hall. Single determinant wave functions, *Proc. Royal Soc.*, v. A263: 1315, 483 493 (1961).
- 18. И. И. Украинский, Ю. А. Кругляк, Х. Прейсс, Р. Яношек. Проектирование волновой функции неограниченного метода Хартри Фока на дублетное состояние на примере бензильного радикала, *Teop. экспер. химия*, т. 8: 3, 299 308 (1971).
- A. T. Amos. Some properties of π-ions and triplets, In O. Sinanoğlu (ed.), *Modern quantum chemistry*. New York: Academic Press, 1965.
- И. И. Украинский, Ю. А. Кругляк. Обобщенный метод Хартри Фока и его применение к расчету электронных оболочек атомов, молекул и полимеров, В сб. Г. Ф. Филиппов (ред.), Современные проблемы оптики и ядерной физики. Киев: Наукова думка, 1974.
- 21. J. A. Pople, R. K. Nesbet. Self-consistent orbitals for radicals, *J. Chem. Phys.*, v. 22: 3, 571 572 (1954).
- 22. P.-O. Lowdin. Quantum theory of many-particle systems. III. Extension of the Hartree Fock scheme to include degenerate systems and correlation effects, *Phys. Rev.*, v. 97: 6, 1509 1520 (1955).
- 23. P.-O. Lowdin. Correlation problem in many-electron quantum mechanics.I. Review of different approaches and discussion of some current ideas, In I. Prigogine (ed.), *Adv. Chem. Phys.*, v. 2. New York: Interscience, 1959.
- 24. P.-O. Lowdin. Angular momentum wave functions constructed by projection operators, *Rev. Modern Phys.*, v. 36: 4, 966 976 (1964).
- 25. F. Sasaki, K. Ohno. Spin-component analysis of single-determinant wavefunctions, *J. Math. Phys.*, v. 4: 9, 1140 1147 (1963).
- 26. V. H. Smith. Projection of exact spin eigenfunctions, J. Chem. Phys., v. 41: 1, 277 (1964).
- 27. K. M. Sando, J. E. Harriman. Spin-projected and extended SCF calculations, *J. Chem. Phys.*, v. 47, 180 (1967).
- 28. F. Harris. On the calculation of spin densities, J. Molec. Phys., v. 11, 243 256 (1966).
- 29. R. Pauncz. Alternant Molecular Orbital Method. London: W. B. Saunders, 1967.
- P.-O. Lowdin. Band theory, valence band and tight-binding calculations, J. App. Phys. Suppl., v. 33: 1, 251 – 280 (1962).

- R. Pauncz, J. de Heer, P.-O. Lowdin. Studies of the alternant molecular orbital method. I. General energy expression for an alternant system with closed-shell structure, *J. Chem. Phys.*, v. 36, 2247 – 2256 (1962).
- R. Pauncz, J. de Heer, P.-O. Lowdin. Studies of the alternant molecular orbital method. II. Application to Cyclic Systems, *J. Chem. Phys.*, v. 36, 2257 – 2265 (1962).
- 33. E. Hückel. Zur Quantentheorie der Doppelbindung, Z. Phys., v. 60: 7 8, 423 456 (1930).
- E. Hückel. Quantentheoretische Beiträge zum Benzolproblem, Z. Phys., v. 70: 3 – 4, 204 – 286 (1931).
- Ю. А. Кругляк et al. Методы вычислений в квантовой химии. Расчет π-электронной структуры молекул простыми методами молекулярных орбиталей. Киев: Наукова думка, 1967.
- 36. C. A. Coulson, H. C. Longuet-Higgins. The electronic structure of conjugated systems. I. General theory, *Proc. Roy. Soc.*, v. A191, 39 60 (1947).
- 37. A. Brickstock, J. A. Pople. Resonance energies and charge distributions of unsaturated hydrocarbon radicals and ions, *Trans. Faraday Soc.*, v. 50, 901 911 (1954).
- 38. T. A. Koopmans. Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms, *Physica*, v. 1, 104 113 (1933).
- 39. L. Brillouin. La méthode du champ self-consistent, *Actual. Scient. Industr.*, n. 71. Paris: Hermann, 1933.
- 40. L. Brillouin. Les champs "self-consistents" de Hartree et de Fock, *Actual. Scient. Industr.*, n. 159. Paris: Hermann, 1934.
- 41. Е. В. Моздор, Ю. А. Кругляк, В. А. Куприевич. Матричные элементы операторов физических величин на одноконфигурационных функциях радикалов, *Teop. экспер. химия*, т. 5: 6, 723 730 (1969).
- 42. Yu. A. Kruglyak, E. V. Mozdor, V. A. Kuprievich. Study of the electronic structure of radicals by the CI method. I. Matrix elements of the physical value operators, *Croat. Chem. Acta*, v. 43, 15 22 (1971).
- 43. N. A. Popov. Symmetry properties of one-electron orbitals in the method of different orbitals for different spins, *J. Struct. Chem.*, v. 11: 4, 670 676 (1970).
- 44. E. A. Hylleraas. Neue berechnung der energie des Heliums im grundzustande, sowie des tiefsten terms von ortho-helium, Z. Phys., v. 54, 347 366 (1929).
- 45. C. Ekkart. The theory and calculation of screening constants, *Phys. Rev.*, v. 36, 878 892 (1930).
- 46. H. Shull, P.-O. Lowdin. Superposition of configurations and natural spin orbitals. Applications to the He problem, *J. Chem. Phys.*, v. 30, 617 626 (1959).
- D. P. Chong. Different orbitals for different spins. Singlet ground state of Helium, J. Chem. Phys., v. 45, 3317 – 3318 (1966).
- 48. L. Green, M. Lewis, M. Mulder *et al.* Correlation energies and angular components of the wave functions of the ground states of H⁻, He, and Li⁺, *Phys. Rev.*, v. 93, 273 (1954).
- 49. R. A. Bonham, D. A. Kohl. Simple correlated wavefunctions for the ground state of Helium-like atoms, *J. Chem. Phys.*, v. 45, 2471 (1966).
- М. Д. Долгушин. Расщепленные орбитали и энергии корреляции основного состояния двухэлектронных атомов,
 В сб. А. Юцис (ред.), *Теория электронных оболочек атомов и молекул*. Вильнюс: Минтис, 1971.
- S. Fraga, B. J. Ransil. Studies in molecular structure. VI. Potential curve for the interaction of two hydrogen atoms in the LCAO MO SCF approximation, *J. Chem. Phys.*, v. 35, 2471 (1967).
- 52. W. Kolos, L. Wolniewicz. Accurate adiabatic treatment of the ground state of the hydrogen molecule, *J. Chem. Phys.*, v. 41, 3663 (1964).
- 53. J. D. Swalen, J. de Heer. Many-parameter alternant molecular orbital calculations for large cyclic systems with closed-shell structure, *J. Chem. Phys.*, v. 40, 378 (1964).

54. G. G. Hall, A. T. Amos. Molecular orbital theory of the spin properties of conjugated molecules,

- J. A. Pople, D. L. Beveridge, P. A. Dobosh. Molecular orbital theory of the electronic structure of organic compounds. II. Spin densities in paramagnetic species, *J. Amer. Chem. Soc.*, v. 90, 4201 (1968).
- 56. Ю. А. Кругляк, Х. Прейсс, Р. Яношек. Неэмпирический расчет электронной структуры бензильного радикала, *Укр. физ. ж.*, т. 15: 6, 980 988 (1970).
- 57. Ю. А. Кругляк, Х. Прейсс, Р. Яношек. Расчет электронных оболочек бензильного радикала неограниченным методом Хартри Фока на гауссовом базисе, *Ж. структ. химии*, т. 12: 4, 689 – 696 (1971).
- 58. Ю. А. Кругляк, И. И. Украинский, Х. Прейсс, Р. Яношек. Орбитальный анализ *ab initio* электронной и спиновой заселенности атомов бензильного радикала, *Teop. экспер. химия*, т. 7: 6, 815 819 (1970).
- 59. A. Carrington, I. C. P. Smith. The electron spin resonance spectrum and spin density distribution of the benzyl radical, *Molec. Phys.*, v. 9: 2, 137 147 (1965).
- 60. H. G. Benson, A. Hudson. On the spin density distribution in the benzyl radical, *Molec. Phys.*, v. 20: 1, 185 187 (1971).
- 61. R. V. Lloyd, D. E. Wood. Free radicals in adamantane matrix. EPR and Indo study of the benzyl, aniline, and phenoxy radicals and their fluorinated derivatives, *J. Amer. Chem. Soc.*, v. 96: 3, 659 665 (1974).
- 62. H. M. McConnell. Electron densities in semiquinones by paramagnetic resonance, *J. Chem. Phys.*, v. 24: 3, 632 (1956).
- 63. H. M. McConnell. Indirect hyperfine interactions in the paramagnetic resonance spectra of aromatic free radicals, *J. Chem. Phys.*, v. 24: 4, 764 (1956).
- 64. R. W. Fessenden, R. H. Schuler. Electron spin resonance studies of transient alkyl radicals, *J. Chem. Phys.*, v. 39: 9, 2147 (1963).
- 65. Ю. А. Кругляк, Е. В. Моздор, В. А. Куприевич. Полное конфигурационное взаимодействие для бензильного радикала, *Укр. физ. ж.*, т. 15: 1, 48 58 (1970).
- 66. Ю. А. Кругляк, Г. Хибаум, Н. Е. Радомысельская. Электронная структура основного состояния бензильного радикала в равновесной конфигурации, *Rev. Roumaine Chim.*, v. 17: 5, 781 – 799 (1972).
- 67. Yu. A. Kruglyak, E.V.Mozdor. Study of the electronic structure of radicals by the CI method.
 3. Excited states of the benzyl radical, *Theor. chim. Acta*, v. 15, 374 384 (1969).
- 68. Yu. A. Kruglyak, I. I. Ukrainsky. Study of the electronic structure of alternant radicals by the DODS method, *Intern. J. Quantum Chem.*, v. 4, 57 72 (1970).
- 69. I. I. Ukrainsky. Electronic structure of long cumulene chains, *Intern. J. Quantum Chem.*, v. 6: 3, 473 489 (1972).
- Ю. А. Кругляк, И. И. Украинский. О расчете спиновой плотности в методе расщепленных орбиталей, В сб. А. Юцис (ред.), *Теория электронных оболочек атомов и молекул*. Вильнюс: Минтис, 1971.
- 71. А. А. Овчинников, И. И. Украинский, Г. Ф. Квенцель. Теория одномерных мотовских полупроводников и электронная структура длинных молекул с сопряженными связями, *Усп. физ. наук*, т. 108: 1, 81 111 (1972).
- 72. И. А. Мисуркин, А. А. Овчинников. Электронная структура длинных молекул с сопряженными связями, *Теор. экспер. хим.*, т. 3: 4, 431 436 (1967).
- 73. K.-F. Berggren, B. Johansson. A field theoretical description of states with different orbitals for different spins, *Intern. J. Quantum Chem.*, v. 2: 4, 483 508 (1968).
- 74. B. Johansson, K. F. Berggren. Itinerant Antiferromagnetism in an Infinite Linear Chain, *Phys. Rev.*, v. 181, 855 (1969).

In D. R. Bates and I. Estermann (eds), Adv. Atomic Molec. Phys., v. 1, 1 – 59 (1965).

- 75. H. Fukutome. Spin density wave and charge transfer wave in long conjugated molecules, *Prog. Theor. Phys.*, v. 40: 5, 998 (1968).
- 76. H. Fukutome. Spin density wave and charge transfer. Wave in long conjugated molecules, *Prog. Theor. Phys.*, v. 40: 6, 1227 1245 (1968).
- 77. И. А. Мисуркин, А. А. Овчинников. Электронная структура больших π-электронных систем (графит, полиацены, кумулены), *Teop. эксп. хим.*, т. 4: 1, 3 11 (1968).
- 78. I. A. Misurkin, A. A. Ovchinnikov. Electronic structure of large π-electron systems (graphite, polyacenes, cumulenes), *Theor. chim. Acta*, v. 13, 115 124 (1969).
- 79. I. I. Ukrainsky, G. F. Kventsel. Electronic structure of long polyene chains with an impurity atom, *Theor. chim. Acta*, v. 25, 360 371 (1972).
- 80. E. H. Lieb, F. Y. Wu. Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension, *Phys. Rev. Lett.*, v. 20, 1445 1448 (1968).
- Yu. A. Kruglyak. Quantum-chemical Studies of Quasi-one-dimensional Electron Systems.
 Polyenes, *ScienceRise*, v. 5: 2(10), 69 105 (2015).
- 82. Yu. A. Kruglyak. Quantum-chemical Studies of Quasi-one-dimensional Electron Systems.
 2. Cumulenes and Origin of Forbidden Zone, *ScienceRise*, v. 6: 2(11), 70 100 (2015).
- 83. Yu. A. Kruglyak. Quantum-mechanical Studies of Quasi-One-Dimensional Electron Systems, Chapter 2 in book Yu. A. Kruglyak *et al. Calculational Methods in Quantum Geometry and Chaos Theory*, Part 4, 28 – 180 (2015). Odessa: TES Publishing House, 2015.
- 84. Istvan Mayer. *Simple theorems, proofs, and derivations in quantum chemistry*. New York: Kluwer Academic, 2003.
- 85. I. Mayer. Spin-projected EHF Method. IV. Comparison of Potential Curves Given by Different One-electron Methods, *Intern. J. Quantum Chem.*, v. 14, 29 38 (1978).
- 86. G. G. Hall. The molecular orbital theory of chemical valency. VIII. A Method of calculating ionization potentials, *Proc. Roy. Soc.*, v. A205, 541 552 (1951).
- 87. Ю. О. Кругляк. Деякі методологічні питання та перспективи розвитку квантової хімії, *Вісник АН УРСР*, № 7, 32 – 46 (1972).

2.6. Корреляция электронов

Метод ХФ учитывает взаимодействие между электронами усредненным образом, а хартри-фоковские волновые функции далеки от точных решений молекулярного уравнения Шредингера. Они не учитывают то обстоятельство, что движение электронов скоррелировано, что электроны не движутся независимо друг от друга. Фактически волновая функция должна зависеть от межэлектронных расстояний.

Представить это себе можно так. Если $p_1(\vec{r_1})$ есть плотность вероятности найти электрон № 1 в точке $\vec{r_1}$ независимо от положения остальных электронов, а для электрона № 2 такая плотность вероятности равна $p_2(\vec{r_2})$, то для плотности вероятности $p_{12}(\vec{r_1},\vec{r_2})$ того, что электрон № 1 будет найден в точке $\vec{r_1}$ и одновременно электрон № 2 будет найден в точке $\vec{r_2}$, должно иметь место неравенство

$$p_{12}(\vec{r}_1, \vec{r}_2) \neq p_1(\vec{r}_1) \cdot p_2(\vec{r}_2), \qquad (146)$$

как очевидное для статистически зависимых событий.

Движение ансамбля электронов совершенно независимо друг от друга реализуется только в приближении Хартри, когда волновая функция берется в виде простого произведения спин-орбиталей и не учитывается антисимметрия электронов как тождественных частиц. Антисимметризация волновой функции исключает возможность обнаружить два электрона с одинаковыми спинами с одной и той же точке пространства. В алгебре определителей такой детерминант автоматически обращается в нуль. С другой стороны волновая функция должна быть непрерывной. С учетом этого обстоятельства можно утверждать, что вероятность того, что два электрона с одним и тем же спином окажутся близко друг К другу мала. Эта характерная особенность распределения электронов получила название фермиевской дырки. Причиной ее появления является антисимметрия волновой функции, и ферми-дырка реализуется даже в системе невзаимодействующих электронов как чисто кинематический эффект.

методе ХФ нескоррелировано только В движение электронов С противоположными спинами. В силу исключительной практической важности классического метода Хартри – Фока корреляционную энергию определяют как разницу между хартри-фоковской энергией электронной системы и ее точным нерелятивистким значением. Согласно этому общепринятому определению, электронная корреляция включает только те эффекты, которые не являются следствием одной лишь антисимметрии и поэтому не учитываются в методе можно сказать так. Под электронной корреляцией ОХФ. По другому понимаются лишь эффекты, возникающие вследствие кулоновского отталкивания между электронами, которое и является причиной возникновения кулоновской дырки. Таким образом, электронная корреляция является динамическим эффектом, не связанным со спином в отличие от фермиевской дырки, являющейся кинематическим эффектом, зависящим от спина.

Иногда пользуются понятиями статической и динамической корреляции электронов, физический смысл которых трудно четко сформулировать. Динамическая корреляция, как прямое следствие кулоновского отталкивания между электронами, преобладает вблизи равновесных конфигураций молекул. Корреляцию считают статической тогда, когда описание с помощью однодетерминантной волновой функции в методе ОХФ, построенной из дважды занятых орбиталей, совершенно не адекватно физической ситуации, например, в случае гомолитической диссоциации.

Во многих случаях констатируют почти постоянное значение энергии корреляции. Если расчет методом ХФР выполнен с достаточно хорошим базисом, то этого бывает достаточно для количественных оценок. Получение более точных результатов, как правило, требует учета электронной корреляции. Есть задачи, которые невозможно исследовать без учета корреляции

100

электронов, например, изучение поверхности потенциальной энергии протекания химической реакции.

Наиболее адекватный учет электронной корреляции достигается введением межэлектронного расстояния r_{ij} в волновую функцию. Именно таким образом получены наиболее точные результаты для легких атомов и для небольших двухатомных молекул. В практических расчетах молекул с учетом корреляции электронов чаще всего пользуются методом конфигурационного взаимодействия, к изложению которого мы переходим.

2.7. Метод конфигурационного взаимодействия

Возьмем нормируемую *N*-электронную волновую функцию $\Psi = \Psi(1, 2, ..., N)$ и фиксируем значения пространственных и спиновых координат её первых *N* – 1 электронов: $x_k \equiv \{\vec{r}_k, \sigma_k\} = \text{Const}, k = 1, 2, ..., N – 1$. Функция Ψ будет нормируемой функцией пространственных и спиновых координат *N*-го электрона и может быть разложена в ряд по полному набору одноэлектронных функций $\psi_i(x)$ (*i* = 1, 2, ..., ∞), а именно:

$$\Psi(1,2,...,N) = \sum_{i_N=1}^{\infty} c_{i_N}(x_1,x_2,...,x_{N-1}) \psi_{i_N}(x_N), \qquad (147)$$

где коэффициенты разложения есть нормируемые функции координат остальных электронов i = 1, 2, ..., N - 1. Фиксируем далее значения x_i (i = 1, 2, ..., N - 2) и снова разлагаем $c_{i_N}(x_1, x_2, ..., x_{N-1})$ в ряд как функцию x_{N-1} :

$$\Psi(1,2,...,N) = \sum_{i_{N-1},i_N=1}^{\infty} c_{i_{N-1},i_N}(x_1,x_2,...,x_{N-2}) \psi_{i_{N-1}}(x_{N-1}) \psi_{i_N}(x_N)$$
(148)

и т. д. Выполняя последовательно эту же процедуру, получаем

$$\Psi(1,2,...,N) = \sum_{i_1,i_2,...,i_N=1}^{\infty} c_{i_1i_2...i_N} \,\psi_{i_1}(x_1) \,\psi_{i_2}(x_2) \cdots \psi_{i_{N-1}}(x_{N-1}) \,\psi_{i_N}(x_N), \qquad (149)$$

где коэффициенты разложения $c_{i_1i_2...i_N}$ уже не зависят ни от каких электронных координат.

Волновая функция Ψ должна быть антисимметричной относительно перестановок электронов, что накладывает некоторые ограничения на значения коэффициентов $c_{i_1i_2...i_N}$, например, из требования антисимметрии относительно перестановки электронов 1 и 2 следует

$$c_{i_1 i_2 i_3 \dots i_N} = -c_{i_2 i_1 i_3 \dots i_N} \tag{150}$$

(1 = 0)

и т. д. Если собрать слагаемые, содержащие одни и те же спин-орбитали и отличающиеся только порядком электронных координат и порядком индексов

 $i_1, i_2, ..., i_N$ при коэффициентах $c_{i_1 i_2 ... i_N}$, то получим слэтеровский детерминант, построенный на рассматриваемых спин-орбиталях и умноженный на общий коэффициент $\pm \sqrt{N!} |c_{i_1 i_2 ... i_N}|$. Набор N индексов $\{i_j\}$ называют I-ой упорядоченной конфигурацией, если индексы i_j образуют возрастающую последовательность $i_1 < i_2 < \cdots < i_N$. В этом случае волновая функция Ψ представима в виде разложения по слэтеровским детерминантам

$$\Psi = \sum_{I} c_{I} \Psi_{I} , \qquad (151)$$

соответствующим упорядоченным конфигурациям

$$\Psi_{I} = \hat{A}[\psi_{i_{1}}(1)\psi_{i_{2}}(2)\dots\psi_{i_{N}}(N)].$$
(152)

Если одноэлектронные функции ψ_i образуют полный набор В гильбертовом пространстве, то детерминанты, соответствующие всем построенным на этих функциях упорядоченным конфигурациям, образуют полный набор в линейном пространстве антисимметричных *N*-электронных функций. Поскольку предполагается, что одноэлектронные функции ортонормированы, то И построенные них детерминанты на также ортонормированы.

Если взять с самого начала конечное число спин-орбиталей ψ_i (*i* = 1, 2, ..., *N*), то детерминанты, соответствующие упорядоченным конфигурациям этих образуют полный базис в пространстве антисимметричных орбиталей, волновых функций, которые построить набора можно ИЗ данного одноэлектронных функций. Такое разложение волновых функций по детерминантам принято называть конфигурационным взаимодействием (КВ). Ha метод КВ заключается в вариационном практике определении коэффициентов разложения с, и сводится к решению задачи на собственные значения с нахождением, как правило, лишь нескольких наименьших собственных значений, в нашем случае наинизших энергий молекулы.

Оператор Борна – Оппенгеймера содержит сингулярность $r_{ij}^{-1} \rightarrow \infty (r_{ij} \rightarrow 0)$. С другой стороны, разложение КВ не содержит межэлектронных расстояний в явном виде, поскольку используются только одноэлектронные спин-орбитали. Это означает, что поведение волновой функции в области пространства координат всех электронов, отвечающей сближению только двух их них, описывается только как суммарный эффект большого числа слагаемых в разложении КВ, вследствие чего ряд КВ сходится весьма медленно, особенно когда речь идет о локальных свойствах волновой функции.

2.7.1. Теорема Несбета

На практике почти все методы КВ строятся на волновой функции ОХФ или НХФ в качестве состояния отсчета. Конфигурации I соответствуют детерминантам, построенным на занятых и виртуальных орбиталях ХФ. Пусть Ψ_0 обозначает волновую функцию ХФ. Запишем корреляционную (промежуточную) нормировку функции

$$\Psi_0 + \sum_I c_I \Psi_I = \Psi_0 + \Phi \equiv \Psi, \tag{153}$$

как

$$\langle \Psi_0 | \Psi_0 \rangle = 1, \quad \langle \Psi_0 | \Phi \rangle = 0, \tag{154}$$

где равенства (154) следуют из ортонормированности занятых и виртуальных орбиталей XФ, ведущей к

$$\langle \Psi_0 | \Psi_I \rangle = \delta_{0I}. \tag{155}$$

Подставив разложение (153) в уравнение Шредингера

$$\hat{H}\Psi = E\Psi, \qquad (156)$$

получаем

$$\hat{H}\left(\Psi_{0} + \sum_{I} c_{I} \Psi_{I}\right) = E\left(\Psi_{0} + \sum_{I} c_{I} \Psi_{I}\right),$$
(157)

а после умножения этого равенства на Ψ_0^* и интегрирования с учетом (155) имеем:

$$E = \langle \Psi_0 | \hat{H} | \Psi_0 \rangle + \sum_{I=1} c_I \langle \Psi_0 | \hat{H} | \Psi_I \rangle = E_{HF} + \sum_{I=1} c_I H_{0I}, \qquad (158)$$

откуда корреляционная энергия

$$\Delta E = E - E_{HF} = \sum_{I=1} c_I H_{0I} \,. \tag{159}$$

Детерминанты Ψ_{I} построены на занятых и виртуальных хартри-фоковских орбиталях и их можно идентифицировать по числу спин-орбиталей, которые заменены виртуальными по отношению к состоянию отсчета, т. е. по отношению к волновой функции ХФ Ψ_{0} . Другими словами, имеем одно-, двух-, трехкратно и т. д. до *N*-кратно замещенных, где *N* есть число электронов в молекуле. Пусть Ψ_{I} – однократно возбужденные детерминанты. Их матричные элементы по теореме Бриллюэна (§ 2.2.1) $\langle \Psi_0 | \hat{H} | \Psi_1 \rangle = 0$. Для детерминантов с тремя и более возбуждениями относительно вакуумного состояния Ψ_0 матричные элементы зануляются в соответствии с правилами Слэтера (§ 1.3.2). Единственные слагаемые, дающие ненулевой вклад в правую часть (189), это двухкратно возбужденные детерминанты. Обозначим их как

$$\Psi_{ij}^{uv} \equiv \Psi^{(2)}(\psi_i \to \psi_u; \psi_j \to \psi_v), \qquad (160)$$

а соответствующие коэффициенты разложения в конфигурационном ряду (153) как c_{ii}^{uv} , получим следующее выражение для корреляционной энергии:

$$\Delta E = \sum_{i < j}^{(3ah.)} \sum_{u < v}^{(supm.)} c_{ij}^{uv} \langle \Psi_0 | \hat{H} | \Psi_{ij}^{uv} \rangle =$$

=
$$\sum_{i < j}^{(3ah.)} \sum_{u < v}^{(supm.)} c_{ij}^{uv} \Big(\langle \psi_i(1)\psi_j(2) | r_{12}^{-1} | \psi_u(1)\psi_v(2) \rangle - \langle \psi_i(1)\psi_j(2) | r_{12}^{-1} | \psi_v(1)\psi_u(2) \rangle \Big),$$

где интегралы берутся по спин-орбиталям, включая и интегрирование по спинам.

Теорема Несбета гласит: вычисление точной корреляционной энергии сводится к знанию только коэффициентов при дважды возбужденных конфигурациях в точном разложении КВ.

Энергию корреляции, очевидно, можно представить в виде

$$\Delta E = \sum_{i < j}^{(3ah.)} \varepsilon_{ij} ,$$

где суммирование ведется по занятым хартри-фоковским орбиталям. Другими словами, энергия корреляции есть сумма вкладов

$$\varepsilon_{ij} = \sum_{u < v}^{(supm.)} c_{ij}^{uv} \Big(\langle \psi_i(1)\psi_j(2) | r_{12}^{-1} | \psi_u(1)\psi_v(2) \rangle - \langle \psi_i(1)\psi_j(2) | r_{12}^{-1} | \psi_v(1)\psi_u(2) \rangle \Big),$$

которые получили название парных корреляционных энергий отдельных пар занятых спин-орбиталей. Каждая такая парная корреляционная энергия зависит также от всех других орбиталей, поскольку на значения коэффициентов $c_{ij}^{\mu\nu}$ влияют все конфигурции в разложении КВ.

Различают внутрипарную корреляцию и межпарную корреляцию электронов. Внутрипарная корреляция реализуется тогда, когда у двух спинорбиталей пространственная часть одна и та же, заселенная электронами со спином α и β . Если же пространственные части разные, то речь идет о межпарной корреляции. Вклады внутрипарной корреляции превалируют, поскольку они соответствуют паре электронов, которые в методе ХФ занимают одну и ту же пространственную орбиталь, результатом чего является бо́льшая вероятность того, что два электрона окажутся близко друг к другу. В теории атомов аналогичным образом вводят внутриоболочечные и межоболочечные корреляции.

Корреляционная энергия инвариантна относительно унитарных преобразований занятых орбиталей, тогда как отдельные парные корреляционные энергии, естественно, не инвариантны. Вместе с тем, как ΔE , так и ε_{ij} инвариантны относительно унитарных преобразований виртуальных орбиталей.

2.7.2. О полном и усеченном КВ

Многоэлектронные функции в качестве базисных в методе КВ обычно берутся не в виде отдельных детерминантов, а в виде их комбинаций, представляющих собой чистые спиновые функции как собственные функции операторов \hat{S}_z и \hat{S}^2 , а также соответствующих пространственной симметрии молекулы, если таковая имеется. Это существенно снижает размерность задачи на собственные значения.

Если учитывают все приведенные по спину конфигурации, которые можно построить для данного одноэлектронного базиса, то говорят о полном конфигурационном взаимодействии (ПКВ/FCI), которое является точным решением вариационной задачи в выбранном базисе одноэлектронных функций. Используемый базис фактически определяет некую модельную задачу с соответствующим модельным гамильтонианом, и метод ПКВ дает точное решение уравнения Шредингера для этого модельного гамильтониана.

С увеличением числа электронов и размера базиса число детерминантов растет очень быстро. Поэтому полное КВ удается реализовать только для сравнительно небольших молекулярных систем. Подобные расчеты важны прежде всего с методологической точки зрения, поскольку они определяют эталоны для сравнения с ними результатов других приближенных методов расчета.

Из теоремы Несбета (§ 2.7.1) следует, что кроме детерминанта основного состояния молекулярной системы наиболее важными являются детерминанты дважды возбужденные. Если бы мы знали их точные коэффициенты разложения в полном ряду КВ, то могли бы вычислить и корреляционную энергию и точную энергию полного КВ.

105

Простейшим методом КВ, казалось бы мог быть учет только двухкратно возбужденных состояний в дополнение к волновой функции основного состояния, поскольку однократно возбужденные состояния с основным не взаимодействуют (теорема Бриллюэна). Однако, каждая однократно возбужденная конфигурация взаимодействует с несколькими двухкратно возбужденными, и их влиянием на оценку корреляционной энергии нельзя пренебречь. Обычно учитывают все однократно возбужденные конфигурации, поскольку их значительно меньше, чем двухкратно возбужденных, и учет их лишь незначительно увеличивает время счета.

Учет одновременно всех однократно и всех двухкратно возбужденных конфигураций (метод KBOД/CISD) позволяет учесть весьма значительную часть энергии корреляции. Нужно, однако, помнить, что такой подход размерно не согласован. Если взять две невзаимодействующих системы и каждую из них описать методом КВОД в качестве подсистемы общей объединенной системы, то волновая функция всей системы должна быть антисимметризованным произведением волновых функций обеих подсистем. Однако, такое произведение двух волновых функций КВОД не является волновой функцией типа КВОД, поскольку оно содержит такие слагаемые, которые формально соответствуют трех- и четырехкратным возбуждениям, не включающимся в типа КВОД объединенной Разработаны, описание системы. однако, приближенные поправки на размерную согласованность.

В принципе, необходимо помнить, что никакой усеченный ряд КВ никогда не будет размерно согласованным. Уже выполненные расчеты с учетом КВ, близким к полному, показывают, что учет возбуждений вплоть до четырехкратных дает ответ с достаточно малой ошибкой за счет размерной несогласованности.

Далее рассмотрим математический формализм вторичного квантования в применении к методу КВ. Электронные конфигурации трактуются как системы частиц и дырок на фоне вакуумного состояния, построенного из замкнутых основной конфигурации молекулярной оболочек системы. Выводятся выражения для операторов основных физических величин с использованием дырочного формализма, обобщенного для произвольной ортонормированной системы орбиталей. Сформулированы правила действия оператора \hat{S}^2 в представлении вторичного квантования. Применение теорем Вика для расчета матричных элементов между конфигурациями позволило нам сформулировать простую логическую схему вычислений в методе КВ, которая справедлива для произвольной конфигураций сложности И может быть легко запрограммирована.

В качестве примера такого общего подхода получены выражения для

матричных элементов операторов физических величин на однократно и двухкратно возбужденных конфигурациях для молекул и радикалов, а также приведены основные результаты расчета полного КВ для семиэлектронной π -системы бензильного радикала C₆H₅CH₂. Дадим вывод и приведем основные результаты для матриц электронной и спиновой плотности для синглетных и триплетных состояний молекул с учетом всех однократно и двухкратно возбужденных конфигураций детерминантным методом Слэтера.

2.7.3. Configuration Interaction in the Second Quantization Representation: Basics with Applications to Benzyl Radical up to Full CI

2.7.3.1. Introduction

The main advantage of the configuration interaction (CI) method [1] is the possibility of improving a trial wave function by extending considerably a set of basis configurations. The simple analytical expressions for the matrix elements of the Hamiltonian over the singly excited singlet and triplet configurations are well known. Thus an interaction of these configurations became a standard method for computing excited states of molecules [2]. Similarly, an interaction between singly excited configurations is frequently used for the calculation of the electronic structure of radicals [3], while doubly excited configurations have been used occasionally. Finally, not much is still known about contributions of configurations involving an excitation of three and more electrons [4].

Development of the expressions for the CI matrix elements can be considerably simplified when the second quantization formalism [5] is used instead of the usual method based on superposition of determinants [1]. The former approach has been used in order to obtain the matrix elements over the doubly excited singlet configurations [6]. A comparison with the corresponding elements over singly excited configurations shows that the expressions for the CI matrix elements become progressively complicated as configurations become more complex. The necessity to include more and more complicated formulae into the computer program is the main obstacle to a wider use of the extended configuration sets. In order to overcome these difficulties it is necessary to abandon the derivation of the analytical expressions for the matrix elements and to delegate this work to a computer at an early stage of the calculation. The simple rules to compute the matrix elements in the second quantization representations which follow from Wick's theorem [7] and are also good for configurations of an arbitrary complexity need to be programmed. The present review is devoted to an actual realization of the above suggestion [8, 9]. Since the second quantization formalism has been described by many authors [5] we shall give only those formulae and statements which are necessary for our discussion.
In CI computations one first includes those configurations which do not differ much from the ground configuration. For example, the singly excited configurations are constructed from the Slater determinants built from the ground state determinant by changing a single row. To account for only the changes in an explicit form in the many-particle SCF theory, an elegant mathematical apparatus known as hole formalism has been developed. Besides offering a simple physical interpretation, the hole formalism reduces the calculations considerably. This formalism generalized on an arbitrary orthonormal orbital set will be exposed below.

2.7.3.2. The Second Quantization and CI Method

Let us consider a system of electrons in an external field, e.g. in a field of fixed nuclei. The Hamiltonian of this system is represented by a sum of one electron operators $\hat{h}(k)$, each of which acts on coordinates of one of the electrons and contains its kinetic energy operator and the external field potential, and a sum over all possible pairs of electrons of the electron interaction operators $\hat{U}(k,l)$. Let be given a complete orthonormal set of orbitals $\varphi_1, \varphi_2, \varphi_3, \dots$. Multiplying each orbital φ_i in turn by the spin functions η_+ and η_- which are eigenfunctions of the spin angular momentum operator with the eigenvalues $\pm 1/2$ and $\pm 1/2$ (in units of \hbar) one obtains a complete orthonormal system of spin orbitals $\psi_{i\sigma}$:

$$\psi_{1+}, \psi_{1-}, \psi_{2+}, \psi_{2-}, \psi_{3+}, \psi_{3-}, \dots,$$

where

$$\psi_{i+} = \varphi_i \eta_+, \psi_{i-} = \varphi_i \eta_-.$$

In order to pass to the second quantization representation we shall now introduce creation $\hat{A}_{i\sigma}^{+}$ and annihilation $\hat{A}_{i\sigma}$ operators for an electron in a state $\psi_{i\sigma}$. They obey anticommutation relations

$$\left[\hat{A}_{i\sigma}^{+},\hat{A}_{j\sigma'}^{+}\right]_{+} = \left[\hat{A}_{i\sigma},\hat{A}_{j\sigma'}\right]_{+} = 0, \left[\hat{A}_{i\sigma},\hat{A}_{j\sigma'}^{+}\right]_{+} = \delta_{ij}\delta_{\sigma\sigma'}.$$
(161)

The many-electron spin-free Hamiltonian is then given by

$$\hat{H} = \sum_{ij\sigma} \hat{A}^{+}_{i\sigma} \hat{A}_{j\sigma} h_{ij} + \frac{1}{2} \sum_{ijkl\sigma\sigma'} (ij \mid kl) \hat{A}^{+}_{i\sigma} \hat{A}^{+}_{j\sigma'} \hat{A}_{l\sigma'} \hat{A}_{k\sigma}, \qquad (162)$$

where

$$h_{ij} = \left\langle \varphi_i \, | \, \hat{h} \, | \, \varphi_j \right\rangle, \tag{163}$$

$$(ij|kl) = \left\langle \varphi_i \varphi_j | \hat{U} | \varphi_k \varphi_l \right\rangle.$$
(164)

Operators in the second quantization representation, including the Hamiltonian (162), act in a linear space, say *R*, with basis which can be constructed in the following way. First, one introduces a vacuum state vector $|0\rangle$ defined for all *i* and σ by

$$\hat{A}_{i\sigma}|0\rangle = 0, \ \langle 0|\hat{A}_{i\sigma}^{+} = 0 \tag{165}$$

with the vacuum state supposed to be normalized

$$\langle 0|0\rangle = 1. \tag{166}$$

Acting on the vacuum state by each of the creation operator one obtains all oneparticle states

$$\left|i\sigma\right\rangle = \hat{A}_{i\sigma}^{+}\left|0\right\rangle. \tag{167}$$

The states with two electrons are generated by operator $\hat{A}^{+}_{j\sigma'}$ acting on the state $|i\sigma\rangle$

$$\left| j\sigma', i\sigma \right\rangle = \hat{A}^{+}_{j\sigma'} \left| i\sigma \right\rangle = \hat{A}^{+}_{j\sigma'} \hat{A}^{+}_{i\sigma} \left| 0 \right\rangle.$$
(168)

It follows from the anticommutation relations (161) that only those vectors are linearly independent and not equal to zero for which i = j and $\sigma = \sigma'$ are not valid simultaneously.

Following this procedure we obtain a set of linearly independent states with an arbitrary number of electrons

$$\left| p\sigma \right\rangle = \hat{A}_{p_{1}\sigma_{1}}^{+} \hat{A}_{p_{2}\sigma_{2}}^{+} \hat{A}_{p_{3}\sigma_{3}}^{+} \cdots \hat{A}_{p_{N}\sigma_{N}}^{+} \left| 0 \right\rangle, \tag{169}$$

where symbol *p* covers a totality of numbers $p_1, p_2, p_3, ..., p_N$, and symbol σ – a totality of numbers $\sigma_1, \sigma_2, \sigma_3, ..., \sigma_N$, and if $p_n = p_{n+1}$ then $\sigma_n > \sigma_{n+1}$. A set of all these states with N = 1, 2, 3, ... determines the basis we have wished to construct.

Using the anticommutation relations (161) and definitions (165) and (166) one can show that each of the basis vectors is an eigenvector of an operator

$$\hat{N} = \sum_{i\sigma} \hat{A}^+_{i\sigma} \hat{A}^-_{i\sigma} \tag{170}$$

with an eigenvalue N.

The Hamiltonian (162) commutes with the number-of-particles operator \hat{N} and each one of its eigenvectors belongs to one of the subspaces R_N of the space R built

on the basis vectors with definite N. For this reason we fix a number of particles N in our system and will construct corresponding eigenvectors.

The expansion coefficients of the eigenvectors of \hat{H} over the basis vectors are usually determined as solutions of the eigenvalue problem for a matrix with the elements $\langle p'\sigma' | \hat{H} | p\sigma \rangle$. For the practical determination of approximate eigenvectors the CI matrix is truncated before diagonalization.

The order of the CI matrix which is to be diagonalised can be decreased considerably if there are operators which commute with the Hamiltonian as well as between each other. Then using an appropriate unitary transformation one goes from the set of vectors $|p\sigma\rangle$ to a new set of the basis vectors which are eigenvectors of these operators, and an initial eigenvalue problem reduces into several eigenvalue problems of a smaller order. Each of them corresponds to a definite totality of eigenvalues of the operators mentioned.

The spin-free Hamiltonian always commutes with the total spin projection operator \hat{S}_z and with the square of the total spin operator \hat{S}^2 . These two operators commute with each other also. We shall first find the expressions for them both in the second quantization representation. Expression for \hat{S}_z is obtained from the general definition of an one-particle operator

$$\hat{Q} \equiv \sum_{ij\sigma\sigma'} \hat{A}_{i\sigma}^{+} \hat{A}_{j\sigma'} < \psi_{i\sigma} | \hat{Q} | \psi_{j\sigma'} >, \qquad (171)$$

where one should place $\hat{Q} = \hat{S}_z$. Using the orthonormality of the spin-orbitals and the definition

$$\hat{S}_{z}\psi_{i\sigma} = \frac{1}{2}\sigma\psi_{i\sigma}$$

one obtains

$$\hat{S}_{z} = \frac{1}{2} \sum_{i\sigma} \sigma \hat{A}_{i\sigma}^{\dagger} \hat{A}_{i\sigma} .$$
(172)

To construct an operator \hat{S}^2 we begin with the well known Dirac expression [10]

$$\hat{S}^2 = \frac{1}{4}N(4-N) + \sum_{1 \le k < l \le N} \hat{P}_{kl}^{\sigma} \,. \tag{173}$$

In the second quantization representation the first term has the same pattern except that the total number of particles *N* must be replaced by the corresponding operator \hat{N} defined by (170). The operator \hat{P}_{kl}^{σ} which interchanges the spin functions of two electrons *k* and *l* in the states $\psi_{i\sigma}$ and $\psi_{j\sigma'}$ corresponds to the two-particle operator

$$\sum_{\sigma} \left(\hat{A}_{i\sigma}^{+} \hat{A}_{j\sigma}^{+} \hat{A}_{j\sigma} \hat{A}_{i\sigma} + \hat{A}_{i\sigma}^{+} \hat{A}_{j,-\sigma}^{+} \hat{A}_{j\sigma} \hat{A}_{i,-\sigma} \right).$$
(174)

Thus, finally

$$\hat{S}^{2} = \frac{1}{4}\hat{N}(4-\hat{N}) + \frac{1}{2}\sum_{ij\sigma} \left(\hat{A}_{i\sigma}^{+}\hat{A}_{j\sigma}^{+}\hat{A}_{j\sigma}\hat{A}_{i\sigma} + \hat{A}_{i\sigma}^{+}\hat{A}_{j,-\sigma}^{+}\hat{A}_{j\sigma}\hat{A}_{i,-\sigma}\right).$$
(175)

Later we shall consider a construction of the eigenvalues of the operators \hat{S}_z and \hat{S}^2 .

2.7.3.3. Hole Formalism

Consider the subset of the spin-orbitals $\{\psi\}_1$, which contains first $2n_F$ oneparticle states $\psi_{i\sigma}$ with $i \le n_F$ or one can take n_F pairs of arbitrary spin-orbitals $\psi_{i,+1}$ and $\psi_{i,-1}$ with subsequent renumbering of them, and form a vector

$$\left|\Phi_{0}\right\rangle = \prod_{i=1}^{n_{F}} \left(\hat{A}_{i,+1}^{+} \hat{A}_{i,-1}^{+}\right) \left|0\right\rangle.$$
(176)

This vector corresponds to the Slater determinant built on the spin-orbitals chosen. A determinant built from the same spin-orbitals except $\psi_{i\sigma}$ corresponds to a vector

$$\left| \Phi' \right\rangle = \hat{A}_{j,-\sigma}^{+} \prod_{i=1(i\neq j)}^{n_{F}} \left(\hat{A}_{i,+1}^{+} \hat{A}_{i,-1}^{+} \right) \left| 0 \right\rangle.$$
(177)

Acting on $|\Phi'\rangle$ by a unit operator

$$\hat{A}^{\scriptscriptstyle +}_{j\sigma}\hat{A}^{\scriptscriptstyle +}_{j\sigma}+\hat{A}^{\scriptscriptstyle +}_{j\sigma}\hat{A}^{\scriptscriptstyle +}_{j\sigma}$$

and using relations (161) and (165) one obtains

$$\left|\Phi'\right\rangle = \sigma \hat{A}_{j\sigma} \left|\Phi_{0}\right\rangle. \quad \left(j \le n_{F}\right) \tag{178}$$

This means that action of an operator $\hat{A}_{j\sigma}$ with $j \le n_F$ on the vector $|\Phi_0\rangle$ leads to the annihilation of a particle in an occupied state $\psi_{j\sigma}$, i.e. to the creation of a hole in this state. Thus the operators $\hat{A}_{i\sigma}$ and $\hat{A}_{i\sigma}^+$ with $i \le n_F$ can be interpreted as creation and annihilation respectively of the holes in the states of the subset $\{\psi_{j_1}\}$. It can be shown that the Slater determinant with u rows changed by other v rows in the second quantization representation corresponds to a vector obtained from $|\Phi_0\rangle$ by action of u hole creation and v particle creation operators in the corresponding states. All basis vectors for the CI method can be presented in this way and we shall now describe the corresponding formalism.

Using the anticommutation relations (161) and a definition of the vacuum state (165) it is easy to see that

$$\hat{A}_{i\sigma}^{+} \left| \Phi_{0} \right\rangle = 0, \quad \left\langle \Phi_{0} \right| \hat{A}_{i\sigma} = 0, \quad \left(i \le n_{F} \right), \tag{179a}$$

$$\hat{A}_{i\sigma} \left| \Phi_0 \right\rangle = 0, \quad \left\langle \Phi_0 \right| \hat{A}^+_{i\sigma} = 0, \quad (i > n_F), \tag{179b}$$

i.e. $|\Phi_0\rangle$ is a vacuum state with respect to the creation and annihilation operators of the holes and particles. In the following discussion under the vacuum state we always imply the state $|\Phi_0\rangle$ and not the initial state $|0\rangle$.

We shall now introduce the important concept of a *N*-product (normal product) of the operators $\hat{F}_1, \hat{F}_2, \hat{F}_3,...$ denoted as $N(\hat{F}_1\hat{F}_2\hat{F}_3....)$. In order to go from the usual product to a normal one we must transpose the operators in such a way that all the hole and particle creation operators are placed to the left of the annihilation operators, and each transposition of a pair of the operators must be followed by change of a sign. Under the sign of a *N*-product the operators can be arbitrary transposed. The sign depends only on the parity of transposition. An important property of the *N*-product, a consequence of (161), is that its average value over the vacuum state is equal to zero

$$\langle \Phi_0 | N(\cdots) | \Phi_0 \rangle = 0.$$
 (180a)

An obvious exception is the case when under the sign of a *N*-product there is a constant or an expression not having creation or annihilation operators (*c*-numbers). Then its average over the vacuum state is equal to itself

$$\langle \Phi_0 | N(c) | \Phi_0 \rangle = c$$
. (180b)

A reduction of operator products to a sum of the *N*-products is extremely useful as shown in calculating the vacuum average of the operator products by expression (180). This reduction can be easily performed for a product of two operators using the *N*-products and the anticommutation relations (161):

$$\hat{A}\hat{B} = N(\hat{A}\hat{B}) + \overline{\hat{A}\hat{B}}.$$
(181)

The symbol \widehat{AB} denotes a *c*-number called a convolution of the operators \widehat{A} and \widehat{B} . Only the following convolutions of the particle and hole operators are not equal to zero:

$$\left[\hat{A}_{i\sigma}\hat{A}_{i\sigma}^{+}\right] = 1, \quad (i > n_F), \quad (182a)$$

$$\widehat{A}_{i\sigma}^{+}\widehat{A}_{i\sigma} = 1, \quad (i \le n_F).$$
(182b)

Thus introducing the population numbers

$$n_i = \begin{cases} 1, & i \le n_F \\ 0, & i > n_F \end{cases}$$
(183)

one obtains for all convolutions

$$\hat{A}_{i\sigma}\hat{A}_{j\sigma'} = \hat{A}^+_{i\sigma}\hat{A}^+_{j\sigma'} = 0, \qquad (184a)$$

$$\widehat{A}_{i\sigma}^{+}\widehat{A}_{j\sigma'} = n_i \delta_{ij} \delta_{\sigma\sigma'}, \qquad (184b)$$

$$\widehat{A}_{i\sigma}\widehat{A}^{+}_{j\sigma'} = (1 - n_i)\delta_{ij}\delta_{\sigma\sigma'}.$$
(184c)

The rules for reduction of the operator product to a sum of the *N*-products in a general case are given by the Wick's theorems [11]. The theorems given in [11] have been formulated by Wick [7] for the chronological products. We give a particular formulation of these theorems for the operators with equal times.

Theorem 1. A product of the creation and annihilation operators is represented by a sum of the normal products with all possible convolutions including a *N*-product without convolutions. The sign of each term is determined by a number of the operator transpositions needed that the convoluting operators are grouped together:

$$\hat{F}_{1}\hat{F}_{2}\hat{F}_{3}\cdots\hat{F}_{n} = N(\hat{F}_{1}\hat{F}_{2}\hat{F}_{3}\cdots\hat{F}_{n}) + \hat{F}_{1}\hat{F}_{2}N(\hat{F}_{3}\hat{F}_{4}\hat{F}_{5}\cdots\hat{F}_{n}) - \frac{1}{\hat{F}_{1}\hat{F}_{3}}N(\hat{F}_{2}\hat{F}_{4}\hat{F}_{5}\cdots\hat{F}_{n}) + \dots + \hat{F}_{1}\hat{F}_{2}\hat{F}_{3}\hat{F}_{4}N(\hat{F}_{5}\hat{F}_{6}\hat{F}_{7}\cdots\hat{F}_{n}) + \dots$$

Theorem 2. If some operators in the product to be reduced stand from the beginning under the sign of the *N*-product then the reduction is made in the same way except that the convolutions must be omitted for those operators which from the beginning were standing under the sign of the same *N*-product.

2.7.3.4. Expansion of the Physical Value Operators over the N-products

For a one-particle operator using (181) and (184) one obtains from (171)

$$\hat{Q} \equiv \sum_{ij\sigma\sigma'} N\left(\hat{A}_{i\sigma}^{+}\hat{A}_{j\sigma'}\right) \left\langle \psi_{i\sigma} \left| \hat{Q} \right| \psi_{j\sigma'} \right\rangle + \sum_{i\sigma} n_i \left\langle \psi_{i\sigma} \left| \hat{Q} \right| \psi_{i\sigma} \right\rangle.$$
(185)

In particular, if an operator \hat{Q} does not act on the spin variables, then

$$\hat{Q} = \sum_{ij\sigma} N\left(\hat{A}_{i\sigma}^{+}\hat{A}_{j\sigma}\right) Q_{ij} + 2\sum_{i} n_{i}Q_{ii}, \qquad (186)$$

where

$$Q_{ij} = \left\langle \varphi_i \left| \hat{Q} \right| \varphi_j \right\rangle. \tag{187}$$

One obtains in the same way from (172)

$$\hat{S}_{z} = \frac{1}{2} \sum_{i\sigma} \sigma N \left(\hat{A}_{i\sigma}^{+} \hat{A}_{i\sigma} \right).$$
(188)

The number-of-paticles operator (170) becomes

$$\hat{N} = \sum_{i\sigma} N\left(\hat{A}_{i\sigma}^{+}\hat{A}_{i\sigma}\right) + 2n_{F}.$$
(189)

Now we shall transform the Hamiltonian (162). The first sum in (162) is transformed according to (186) with $\hat{Q} = \hat{h}$. In order to transform a sum corresponding to the electron interaction we use the first Wick theorem. Its application to a product of four operators gives

$$\hat{A}_{i\sigma}^{+}\hat{A}_{j\sigma'}^{+}\hat{A}_{l\sigma'}\hat{A}_{k\sigma} = N\left(\hat{A}_{i\sigma}^{+}\hat{A}_{j\sigma'}^{+}\hat{A}_{l\sigma'}\hat{A}_{k\sigma}\right) + \left[\hat{A}_{i\sigma}^{+}\hat{A}_{k\sigma}N\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{l\sigma'}\right) + \left[\hat{A}_{j\sigma'}^{+}\hat{A}_{l\sigma'}N\left(\hat{A}_{i\sigma}^{+}\hat{A}_{k\sigma}\right) - \left[\hat{A}_{j\sigma'}^{+}\hat{A}_{l\sigma'}N\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{l\sigma'}\right) + \left[\hat{A}_{i\sigma}^{+}\hat{A}_{k\sigma}N\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{l\sigma'}\right) - \left[\hat{A}_{i\sigma}^{+}\hat{A}_{l\sigma'}N\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{k\sigma}\right) + \left[\hat{A}_{i\sigma}^{+}\hat{A}_{k\sigma'}\nabla\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{l\sigma'}\right) - \left[\hat{A}_{i\sigma}^{+}\hat{A}_{l\sigma'}N\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{k\sigma}\right) + \left[\hat{A}_{i\sigma}^{+}\hat{A}_{k\sigma'}\nabla\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{l\sigma'}\right) - \left[\hat{A}_{i\sigma}^{+}\hat{A}_{l\sigma'}\nabla\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{k\sigma'}\right) + \left[\hat{A}_{i\sigma}^{+}\hat{A}_{k\sigma'}\nabla\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{l\sigma'}\right) - \left[\hat{A}_{i\sigma}^{+}\hat{A}_{l\sigma'}\nabla\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{k\sigma'}\right) + \left[\hat{A}_{i\sigma}^{+}\hat{A}_{k\sigma'}\nabla\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{l\sigma'}\right) - \left[\hat{A}_{i\sigma}^{+}\hat{A}_{l\sigma'}\nabla\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{k\sigma'}\right) + \left[\hat{A}_{i\sigma}^{+}\hat{A}_{k\sigma'}\nabla\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{l\sigma'}\right) - \left[\hat{A}_{i\sigma'}^{+}\hat{A}_{l\sigma'}\nabla\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{k\sigma'}\right) + \left[\hat{A}_{i\sigma}^{+}\hat{A}_{k\sigma'}\nabla\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{l\sigma'}\right) - \left[\hat{A}_{i\sigma'}^{+}\hat{A}_{l\sigma'}\nabla\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{k\sigma'}\right) + \left[\hat{A}_{i\sigma'}^{+}\hat{A}_{k\sigma'}\nabla\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{l\sigma'}\right) - \left[\hat{A}_{i\sigma'}^{+}\hat{A}_{l\sigma'}\nabla\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{k\sigma'}\right) + \left[\hat{A}_{i\sigma'}^{+}\hat{A}_{i\sigma'}^{+}\hat{A}_{i\sigma'}\nabla\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{i\sigma'}\right) - \left[\hat{A}_{i\sigma'}^{+}\hat{A}_{i\sigma'}\nabla\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{i\sigma'}\right) + \left[\hat{A}_{i\sigma'}^{+}\hat{A}_{i\sigma'}\nabla\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{i\sigma'}\right) - \left[\hat{A}_{i\sigma'}^{+}\hat{A}_{i\sigma'}\nabla\left(\hat{A}_{j\sigma'}^{+}\hat{A}_{i\sigma'}\right) - \left[\hat{A}_{i\sigma'}^{+}\hat{A}_{i\sigma'}\nabla\left(\hat{A$$

where only those terms are written down which can have non-zero convolutions. Putting this expansion into (162) and substituting all convolutions by their values according to (184), after the necessary summations one obtains

$$\hat{H} = E_0 + \sum_{ij\sigma} F_{ij} N\left(\hat{A}_{i\sigma}^+ \hat{A}_{j\sigma}\right) + \frac{1}{2} \sum_{ijkl\sigma\sigma'} (ij \mid kl) N\left(\hat{A}_{i\sigma}^+ \hat{A}_{j\sigma'}^+ \hat{A}_{l\sigma'} \hat{A}_{k\sigma}\right),$$
(191)

where

$$E_{0} = 2\sum_{i} n_{i} h_{ii} + \sum_{ij} n_{i} n_{j} \Big[2 \big(ij \,|\, ij \big) - (ij \,|\, ji) \Big]$$
(192)

and

$$F_{ij} = h_{ij} + \sum_{k} n_k \Big[2 \big(ik \mid jk \big) - \big(ik \mid kj \big) \Big].$$
(193)

Expression (192) is the well known equation for the energy in the Hartree – Fock approximation and F_{ij} are the matrix elements

$$F_{ij} = \left\langle \varphi_i \right| \hat{F} \left| \varphi_j \right\rangle$$

of the Fock operator built on the orbitals $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_{n_F}$. If these orbitals are eigenfunctions of the SCF Fock operator with eigenvalues ε_i then

$$F_{ij} = \varepsilon_i \delta_{ij}$$

and the Hamiltonian (191) becomes

$$\hat{H} = E_0 + \sum_{i\sigma} \varepsilon_i N\left(\hat{A}^+_{i\sigma}\hat{A}^-_{i\sigma}\right) + \frac{1}{2} \sum_{ijkl\sigma\sigma'} (ij|kl) N\left(\hat{A}^+_{i\sigma}\hat{A}^+_{j\sigma'}\hat{A}^-_{l\sigma'}\hat{A}^-_{k\sigma}\right).$$
(194)

This particular expression for the Hamiltonian is applicable only under the conditions mentioned. The general expression (191), however, is valid for an arbitrary orthonormal set of orbitals.

Following the same procedure one can obtain an expression for the operator \hat{S}^2 given by (175). We present the final result

$$\hat{S}^{2} = \frac{3}{4} \sum_{i\sigma} (1 - 2n_{i}) N(\hat{A}_{i\sigma}^{+} \hat{A}_{i\sigma}) + \frac{1}{4} \sum_{ij\sigma} N(\hat{A}_{i\sigma}^{+} \hat{A}_{j\sigma}^{+} \hat{A}_{j\sigma} \hat{A}_{i\sigma}) - \frac{1}{4} \sum_{ij\sigma(i\neq j)} N(\hat{A}_{i\sigma}^{+} \hat{A}_{i,-\sigma}^{+} \hat{A}_{j,-\sigma} \hat{A}_{i\sigma}) - \frac{3}{4} \sum_{i\sigma} N(\hat{A}_{i\sigma}^{+} \hat{A}_{i,-\sigma}^{+} \hat{A}_{i,-\sigma} \hat{A}_{i\sigma}) + \frac{1}{2} \sum_{ij\sigma(i\neq j)} N(\hat{A}_{i\sigma}^{+} \hat{A}_{j,-\sigma}^{+} \hat{A}_{j\sigma} \hat{A}_{i,-\sigma}).$$

$$(195)$$

The fourth sum in (195) contains terms with i = j from the third and fifth sums.

Having derived expressions for the operators \hat{S}_z and \hat{S}^2 in an appropriate form we can construct the basis vectors for the CI method which are eigenfunctions of these operators. First we note that any vector obtained as a result of the action of N_p particle and N_h hole creation operators on the vacuum state $|\Phi_0\rangle$ is an eigenvector of the operator \hat{N} with an eigenvalue $N_p - N_h + 2n_F$ which is equal to the total number of particles. By fixing this number we need consider only vectors with a definite value of the difference $N_p - N_h$. In most cases the vacuum state can be chosen in such a way that N_p is equal to N_h (the ground state of a molecule with closed shell) or differs from N_h by one (a radical).

Next we choose the electronic configuration. Let us set up the electronic configuration by selecting the orbitals corresponding to N_p particles and N_h holes irrespective of their spins. We shall denote it as $(k_1k_2k_3...k_{N_h}, m_1m_2m_3...m_{N_p})$ where k_i corresponds to the hole orbitals, and m_i numerate the particle orbitals. These numbers are supposed to be arranged in a non-decreasing order (naturally $k_{N_h} < n_F, m_1 > n_F$). Furthermore, according to the Pauli principle each number cannot occur more than once.

Now for the configuration above $(k_1k_2...,m_1m_2...)$ we construct all possible vectors as

$$\hat{A}_{k_1\sigma_1}\hat{A}_{k_2\sigma_2}\cdots\hat{A}_{m_1\sigma_1}^+\hat{A}_{m_2\sigma_2}^+\cdots |\Phi_0\rangle, \qquad (196)$$

which in the following discussion are called the primitive vectors. Each of the spin indices $\sigma_1, \sigma_2, ..., \sigma'_1, \sigma'_2, ...$ independently assumes values +1 and -1 except those cases when $k_i = k_i + 1$ and $m_i = m_{i+1}$ for which necessary $\sigma_i = -\sigma_{i+1} = 1$ and $\sigma'_i = -\sigma'_{i+1} = 1$.

Under these conditions the primitive vectors constructed form an orthonormal system. Each of them is an eigenvector of the operator \hat{S}_z with the eigenvalue

$$M_{S} = \frac{1}{2} \Big[\Big(N_{p}^{+} - N_{p}^{-} \Big) - \Big(N_{h}^{+} - N_{h}^{-} \Big) \Big],$$

where $N_p^+, N_p^-, N_h^+, N_h^-$ is the number of particle and hole operators with the spin +1 and -1 correspondingly.

To determine the necessary basis vectors one selects for each configuration all primitive vectors (196) with a given value of the difference $(N_p^+ - N_p^-) - (N_h^+ - N_h^-)$, construct a matrix of the operator \hat{S}^2 for them, and diagonalizes it. The result of the application of the operator \hat{S}^2 on the primitive vector represented at first sight as a cumbersome expression (195) is obtained by the following rules.

Rule 1. The action of the first four sums in (195) on a vector (196) reduces to a multiplication of it by a constant. Its value is equal to the value of M_s^2 plus half the sum of N_p and N_h minus the number of orbitals occupied in pairs by particles and holes with opposite spins. All diagonal elements of the matrix of the operator \hat{S}^2 will be equal to the constant found so far.

Rule 2. The remaining part of the expression for \hat{S}^2 acts on a vector (196) converting it to a sum of the vectors orthogonal to (196). Each of them differs from the initial vector by change on opposite the spin indices of two particle-particle or hole-hole operators with different spins or the particle-hole operators with equal spins. In the later case a vector enters a sum with a minus sign. It is necessary to consider all mentioned pairs of operators used to construct an initial vector except those operators which correspond in pairs to the same orbitals.

2.7.3.5. General Approach to Calculation of the Matrix Elements

Previous treatment shows that the basis vectors are linear combinations of the primitive vectors, and the operators of the important physical values reduce to three basic types:

$$\hat{\Omega}_0 = N(c), \qquad (197a)$$

$$\hat{\Omega}_{1} = \sum_{ij\sigma} Q_{ij,\sigma} N\left(\hat{A}_{i\sigma}^{+} \hat{A}_{j\sigma}\right), \qquad (197b)$$

$$\hat{\Omega}_{2} = \frac{1}{2} \sum_{ijkl\sigma\sigma'} (ij \mid kl) N \left(\hat{A}_{i\sigma}^{\dagger} \hat{A}_{j\sigma'}^{\dagger} \hat{A}_{l\sigma'} \hat{A}_{k\sigma} \right).$$
(197c)

Take two primitive vectors corresponding to the same or to different configurations

$$\left|\Phi_{1}\right\rangle = \hat{A}_{k_{1}\sigma_{1}}\hat{A}_{k_{2}\sigma_{2}}\cdots\hat{A}_{m_{1}\sigma_{1}}^{+}\hat{A}_{m_{2}\sigma_{2}}^{+}\cdots\left|\Phi_{0}\right\rangle,\tag{198a}$$

$$\left| \Phi_{2} \right\rangle = \hat{A}_{l_{1}\tau_{1}} \hat{A}_{l_{2}\tau_{2}} \cdots \hat{A}_{n_{1}\tau_{1}'}^{+} \hat{A}_{n_{2}\tau_{2}'}^{+} \cdots \left| \Phi_{0} \right\rangle.$$
(198b)

We shall calculate for them the matrix elements of each of the operators (197).

Denoting

$$\hat{R}_{1} = \hat{A}_{k_{1}\sigma_{1}}\hat{A}_{k_{2}\sigma_{2}}\cdots\hat{A}_{m_{1}\sigma_{1}'}\hat{A}_{m_{2}\sigma_{2}'}^{+}\cdots, \qquad (199a)$$

$$\hat{R}_{1}^{+} = \cdots \hat{A}_{m_{2}\sigma_{2}'} \hat{A}_{m_{1}\sigma_{1}'} \cdots \hat{A}_{k_{2}\sigma_{2}}^{+} \hat{A}_{k_{1}\sigma_{1}}^{+}, \qquad (199b)$$

$$\hat{R}_{2} = A_{l_{1}\tau_{1}}A_{l_{2}\tau_{2}}\cdots A_{n_{1}\tau_{1}'}^{+}A_{n_{2}\tau_{2}'}^{+}\cdots, \qquad (199c)$$

the matrix element of an operator $\hat{\Omega}$, any of the operators (197), may be considered as the vacuum average

$$\left\langle \Phi_{1} \middle| \hat{\Omega} \middle| \Phi_{2} \right\rangle = \left\langle \Phi_{0} \middle| \hat{R}_{1}^{\dagger} \hat{\Omega} \hat{R}_{2} \middle| \Phi_{0} \right\rangle.$$
(200)

To calculate (200), the product $\hat{R}_1^{\dagger}\hat{\Omega}\hat{R}_2$ must be reduced applying the Wick's theorems to the sum of the *N*-products. As a result of the averaging according to (180) only those terms remain which are *c*-numbers, *i.e.* those terms in which all operators in $\hat{R}_1^{\dagger}\hat{\Omega}\hat{R}_2$ enter the convolutions.

The advantage of the presentations of the physical value operators as a sum of *N*-products is now evident. Since \hat{R}_1^+ is a product of the particle and hole annihilation operators only, and \hat{R}_2^- of the creation operators only, then $\hat{R}_1^+ = N(\hat{R}_1^+)$, $\hat{R}_2^- = N(\hat{R}_2^-)$ and according to the second Wick's theorem one must consider only the convolutions between the operators \hat{R}_1^+ , $\hat{\Omega}$, and \hat{R}_2^- .

After this preliminary remark we continue the determination of the value of the matrix elements. First we find the maximum number of convolutions which can be constructed between the operators from \hat{R}_1^+ and \hat{R}_2 . This number is equal to the number of particles and hole operators in \hat{R}_1 which are repeated in \hat{R}_2 . The operators in \hat{R}_1 as well as in \hat{R}_2 may be transposed in an arbitrary way multiplying the value of the matrix element by $(-1)^{p_1}$, where p_1 is the total number of transpositions. For this reason it is convenient to order the operators in \hat{R}_1 and \hat{R}_2 first, transposing them in such a way that the repeating operators are placed in \hat{R}_1 and \hat{R}_2 in the same order to the right of the non-repeating operators. We shall assume in the following that this ordering is performed. The total number of non-repeating operators in \hat{R}_1 and \hat{R}_2 will

be denoted q. Because each of these q operators may be convoluted with one of the operators from $\hat{\Omega}$ one can state *a priori* that the matrix element $\langle \Phi_0 | \hat{R}_1^+ \hat{\Omega} \hat{R}_2 | \Phi_0 \rangle$ will not be equal to zero only for q = 0 if $\hat{\Omega} = \hat{\Omega}_0$, for q = 0,2 if $\hat{\Omega} = \hat{\Omega}_1$, and for q = 0,2,4 if $\hat{\Omega} = \hat{\Omega}_2$. We shall consider each of these cases separately. In cases when the total number of the operators in \hat{R}_1 and \hat{R}_2 is less than 2 for $\hat{\Omega} = \hat{\Omega}_1$ or less than 4 for $\hat{\Omega} = \hat{\Omega}_2$ the value of the corresponding matrix elements is obviously equal to zero.

Case 1: $\hat{\Omega} = \hat{\Omega}_0$, q = 0. The convolution which gives a non-zero result can be done in a single way convoluting in pairs the repeating operators. When \hat{R}_1 and \hat{R}_2 are correctly ordered there is always an even number of other operators between the convoluting operators. Thus, the number of transpositions required by the first Wick theorem is also even and each convolution according to (184) is equal to unity. Finally the value of the matrix element will be equal to

$$\left\langle \Phi_1 \middle| \hat{\Omega}_0 \middle| \Phi_2 \right\rangle = (-1)^{p_1} c \,. \tag{201}$$

Case 2: $\hat{\Omega} = \hat{\Omega}_1$, q = 0. In this case the vacuum average is equal to the sum of the terms each of which is the result of a convolution of two operators from $\hat{\Omega}_1$ with two equal operators from \hat{R}_1 and \hat{R}_2 . The other operators repeating in \hat{R}_1 and \hat{R}_2 , if there are any, convolute between them in pairs.

The final result is

$$\left\langle \Phi_{1} \middle| \hat{\Omega}_{1} \middle| \Phi_{2} \right\rangle = (-1)^{p_{1}} \sum_{i\sigma} \mathcal{Q}_{ii,\sigma} \left(1 - 2n_{i} \right), \tag{202}$$

where a pair of indices i, σ covers the interval met in \hat{R}_1 .

Case 3: $\hat{\Omega} = \hat{\Omega}_1$, q = 2. The single term in the expansion of $\hat{R}_1^+ \hat{\Omega} \hat{R}_2$ over the *N*-products the vacuum average of which may be different from zero is obtained in the following way. All operators from \hat{R}_1 repeating in \hat{R}_2 convolute with the corresponding operators from \hat{R}_1^+ . Two non-repeating operators convolute with the operators from $\hat{\Omega}_1$. The results is

$$\left\langle \Phi_1 \middle| \hat{\Omega}_1 \middle| \Phi_2 \right\rangle = (-1)^{p_1 + p_2} \delta_{\sigma_1 \sigma_2} Q_{i_1 i_2, \sigma_1}, \qquad (203)$$

where p_2 is the number of transpositions necessary to place in the product $\hat{R}_1 \hat{R}_2^+$ the non-repeating operator with a cross at the left of the non-repeating operator without a cross (p_2 is equal to 1 or 0), and a pair of indices i_1, σ_1 runs over the indices of the

non-repeating operator with a cross, and a pair i_2, σ_2 – without a cross in the product $\hat{R}_1 \hat{R}_2^+$.

Case 4: $\hat{\Omega} = \hat{\Omega}_2$, q = 0. For each pair of operators from \hat{R}_2 in the matrix element expression for this case there are possible four terms identical in pairs obtained by convoluting these operators and the corresponding pair of operators from \hat{R}_1^+ with four operators from $\hat{\Omega}_2$

$$\left\langle \Phi_{1} \middle| \hat{\Omega}_{2} \middle| \Phi_{2} \right\rangle = (-1)^{p_{1}} \sum_{ij\sigma\sigma'} \left[\left(ij \,|\, ij \right) - \delta_{\sigma\sigma'} \left(ij \,|\, ji \right) \right] (1 - 2n_{i}) (1 - 2n_{j}), \tag{204}$$

where a pair of indices i, σ runs in the interval met in the operators from \hat{R}_1 and a pair j, σ' covers all values of indices of the operators from \hat{R}_1 placed to the right of the operator with indices i, σ .

Case 5: $\hat{\Omega} = \hat{\Omega}_2$, q = 2. In the expansion of each of the repeating operators in \hat{R}_2 four terms identical in pairs may not be equal to zero. They are obtained by the convoluting with the operators from $\hat{\Omega}_2$ of two non-repeating operators, and one of the operators in \hat{R}_2 repeating in \hat{R}_1 , and the corresponding operator from \hat{R}_1^+ . The final result is

$$\left\langle \Phi_{1} \middle| \hat{\Omega}_{2} \middle| \Phi_{2} \right\rangle = (-1)^{p_{1}+p_{2}} \delta_{\sigma_{1}\sigma_{2}} \sum_{i\sigma} (1-2n_{i}) \Big[(ii_{1} \mid ii_{2}) - \delta_{\sigma\sigma_{1}} (ii_{1} \mid i_{2}i) \Big],$$
(205)

where a pair of indices i, σ covers all values met in the repeating operators, and a value of p_2 and indices $i_1, i_2, \sigma_1, \sigma_2$ are defined as in case 3.

Case 6: $\hat{\Omega} = \hat{\Omega}_2$, q = 4. In this last case there may not be equal to zero the four in pairs identical terms obtained by convoluting four non-repeating operators from $\hat{R}_1^+ \hat{R}_2$ with four operators from $\hat{\Omega}_2$. The result can be obtained in the following way. Let us write all non-repeating operators in the same order as they are placed in the product $\hat{R}_1 \hat{R}_2^+$ and order them in such a way that the cross operators stand to the left of the non-cross operators. Let p_3 be the number of transpositions made in order to obtain standard order

$$\hat{A}^{+}_{i_{1}\sigma_{1}}\hat{A}^{+}_{i_{2}\sigma_{2}}\hat{A}^{-}_{i_{3}\sigma_{3}}\hat{A}^{-}_{i_{4}\sigma_{4}}$$
.

Then the value of the matrix element is

$$\left\langle \Phi_{1} \middle| \widehat{\Omega}_{2} \middle| \Phi_{2} \right\rangle = (-1)^{p_{1}+p_{2}} \left[\delta_{\sigma_{1}\sigma_{4}} \delta_{\sigma_{2}\sigma_{3}} \left(i_{1}i_{2} \mid i_{4}i_{3} \right) - \delta_{\sigma_{1}\sigma_{3}} \delta_{\sigma_{2}\sigma_{4}} \left(i_{1}i_{2} \mid i_{3}i_{4} \right) \right].$$
(206)

2.7.3.6. Matrix Elements of the Physical Value Operators for Molecules and Radicals with Account of Singly and Doubly Excited Configurations as an Example of General Approach

Analytical expressions for the matrix elements of the operators are useful only for simple configurations and for the derivation of various general statements. For complex configurations it is expedient to adopt a calculation scheme given above and suitable for programming. Now we give for the case of the singly and doubly excited configurations for molecules and radicals some basis vectors which will be useful in further applications [12]. They are given in a final form, and some of them are compared with the expressions available in the literature. When deriving analytical expressions for the matrix elements we did not assume any restrictions on an orthonormal orbital set used for the construction of the configurations. We also consider some general expressions for the SCF orbitals and will show that in the case of radicals some Hamiltonian matrix elements between the ground configuration and the singly excited configurations vanish. Finally, we shall give formulae for the calculation of some molecular and radical properties by the CI method such as electronic density of atoms, bond orders, transition moments, and spin distribution.

2.7.3.6.1. Basis Vectors

Consider the singly excited configurations (k,m) of a molecule with closed shells in the ground state. In this case $N_p = N_h = 1$ and four primitive vectors are possible:

$$\left|\Phi_{1}\right\rangle = \hat{A}_{k+}\hat{A}_{m+}^{+}\left|\Phi_{0}\right\rangle , \left|\Phi_{3}\right\rangle = \hat{A}_{k-}\hat{A}_{m+}^{+}\left|\Phi_{0}\right\rangle, \qquad (207a)$$

$$\left|\Phi_{2}\right\rangle = \hat{A}_{k-}\hat{A}_{m-}^{+}\left|\Phi_{0}\right\rangle, \quad \left|\Phi_{4}\right\rangle = \hat{A}_{k+}\hat{A}_{m-}^{+}\left|\Phi_{0}\right\rangle. \tag{207b}$$

Using the rules of #4 above one obtains

$$\hat{S}^{2} |\Phi_{1}\rangle = |\Phi_{1}\rangle - |\Phi_{2}\rangle, \ \hat{S}^{2} |\Phi_{3}\rangle = 2|\Phi_{3}\rangle,$$
(208a)

$$\hat{S}^{2} |\Phi_{2}\rangle = -|\Phi_{1}\rangle + |\Phi_{2}\rangle, \ \hat{S}^{2} |\Phi_{4}\rangle = 2|\Phi_{4}\rangle.$$
(208b)

As expected, the matrix of the operator \hat{S}^2 reduces to one two-row and two onerow matrices. By diagonalizing the former one obtains the following normalized basis vectors

$$\left| {}^{1}\Psi_{1} \right\rangle = \frac{1}{\sqrt{2}} \left(\left| \Phi_{1} \right\rangle + \left| \Phi_{2} \right\rangle \right), \quad M_{S} = 0, \quad S = 0,$$
 (209a)

$$|{}^{3}\Psi_{1}\rangle = \frac{1}{\sqrt{2}} \left(|\Phi_{1}\rangle - |\Phi_{2}\rangle \right), \quad M_{s} = 0, \quad S = 1,$$
 (209b)

$$|{}^{3}\Psi_{2}\rangle = |\Phi_{3}\rangle, \qquad M_{S} = 1, \quad S = 1,$$
 (209c)

$$|{}^{3}\Psi_{3}\rangle = |\Phi_{4}\rangle, \qquad M_{S} = -1, \quad S = 1.$$
 (209d)

There are unusual signs in the first two vectors.

In the case of a radical the vacuum state $|\Phi_0\rangle$ is chosen as the closed shell of its ground state. Then one kind of the basis vectors is obviously

$$\left|{}^{2}\Psi_{1}\right\rangle = \hat{A}_{m+}^{+} \left|\Phi_{0}\right\rangle.$$

$$(210)$$

Now we consider the basis vectors for the configuration (k,mn) of a radical limiting of ourselves to the vectors with $M_s = 1/2$. The corresponding primitive vectors are

$$|\Phi_{5}\rangle = \hat{A}_{k-}\hat{A}_{m+}^{+}\hat{A}_{n-}^{+}|\Phi_{0}\rangle,$$
 (211a)

$$|\Phi_{6}\rangle = \hat{A}_{k+}\hat{A}_{m+}^{+}\hat{A}_{n+}^{+}|\Phi_{0}\rangle,$$
 (211b)

$$\left|\Phi_{7}\right\rangle = \hat{A}_{k-}\hat{A}_{m-}^{+}\hat{A}_{n+}^{+}\left|\Phi_{0}\right\rangle.$$
(211c)

When n = m, the vector $|\Phi_6\rangle$ vanishes, and the vector $|\Phi_5\rangle$ differs from $|\Phi_7\rangle$ only by sign and becomes another basis vector

$$|^{2}\Psi_{2}\rangle = \hat{A}_{k-}\hat{A}_{m+}^{+}\hat{A}_{m-}^{+}|\Phi_{0}\rangle.$$
 (212)

Let be $n \neq m$. Writing

$$\hat{S}^2 \left| \Phi_i \right\rangle = \sum_{j=5}^7 S_{ij}^2 \left| \Phi_j \right\rangle, \tag{213}$$

and using the rules of #4 one obtains a matrix

$$S^{2} = \begin{bmatrix} 7/4 & -1 & 1\\ -1 & 7/4 & -1\\ 1 & -1 & 7/4 \end{bmatrix}.$$
 (214)

Diagonalizing this matrix we obtain eigenvector (1, -1, 1) corresponding to an eigenvalue 5/4 and two vectors (1, -1, -2) and (1, 1, 0) for degenerated eigenvalue 3/4. Therefore the normalized doublet and quartet basis vectors are, respectively,

$$\left|{}^{2}\Psi_{3}\right\rangle = \frac{1}{\sqrt{6}} \left(\left|\Phi_{5}\right\rangle - \left|\Phi_{6}\right\rangle - 2\left|\Phi_{7}\right\rangle\right),\tag{215a}$$

$$\left|{}^{2}\Psi_{4}\right\rangle = \frac{1}{\sqrt{2}} \left(\left|\Phi_{5}\right\rangle + \left|\Phi_{6}\right\rangle\right) \tag{215b}$$

and

$$\left|{}^{4}\Psi_{1}\right\rangle = \frac{1}{\sqrt{3}} \left(\left|\Phi_{5}\right\rangle - \left|\Phi_{6}\right\rangle + \left|\Phi_{7}\right\rangle\right). \tag{216}$$

The doublet basis vectors are determined up to a unitary transformation. We have chosen the vectors (215) to correspond to those found in the literature.

2.7.3.6.2. Elements of the CI matrix

The final expressions for the matrix elements of the Hamiltonian (31) obtained by using the results of # 5 above are now given.

Molecule

$$\left\langle \Phi_{0} \middle| \hat{H} \middle|^{1,3} \Phi_{1} \right\rangle = -f \sqrt{2} F_{km}, \qquad (217)$$

$$\left<^{1,3}\Phi_{1}'\left|\hat{H}\right|^{1,3}\Phi_{1}\right> = \delta_{kk'}\delta_{mm'}E_{0} + \delta_{kk'}F_{m'm} - \delta_{mm'}F_{kk'} + 2f(km'|mk') - (km'|k'm), \quad (218)$$

where

$$f = \begin{cases} 0 & \text{for } S = 1, \\ 1 & \text{for } S = 0. \end{cases}$$

Here and in the following expressions the primes are used for numbers of those particles and holes which constitute the basis vectors placed at the left of the Hamiltonian.

Radical

$$\left\langle {}^{2}\Phi_{1}^{\prime}\left|\hat{H}\right|{}^{2}\Phi_{1}\right\rangle = \delta_{mm^{\prime}}E_{0} + F_{m^{\prime}m}, \qquad (219)$$

$$\left< \left< {}^{2} \Phi_{2}' \right| \hat{H} \right| {}^{2} \Phi_{2} \right> = \delta_{kk'} \delta_{mm'} E_{0} + \delta_{mm'} (2 \delta_{kk'} F_{m'm} - F_{kk'}) + \delta_{kk'} (m'm' \mid mm) + \delta_{mm'} [(km' \mid mk') - 2(km' \mid k'm)],$$
(220)

$$\left\langle {}^{2} \Phi_{3}' \left| \hat{H} \right| {}^{2} \Phi_{3} \right\rangle = \delta_{kk'} (\delta_{mm'} \delta_{nn'} - \delta_{mn'} \delta_{nm'}) E_{0} + \frac{1}{2} \{ \delta_{kk'} (2 \delta_{mm'} F_{n'n} + 2 \delta_{nn'} F_{m'm} + \delta_{mn'} F_{m'n} + \delta_{nm'} F_{n'm}) - F_{kk'} (2 \delta_{mm'} \delta_{nn'} + \delta_{mn'} \delta_{nm'}) + \delta_{kk'} [2(m'n' \mid mn) + (m'n' \mid nm)] - 2 \delta_{mm'} (kn' \mid k'n) + \delta_{nn'} [3(m'k \mid k'm) - 2(m'k \mid mk')] - \delta_{mn'} (m'k \mid nk') - \delta_{nm'} (n'k \mid mk') \},$$

$$(221)$$

$$\left\langle {}^{2}\Phi_{4}' \left| \hat{H} \right| {}^{2}\Phi_{4} \right\rangle = \delta_{kk'}(\delta_{mm'}\delta_{nn'} - \delta_{mn'}\delta_{nm'})E_{0} + \frac{1}{2} \{\delta_{kk'}(2\delta_{mm'}F_{n'n} + 2\delta_{nn'}F_{m'm} - \delta_{mn'}F_{m'n} - \delta_{nm'}F_{n'm}) - F_{kk'}(2\delta_{mm'}\delta_{nn'} - \delta_{mn'}\delta_{nm'}) + \delta_{kk'}[2(m'n' | mn) - (m'n' | nm)] + 2\delta_{mm'}[2(kn' | nk') - (kn' | k'n)] + \delta_{nn'}[(m'k | k'm) - 2(m'k | mk')] + \delta_{mn'}[(m'k | nk') - 2(m'k | k'n)] + \delta_{nn'}[(m'k | mk') - 2(n'k | k'm)] \},$$

$$(222)$$

$$\left\langle {}^{2}\Phi_{1}^{\prime}\left|\hat{H}\right|{}^{2}\Phi_{2}\right\rangle = \delta_{mm^{\prime}}F_{km} + (km^{\prime}\mid mm), \qquad (223)$$

$$\left<^{2} \Phi_{1}' \left| \hat{H} \right|^{2} \Phi_{3} \right> = \sqrt{\frac{3}{2}} \delta_{nm'} F_{km} + (km' \mid mn),$$
 (224)

$$\left<^{2} \Phi_{1}' \left| \hat{H} \right|^{2} \Phi_{4} \right> = \frac{1}{\sqrt{2}} \left[2 \delta_{mm'} F_{kn} - \delta_{nm'} F_{km} + 2(km' | nm) - (km' | mn) \right],$$
(225)

$$\left<^{2}\Phi_{2}'\right|\hat{H}\right|^{2}\Phi_{3}\right> = \frac{1}{\sqrt{6}}\left\{\delta_{kk'}\left[(m'm'\mid mn) - (m'm'\mid nm)\right] + 2\delta_{mm'}(km'\mid nk') - 2\delta_{nm'}(m'k\mid k'm)\right\},\tag{226}$$

$$\left\langle {}^{2}\Phi_{2}' \left| \hat{H} \right| {}^{2}\Phi_{4} \right\rangle = \frac{1}{\sqrt{2}} \left\{ \delta_{kk'} (\delta_{mm'}F_{m'n} + \delta_{nm'}F_{m'm}) - \delta_{nm'}\delta_{mm'}F_{kk'} + \delta_{kk'}(m'm' \mid mn) + \delta_{mm'} \left[2(km' \mid nk') - (km' \mid k'n) \right] - \delta_{nm'} \left[(m'k \mid k'm) + (m'k \mid mk') \right] \right\},$$

$$(227)$$

$$\left\langle {}^{2} \Phi_{3}' \left| \hat{H} \right| {}^{2} \Phi_{4} \right\rangle = \frac{1}{\sqrt{3}} \left\{ \delta_{kk'} (\delta_{mm'} F_{n'n} + \delta_{nn'} F_{m'm} - \delta_{mn'} F_{n'n} - \delta_{nm'} F_{n'm}) - F_{kk'} (\delta_{mm'} \delta_{nn'} - \delta_{mn'} \delta_{nm'}) + \right. \\ \left. + \left. \delta_{kk'} [(m'n' \mid mn) - (m'n' \mid nm)] + \delta_{mm'} [2(kn' \mid nk') - (kn' \mid k'n)] + \right. \\ \left. + \left. \delta_{nn'} [(m'k \mid k'm) - (m'k \mid mk')] + \right. \\ \left. \delta_{nn'} [(m'k \mid k'm) - (m'k \mid mk')] + \left. \delta_{nn'} [(m'k \mid nk') - 2(m'k \mid k'n)] + \right. \\ \left. + \left. \delta_{nm'} [(n'k \mid mk') - (n'k \mid k'm)] \right\}.$$

Formula (219) is well known, *e.g.* in [13, 14]. Particular cases of some of the general expressions above can be found in the quantum chemistry literature, *e.g.* formula (220) for k' = k, m' = m and (222) for k' = k, m' = m, n' = n in [13], formula (223) for $m' \neq m$ in [13] and for m' = m in [14], formula (224) for m' = m in [14].

2.7.3.6.3. Brillouin Theorem and its Analog for Radicals

The orthonormal orbitals for which the first variation of energy E_0 of the vacuum state $|\Phi_0\rangle$ vanishes according to [15] satisfy the operator equation

$$\hat{F}\hat{P}_1 - \hat{P}_1\hat{F} = 0, \qquad (229)$$

where \hat{F} is the Fock operator, and \hat{P}_1 is the Fock – Dirac density operator

$$\hat{P}_{1} = \sum_{l=1}^{n_{F}} \left| \varphi_{l} \right\rangle \left\langle \varphi_{l} \right|.$$
(230)

Calculating the matrix element of (229) over the orbitals φ_k and φ_m and using projection properties of the operator \hat{P}_1 one obtains from (217) if initial orbitals satisfy equation (229) that

$$\left\langle \Phi_{0} \middle| \hat{H} \middle|^{1} \Phi_{1} \right\rangle = 0.$$
(231)

The conditions used in deriving (231) are more comprehensive than the conditions of the well known Brillouin theorem [16, 17]. The content of this theorem

is expressed by (231) if configurations are built on the SCF eigenfunctions of the operator \hat{F} .

In the case of a radical the orbitals for which the first variation of the energy of the configuration (-,m) vanishes satisfy the operator equation [19]

$$\hat{F}_1\hat{P}_1 - \hat{P}_1\hat{F}_1 + \hat{F}_2\hat{P}_2 - \hat{P}_2\hat{F}_2 = 0, \qquad (232)$$

where \hat{P}_1 is defined by (230), \hat{P}_2 is a projection operator for the orbital φ_m , and the operators \hat{F}_1 and \hat{F}_2 for a semi-open shell are determined as

$$\hat{F}_1 = \hat{F} + \hat{J}_0 - \frac{1}{2}\hat{K}_0, \qquad (233)$$

$$\hat{F}_2 = \frac{1}{2}\hat{F} + \hat{J}_0 - \hat{K}_0 \tag{234}$$

with the Fock operator \hat{F} built on the vacuum orbitals, and Coulomb \hat{J}_0 and exchange \hat{K}_0 operators are built on the orbital φ_m .

Let us write down the expressions for the matrix elements (219) for $m' \neq m$ and (223), (225) for $m' \neq m, n \neq m$

$$\left<^{2}\Phi_{1}\left|\hat{H}\right|^{2}\Phi_{1}^{\prime}\right> = F_{mm^{\prime}},\tag{235}$$

$$\left<^{2}\Phi_{1}\left|\hat{H}\right|^{2}\Phi_{2}\right> = F_{km} + (\hat{J}_{0})_{km},$$
(236)

$$\left<^{2}\Phi_{1}\left|\hat{H}\right|^{2}\Phi_{4}\right> = \sqrt{2}[F_{kn} + (\hat{J}_{0})_{kn} - \frac{1}{2}(\hat{K}_{0})_{kn}],$$
(237)

where the last two matrix elements are expressed over the matrix elements of the operators \hat{J}_0 and \hat{K}_0 on the orbitals φ_i .

Using projection properties of the operators \hat{P}_1 and \hat{P}_2

$$\hat{P}_{1}|\varphi_{k}\rangle = |\varphi_{k}\rangle, \quad \hat{P}_{1}|\varphi_{m}\rangle = \hat{P}_{1}|\varphi_{m'}\rangle = \hat{P}_{1}|\varphi_{n}\rangle = 0, \quad (238a)$$

$$\hat{P}_{2}|\varphi_{m}\rangle = |\varphi_{m}\rangle, \hat{P}_{2}|\varphi_{k}\rangle = \hat{P}_{2}|\varphi_{m'}\rangle = \hat{P}_{2}|\varphi_{n}\rangle = 0$$
(238b)

from equation (232) one obtains

$$\langle \varphi_m | \hat{F}_2 | \varphi_{m'} \rangle = 0,$$

$$\langle \varphi_k | \hat{F}_1 - \hat{F}_2 | \varphi_m \rangle = 0,$$

$$\langle \varphi_k | \hat{F}_1 | \varphi_n \rangle = 0.$$

$$(239)$$

Substituting \hat{F}_1 and \hat{F}_2 according (233) to (239) and using the identity

$$\hat{J}_{0}|\varphi_{m}\rangle \equiv \hat{K}_{0}|\varphi_{m}\rangle \tag{240}$$

we see that relations (239) express that the right sides of the equations (235) - (237) are zero.

Thus, the following statement was proved. If the configurations are built on an orthonormal orbital set for which the first variation of an energy of the configuration (-,m) vanishes, then the Hamiltonian matrix elements between this configuration and any of the configurations (-,m') with $m' \neq m$, configuration (k,mm), and of the vector (215b) of the configuration (k,mn) with $n \neq m$ are equal to zero.

Generally the equation (232) has many solutions but the statement proved so far is valid for any particular solution irrespective of the procedure of its derivation. Thus, this statement remains valid for the SCF orbitals obtained by the Roothaan operator [19] or by the use of the one-electron Hamiltonian for one open shell [20].

2.7.3.6.4. Calculation of Certain One-particle Properties

The wave function for the state λ in the CI method is expanded over the basis vectors

$$\left|\lambda\right\rangle = \sum_{q} X_{q\lambda} \left|\psi_{q}\right\rangle \tag{241}$$

and the MO φ_i used to construct the primitive vectors are usually expressed as linear combination of orthonormal AO

$$\varphi_i = \sum_{\mu} C_{\mu i} \chi_{\mu} \quad . \tag{242}$$

Observable physical properties are determined by the matrix elements mostly of the one-particle operator \hat{Q}

$$\left\langle \kappa \left| \hat{Q} \right| \lambda \right\rangle = \sum_{pq} X_{p\kappa}^* X_{q\lambda} \left\langle \psi_p \left| \hat{Q} \right| \psi_q \right\rangle.$$
(243)

Thus, one first needs to calculate the matrix elements of \hat{Q} on the basis vectors.

If \hat{Q} is a spin-free operator, analytical expressions for the matrix elements $\langle \psi_p | \hat{Q} | \psi_q \rangle$ for the configurations considered so far are obtained directly from the Hamiltonian matrix elements (217) – (228) by ignoring two-electron terms and changing F_{ij} to Q_{ij} and F_0 to an average value Q_0 of the operator \hat{Q} in the vacuum state. In particular, for the calculation of the electronic density on atoms $P_{\mu\mu}^{\lambda\lambda}$ and bond orders $P_{\mu\nu}^{\lambda\lambda}$ in a state λ as well as transition electronic density on atoms $P_{\mu\mu}^{\kappa\lambda}$ corresponding to a transition from state κ to state λ one must take $C_{\mu i}^* C_{\mu j}$ and correspondingly $C_{\mu i}^* C_{\nu j} \equiv P_{ij}$ instead of Q_{ij} and Q_0 must be put equal to $2\sum_{i=1}^{n_F} C_{\mu i}^* C_{\nu i}$.

In the zero differential overlap approximation a component of the transition moment are determined through corresponding atomic coordinates and transition density, for example:

$$\mu_{\chi}^{\kappa\lambda} = \sum_{\nu} \chi_{\nu} P_{\nu\nu}^{\kappa\lambda}.$$
(244)

When calculating the spin density $\rho_{\mu\nu}^{\lambda}$ in a state λ one meets with an operator \hat{Q} which according to formula (172) depends on the spin variables being diagonal over them. We give final expressions for the matrix elements needed to calculate the spin density denoting

$$C^*_{\mu i}C_{\nu j} \equiv P_{ij}, \qquad (245)$$

namely:

$$\left<^{3}\Psi_{1}'\right|2\hat{S}_{z}\left|^{3}\Psi_{1}\right> = \delta_{kk'}P_{m'm} + \delta_{mm'}P_{kk'},\tag{246}$$

$$\left<^{2} \Psi_{1}^{\prime} \left| 2 \hat{S}_{z} \right|^{2} \Psi_{1} \right> = P_{m^{\prime}m}$$
(247)

$$\left<^{2} \Psi_{2}^{\prime} \left| 2 \hat{S}_{z} \right|^{2} \Psi_{2} \right> = \delta_{mm^{\prime}} P_{kk^{\prime}}$$

$$(248)$$

$$\left<^{2}\Psi_{3}'\left|2\hat{S}_{z}\right|^{2}\Psi_{3}\right> = \frac{1}{6}\left[\delta_{kk'}(4\delta_{mm'}P_{n'n} - 2\delta_{nn'}P_{m'm} - \delta_{mn'}P_{m'n} - \delta_{nm'}P_{n'm}) - P_{kk'}(4\delta_{mm'}\delta_{nn'} - 5\delta_{nn'}\delta_{nm'})\right], \quad (249)$$

$$\left<^{2}\Psi_{4}'\right|2\hat{S}_{z}\right|^{2}\Psi_{4}\right> = \frac{1}{2}\left[\delta_{kk'}(2\delta_{nn'}P_{m'm} - \delta_{mn'}P_{m'n} - \delta_{nm'}P_{n'm}) - P_{kk'}(\delta_{mm'}\delta_{nn'} - \delta_{mn'}\delta_{nm'})\right], \quad (250)$$

$$\left<^{2} \Psi_{1}^{\prime} \left| 2 \hat{S}_{z} \right|^{2} \Psi_{2} \right> = -\delta_{mm^{\prime}} P_{km}$$

$$\tag{251}$$

$$\left\langle {}^{2}\Psi_{1}^{\prime} \middle| 2\hat{S}_{z} \middle| {}^{2}\Psi_{3} \right\rangle = -\frac{1}{\sqrt{6}} (2\delta_{mm^{\prime}}P_{kn} + \delta_{nm^{\prime}}P_{km})$$
(252)

$$\left\langle {}^{2}\Psi_{1}^{\prime} \middle| 2\hat{S}_{z} \middle| {}^{2}\Psi_{4} \right\rangle = -\frac{1}{\sqrt{2}} \delta_{nm^{\prime}} P_{km}$$
(253)

$$\left\langle {}^{2}\Psi_{2}^{\prime} \left| 2\hat{S}_{z} \right| {}^{2}\Psi_{3} \right\rangle = \frac{1}{\sqrt{6}} \left[\delta_{kk^{\prime}} (\delta_{mm^{\prime}} P_{m^{\prime}n} - \delta_{nm^{\prime}} P_{m^{\prime}m}) + 3P_{kk^{\prime}} \delta_{mm^{\prime}} \delta_{nm^{\prime}} \right], \tag{254}$$

$$\left\langle {}^{2}\Psi_{2}^{\prime} \left| 2\hat{S}_{z} \right| {}^{2}\Psi_{4} \right\rangle = \frac{1}{\sqrt{2}} \left[\delta_{kk^{\prime}} (-\delta_{mm^{\prime}} P_{m^{\prime}n} + \delta_{nm^{\prime}} P_{m^{\prime}m}) + P_{kk^{\prime}} \delta_{mm^{\prime}} \delta_{nm^{\prime}} \right], \tag{255}$$

$$\left<^{2} \Psi_{3}' \left| 2\hat{S}_{z} \right|^{2} \Psi_{4} \right> = \frac{1}{\sqrt{12}} \left[\delta_{kk'} (-\delta_{mn'} P_{m'n} + 3\delta_{nm'} P_{n'm}) + P_{kk'} (2\delta_{mm'} \delta_{nn'} + \delta_{mn'} \delta_{nm'}) \right].$$
(256)

The expression for ${}^{3}\rho_{\mu\mu}^{\lambda}$ derived in [9, 21] by the determinantal method is obtained from (246) in a way described above.

2.7.3.7. Exact Solution for a Seven-electron System Using Full CI

General approach to calculation of the CI matrix elements (# 5 above) was also used to perform full CI computation which gives an exact solution for a model Hamiltonian used. The full CI calculation was done for π -electronic model of the benzyl radical containing seven π -electrons. The reason why just the benzyl radical was chosen to perform such a labor-consuming full CI computation is connected with a still not-resolved discrepancy between computed π -spin density distribution in benzyl radical and its ESR proton splitting well studied experimentally [22, 23]. This being the situation when it seems desirable to examine the different characteristics of the ground state of benzyl radical as the approximation for the wave function is improved and approaches an exact eigenfunction of a given π -electronic Hamiltonian. We focus in this review only on technique how the restricted up to the full CI calculations were practically performed.

For a π -electronic shell of benzyl radical we used the traditional model based on the zero differential overlap approximation. Introducing creation $\hat{a}_{\mu\sigma}^{+}$ and annihilation $\hat{a}_{\mu\sigma}$ operators for an electron in atomic state μ with the spin σ and using the second quantization representation, the corresponding Hamiltonian is

$$\hat{H} = \sum_{\mu\nu\sigma} h^{core}_{\mu\nu} \hat{a}^{+}_{\mu\sigma} \hat{a}_{\nu\sigma} + \frac{1}{2} \sum_{\mu\nu\sigma\sigma'} \gamma_{\mu\nu} \hat{a}^{+}_{\mu\sigma} \hat{a}^{+}_{\nu\sigma'} \hat{a}_{\nu\sigma'} \hat{a}_{\mu\sigma}, \qquad (257)$$

where $h_{\mu\nu}^{core}$ are so called core integrals, and $\gamma_{\mu\nu}$ – electron repulsion integrals of π -electronic theory. Indexes μ and ν run over all AOs (in our case from 1 to 7), and spin indexes σ and σ' take values +1/2 or -1/2. Regular model of the benzyl radical with standard CC bond length equal to 1.4 Å was used. All data which define the Hamiltonian (257) completely can be find in [22]. Full CI was also performed for "equillibrium" model of the benzyl radical [23] (Appendix II-7).

Now it is proper for computations to pass from AOs to MOs. Formally, this can be done by the introduction of creation $\hat{a}_{\mu\sigma}^+$ and annihilation $\hat{a}_{\mu\sigma}$ operators for electrons in molecular states through the canonical transformation

$$\hat{a}_{\mu\sigma} = \sum_{i} C_{\mu i} \hat{A}_{i\sigma} , \quad \hat{a}^{+}_{\mu\sigma} = \sum_{i} C^{*}_{\mu i} \hat{A}^{+}_{i\sigma} , \qquad (258)$$

where $C_{\mu i}$ are expansion coefficients of MO *i* over AOs. It is necessary that these expansion coefficients form a unitary matrix. Thus, the MOs will be orthonormalized

and the commutation properties of the operators $\hat{A}_{i\sigma}^{+}$ and $\hat{A}_{i\sigma}$ will have the standard form.

Substituting (258) into (257) one obtains

$$\hat{H} = \sum_{ij\sigma} h_{ij} \hat{A}^{+}_{i\sigma} \hat{A}_{j\sigma} + \frac{1}{2} \sum_{ijkl\sigma\sigma'} (ij \mid kl) \hat{A}^{+}_{i\sigma} \hat{A}^{+}_{j\sigma'} \hat{A}_{l\sigma'} \hat{A}_{k\sigma}, \qquad (259)$$

where

$$h_{ij} = \sum_{\mu\nu} C^*_{\mu i} C_{\nu j} h^{core}_{\mu\nu} , \qquad (260)$$

$$(ij | kl) = \sum_{\mu\nu} C^*_{\mu i} C_{\mu k} C^*_{\nu j} C_{\nu l} \gamma_{\mu\nu}.$$
(261)

In our computations the Hamiltonian (259) was taken as initial one. For the MOs entering (260) and (261) we have chosen those which minimize the energy of the ground configuration of benzyl. The corresponding orbital coefficients computed by the SCF method for an open shell configuration [9] are shown in Table 6.

Choice of these orbitals seems to be most natural providing conservation of the alternant properties for the full as well as for certain truncated configurational sets. These orbitals possess proper symmetry and some of the CI matrix elements are zero [12] due to relations analogous to Brilloiun's theorem. It should be noted that the results obtained with full CI are invariant to the choice of the basis orbitals [1].

Table 6 SCF open shell MO coefficients $C_{\mu i}$ of benzyl radical*

$\mu \setminus i =$	1	2	3	4
1	0.465960	0.531866	0	0
2	0.414531	0.201041	-0.5	-0.274759
3	0.376086	-0.329484	-0.5	0
4	0.356471	-0.592641	0	0.208348
7	0.171045	0.260654	0	0.897555

* Remaining coefficients are determined by symmetry of MOs and due to alternant properties of benzyl radical.

2.7.3.7.1. Configurations and Details of Computation

In the framework of the CI method the wave function is improved simply by extension of the configurational set. With a full set of configurations, the number of which is finite in our case, one obtains an exact eigenfunction for a given model Hamiltonian. The theory of the CI method is well known [1]. The wave function is expanded in Slater determinants. The expansion coefficients are determined by diagonalization of the CI matrix. Its order can be lowered essentially if instead of single Slater determinants their orthonormal linear combinations of proper symmetry and multiplicity are used. We utilized this general scheme using the second quantization formalism described above successively, which is equivalent to the traditional determinantal Slater approach.

The ground state configuration of benzyl has symmetry ${}^{2}B_{2}$. In the π -electron approximation there are 212 excited configurations of the same symmetry. The distribution of these with the multiplicity of the excitation and with the number of unpaired electrons is given in Table 7.

For each configuration one can form one or more orthonormal doublet basis vectors corresponding to a positive projection of the spin. Construction of such single vector for the configuration $(i)^2(j)^2(k)^2(l)^1$ is simple. This vector corresponds to a single Slater determinant and is written as

$$A_{i\alpha}^{+}A_{i\beta}^{+}A_{j\alpha}^{+}A_{j\beta}^{+}A_{k\alpha}^{+}A_{k\beta}^{+}A_{l\alpha}^{+}\left|0\right\rangle,$$
(262)

Table 7

where $|0\rangle$ is the vacuum state, and indices α and β denote values +1/2 and -1/2 of the spin variable σ .

Number of excited configurations for the benzyl radical
depending on their type
with corresponding number of the basis vectors (in parenthesis).

Number of	Multiplicity of excitation								
electrons	1	2	3	4	5	6			
1	4(4)	21(21)	24(24)	33(33)	12(12)	5(5)			
3	5(10)	14(28)	36(72)	22(44)	13(26)				
5	_	5(25)	8(40)	9(45)	_	_			
7	_	_	1(14)	_	_	_			
Σ	9(14)	40(74)	69(150)	64(122)	25(38)	5(5)			

The configuration $(i)^2(j)^2(k)^1(l)^1(m)^1$ with three unpaired electrons gives rise to three vectors of type (262) with $M_s = +1/2$:

$$A_{i\alpha}^{+}A_{i\beta}^{+}A_{j\alpha}^{+}A_{j\beta}^{+} \times \begin{cases} A_{k\alpha}^{+}A_{l\alpha}^{+}A_{m\beta}^{+} \left| 0 \right\rangle \\ A_{k\alpha}^{+}A_{l\beta}^{+}A_{m\alpha}^{+} \left| 0 \right\rangle \\ A_{k\beta}^{+}A_{l\alpha}^{+}A_{m\alpha}^{+} \left| 0 \right\rangle \end{cases}$$
(263)

A linear combination of these configurations is written symbolically as

$$C_1 \alpha \alpha \beta + C_2 \alpha \beta \alpha + C_3 \beta \alpha \alpha \,. \tag{264}$$

Table 8

Two sets of coefficients $(1/\sqrt{6}, 1/\sqrt{6}, -2/\sqrt{6})$ and $(1/\sqrt{2}, -1/\sqrt{2}, 0)$ give the two orthonormal doublet basis vectors.

For configurations with five and seven unpaired electrons the number of different spin-configurations with $M_s = +1/2$ is equal to 10 and 35, and the number of possible mutually orthogonal basis vectors is equal to 5 and 14. The corresponding sets of coefficients in the linear combination of type (264) obtained by the VB method [24] with subsequent orthogonalization are collected in Table 8. For convenience of listing these vectors are not normalized.

Expansion coefficients of all 35 basis vectors with seven unpaired electrons over spin-configurations can be found in Table 9 [22].

five unpaired electrons over spin-configuration										
Basis vectors										
								0 0 -1 -1		
0	0	1	1	1						
2	0	0	0	-1						
-2	0	0	0	-1						
0	0	-1	1	-1						
-1	1	1	0	0						
1	-1	1	0	0						
-1	-1	0	-1	0						
1	1	0	-1	0						
0	0	-1	1	1						
	$ \begin{array}{c} 0 \\ 0 \\ 2 \\ -2 \\ 0 \\ -1 \\ 1 \\ -1 \\ 1 \\ 0 \\ \end{array} $	$\begin{array}{c c} \text{Etrons over} \\ \text{Bas} \\ \hline 0 & 0 \\ \hline 0 & 0 \\ \hline 2 & 0 \\ \hline -2 & 0 \\ \hline 0 & 0 \\ \hline -1 & 1 \\ \hline 1 & -1 \\ \hline 1 & -1 \\ \hline 1 & 1 \\ \hline 0 & 0 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	etrons over spin-confBasis vectors00 -1 -1 00112000 -2 000 -2 00000 -1 1 -1 1101 -1 10110 -1 110 -1 00 -1 1						

		1 4010 0
	Expansion coefficients	of the basis vectors
with	five unpaired electrons	over spin-configurations

The number of possible doublet basis vectors corresponding to different types of configurations is indicated in parenthesis in Table 7. The total number of basis vectors related to singly excited configurations of symmetry ${}^{2}B_{2}$ is equal to 14,

doubly – to 74, triply – to 150, quadruply – to 122, quintuply – to 38, and sextuply – to 5.

Computations were performed with seven sets of basis vectors – G, I, II, III, IV, V, and F. Set G represents only the ground state configuration of benzyl. Each of the other sets was extended compared with previous one at the expense of the basis vectors corresponding to configurations of the next higher order of excitation. Thus the size of the configurational sets used was equal to 1, 15, 89, 239, 361, and 404 correspondingly. Set F with 404 configurations corresponds to the wave function with full CI.

In order to perform CI computations one usually finds analytical expressions for matrix elements of the Hamiltonian over the basis vectors of different types. In our case this traditional way is not acceptable for most of the expressions to be programmed are cumbersome and the number of them is too large.

We rejected a derivation of the analytical expressions for the Hamiltonian matrix elements and entrusted this job to a computer at an early stage. To do this it was necessary to program simple rules for calculation of the matrix elements in the second quantization representation which follow from Wick's theorems and are equally good for configurations of arbitrary complexity. Necessary rules are given in # 5 above.

Table 9

Spin-conf	Basis vectors													
ααααβββ	-4	4	0	0	0	0	0	0	0	0	0	0	0	0
αααβαββ	1	-1	1	1	1	0	0	0	0	1	1	0	0	0
ααβααββ	1	-1	1	-1	-1	0	0	0	0	1	-1	0	0	0
αβαααββ	1	-1	-1	1	-1	0	0	0	0	-1	0	1	0	0
βααααββ	1	-1	-1	-1	1	0	0	0	0	-1	0	-1	0	0
αααββαβ	1	-1	1	-1	-1	0	0	0	0	-1	1	0	0	0
ααβαβαβ	1	-1	1	1	1	0	0	0	0	-1	-1	0	0	0
αβααβαβ	1	-1	-1	-1	1	0	0	0	0	1	0	1	0	0
βαααβαβ	1	-1	-1	1	-1	0	0	0	0	1	0	-1	0	0
ααββααβ	6	2	-2	0	0	0	0	0	0	0	0	0	0	0
αβαβααβ	-4	0	0	0	0	1	1	0	0	0	-1	-1	0	0
βααβααβ	_4	0	0	0	0	-1	-1	0	0	0	-1	1	0	0
αββαααβ	_4	0	0	0	0	-1	-1	0	0	0	1	-1	0	0
βαβαααβ	-4	0	0	0	0	1	1	0	0	0	1	1	0	0
ββααααβ	6	2	2	0	0	0	0	0	0	0	0	0	0	0

Expansion coefficients of the basis vectors with seven unpaired electrons over spin-configurations

αααβββα	1	-1	-1	0	0	1	-1	0	0	0	-1	0	1	0
ααβαββα	1	-1	-1	0	0	-1	1	0	0	0	1	0	1	0
αβααββα	1	-1	1	0	0	0	0	1	1	0	0	-1	-1	0
βαααββα	1	-1	1	0	0	0	0	-1	-1	0	0	1	-1	0
ααββαβα	-4	0	0	0	0	0	0	1	-1	-1	0	0	-1	0
αβαβαβα	1	1	0	-1	0	-1	0	-1	0	0	0	0	0	1
βααβαβα	1	1	0	0	-1	0	1	0	1	0	0	0	0	-1
αββααβα	1	1	0	0	1	1	0	-1	0	0	0	0	0	-1
βαβααβα	1	1	0	1	0	0	-1	0	1	0	0	0	0	1
ββαααβα	_4	0	0	0	0	0	0	1	-1	1	0	0	1	0
ααβββαα	_4	0	0	0	0	0	0	-1	1	1	0	0	-1	0
αβαββαα	1	1	0	1	0	-1	0	0	-1	0	0	0	0	-1
βααββαα	1	1	0	0	1	0	1	1	0	0	0	0	0	1
αββαβαα	1	1	0	0	-1	1	0	0	-1	0	0	0	0	1
βαβαβαα	1	1	0	-1	0	0	-1	1	0	0	0	0	0	-1
ββααβαα	-4	0	0	0	0	0	0	-1	1	-1	0	0	1	0
αβββααα	1	-1	1	0	0	0	0	1	1	0	0	1	1	0
βαββααα	1	-1	1	0	0	0	0	-1	-1	0	0	-1	1	0
ββαβααα	1	-1	-1	0	0	1	-1	0	0	0	1	0	-1	0
βββαααα	1	-1	-1	0	0	-1	1	0	0	0	-1	0	-1	0

Occupation numbers of one-particle states for electrons are equal to 0 or 1. Therefore the computer code is ideally suitable to record vectors of type (262). The first eigenvalues and corresponding eigenvectors of the CI matrix were computed by an algorithm proposed by Nesbet [25]. As an initial approximation for the diagonalization of the next matrix we used the eigenvector of the previous matrix of lower order.

2.7.3.7.2. Discussion of Results

The energy of the ground state of the benzyl radical computed with different configurational sets is given in Table 10. The difference between the energy corresponding to full CI and the energy obtained in the single-configuration approximation will be called the correlation energy for a given model Hamiltonian. It is seen from Table 10 that the correlation energy in our case is equal to -0.929722 *eV*. With the singly excited configurations only 18% of this energy is taken into account. Extension of the basis to include doubly excited configurations leads to an account of almost all the correlation energy, namely 94%. Analogous changes occur with the overlap integral $S = \langle \Psi_F | \Psi_{ui} \rangle$ which may be taken as a measure of the

accuracy of the trial wave function. The deviation from unity of the projection of the approximate wave function on the exact one is 0.0547 for the single-configuration function and is 0.0334 when all singly excited configurations are included. When all doubly excited configurations are included this deviation decreases sharply to 0.0020 which indicative of the marked improvement of the wave function.

Table 10

Change in energy *E* of the ground state of the benzyl radical and of the overlap integrals *S* between its exact and approximate wave functions as the configurational set is extending

Configurational set	E, eV	S
G	0.929722	0.945313
Ι	0.760009	0.966577
II	0.058437	0.997981
III	0.021089	0.999471
IV	0.000394	0.999994
V	0.000082	0.999999
F	0*	1

^{*} Energy of the benzyl radical computed with full CI was taken as zero and for parametrical Hamiltonian (257) was equal to -211.756817 *eV*.

Computations shows that the electron density on the atoms of benzyl is always equal to one if all configurations of a given order of excitation are taken into account. Otherwise, the distribution of electronic density is non-uniform.

Bond orders $P_{\mu\nu}$ (Table 11) are often used to calculate bond lengths $R_{\mu\nu}$. Remembering that for conjugated hydrocarbons $\Delta R \approx 0.18 \cdot \Delta P$ ([26], see also Appendix Π -7) and using the data of Table 11 one sees that in order to calculate bond lengths with the appropriate accuracy of order $5 \cdot 10^{-4}$ Å bond orders must be computed with a wave function which includes at least singly excited configurations. In the case of the single-configuration approximation the error in the calculation of $R_{\mu\nu}$ caused by the omission of higher excited configurations can reach a value of $2 \cdot 10^{-2}$ Å. Table 12 shows the changes of the elements $\rho_{\mu\nu}$ of the spin density matrix for benzyl as the wave function is improved.

The largest deviation of atomic spin density computed with approximate wave functions from its exact value is 0.0185 (C₇), 0.0173 (C₂), and 0.0023 (C₇) for configurational sets I, II, and III respectively. Using the McConnell relation [21, 22, 27] one can estimate the errors in the calculation of proton splitting caused by inaccurate computation of the wave function. If only singly and even doubly excited configurations are taken into account then one cannot hope to obtain splitting

with an accuracy more than 0.5 *Oe*. Inclusion of triply excited configurations permits a lowering of this error by one order. Thus, our results do not confirmed the widely held opinion that in computing the electronic structure of radicals it is sufficient to account only for singly excited configurations [2, 18].

Table 11

μv		Configurational set									
<i>pc</i> .	G	Ι	II	III	IV	V	F				
12	0.6002	0.5565	0.5471	0.5378	0.5366	0.5365	0.536474				
14	-0.2982	-0.2609	-0.2479	-0.2396	-0.2380	-0.2379	-0.237940				
17	0.4367	0.5226	0.5051	0.5202	0.5189	0.5191	0.519078				
23	0.6793	0.6890	0.6661	0.6643	0.6622	0.6621	0.662104				
25	-0.3207	-0.3034	-0.2777	-0.2717	-0.2695	-0.2694	-0.269413				
34	0.6587	0.6441	0.6249	0.6206	0.6186	0.6185	0.618519				
37	-0.0431	-0.0686	-0.0628	-0.0655	-0.0650	-0.0650	-0.065006				

Bond orders $P_{\mu\nu}$ in the ground state of the benzyl radical computed with different configurational sets*

*Bond orders of the remaining bonds are strictly equal to zero or coincide with those given in the Table by symmetry conditions. Electronic densities on atoms $P_{\mu\nu}$ are always strictly equal to one.

The spin density on the *ortho*-atom C₂ is larger than on the *para*-atom C₄ even in the case of full CI. The difference between them is only slightly changed if the wave function is constructed from only singly excited configurations, and in the latter case does not depend essentially on the choice of the semi-empirical values of integrals [28]. The difference between the splitting on *ortho*- and *para*-protons calculated by the simple McConnell relation is about +0.5 *Oe* whereas its experimental value is equal to about -1 *Oe*. This would suggest that the simple McConnell relation might lead to an error in the calculation of the splitting of not less than 1.5 *Oe*. Therefore, one must be especially careful calculating ESR splitting by the simple McConnell relations computed by traditional methods if the differences between the splittings are small. This procedure is justified if the above differences are larger than at least 2 *Oe*.

In conclusion we shall consider properties of the natural spin-orbitals of the benzyl radical. In accordance with definition (Appendix Π -4, § 2.9.7) they are eigenfunctions of the one-particle density matrices. Natural spin-orbitals for the benzyl radical obtained with full CI are collected in Table 13.

The expansion coefficients for the spin β are determined from the alternant properties of the benzyl radical so that orbital 8 - i for spin β is complementary with the *i*th orbital for spin α . The corresponding occupation numbers computed as

eigenvalues of the one-particle density matrices constructed from the wave functions of different accuracy are given in Table 14.

Table 12

Elements $\rho_{\mu\nu}$	of the spin density matrix for the ground state of the benzyl radical
	computed with different configurational sets*

	Configurational set									
<i>μ</i> ,	G	Ι	II	III	IV	V	F			
11	0	-0.0945	-0.1005	-0.1104	-0.1115	-0.1116	-0.111604			
22	0.0755	0.1740	0.1653	0.1829	0.1824	0.1826	0.182622			
33	0	-0.0576	-0.0581	-0.0692	-0.0694	-0.0696	-0.069598			
44	0.0434	0.1557	0.1455	0.1610	0.1610	0.1612	0.161167			
77	0.8056	0.7059	0.7408	0.7221	0.7246	0.7244	0.724388			
13	0	0.0171	0.0192	0.0200	0.0201	0.0200	0.020049			
24	-0.0572	-0.1108	-0.0973	-0.1020	-0.1010	-0.1010	-0.100982			
26	0.0755	0.0991	0.0817	0.0814	0.0807	0.0807	0.080684			
27	-0.2466	-0.2318	-0.2211	-0.2190	-0.2179	-0.2178	-0.217827			
35	0	0.0071	0.0085	0.0110	0.0108	0.0108	0.010753			
47	0.1870	0.1904	0.1717	0.1703	0.1686	0.1686	0.168572			

*The remaining elements are strictly equal to zero or coincide with those given in the Table by symmetry conditions.

As can be seen the occupation numbers for different spins are noticeably different even for anti-bonding and bonding orbitals which originally were equally filled. One can also see from Table 14 that inclusion of singly excited configurations affects the occupation numbers noticeably only for spin β .

More detailed information about our full CI computations including computer program in ALGOL may be found in [29].

Table 13

$\mu \mapsto$	1	2	3	4	5	6	7
i				Spin α			
7 (5b ₂)	0.44541	-0.38192	0.40596	-0.39168	0.40596	-0.38192	-0.16387
6 (4 <i>b</i> ₂)	-0.60579	0.18183	0.32022	-0.51187	0.32022	0.18183	0.31592
5 (2 <i>a</i> ₂)	0	0.47503	-0.52378	0	0.52378	-0.47503	0
4 (3 <i>b</i> ₂)	-0.31142	-0.41273	0.14130	0.54507	0.14130	-0.41273	0.47464
$3(1a_2)$	0	-0.52378	-0.47503	0	0.47503	0.52378	0
2 (2 <i>b</i> ₂)	0.17435	-0.19572	-0.40028	-0.49076	-0.40028	-0.19572	0.57593
$1(1b_2)$	0.55430	0.33529	0.22904	0.21593	0.22904	0.33529	0.56246
i				Spin β			
7 (5 <i>b</i> ₂)	-0.55430	0.33529	-0.22904	0.21593	-0.22904	0.33529	0.56246
6 (4 <i>b</i> ₂)	-0.17435	-0.19572	0.40028	-0.49076	0.40028	-0.19572	0.57593
5 (2 <i>a</i> ₂)	0	-0.52378	0.47503	0	-0.47503	0.52378	0
4 (3 <i>b</i> ₂)	0.31142	-0.41273	-0.14130	0.54507	-0.14130	-0.41273	0.47464
3 (1 <i>a</i> ₂)	0	-0.47503	-0.52378	0	0.52378	0.47503	0
2 (2b ₂)	-0.60679	-0.18183	0.32022	0.51187	0.32022	-0.18183	-0.31592
$1(1b_2)$	0.44541	0.38192	0.40596	0.39168	0.40596	0.38192	0.16387

Expansion coefficients for the natural spin-orbitals computed for the ground state of benzyl radical with full CI*

*All expansion coefficients are given without taken into account symmetry properties of the benzyl.

Table 14

Occupation numbers of the natural spin-orbitals for the ground state of the benzyl radical computed with different sets of configurations*

$i \mapsto$	1		2		3		4	
Conf.	n_{α}	n_{eta}	n_{lpha}	n_{eta}	n_{α}	n_{eta}	n_{α}	n_{eta}
G	1	1	1	1	1	1	1	0
Ι	1.0000	0.9982	0.9999	0.9948	0.9999	0.9844	0.9775	0.0225
II	0.9950	0.9904	0.9902	0.9692	0.9776	0.9685	0.9652	0.0348
III	0.9943	0.9892	0.9887	0.9652	0.9755	0.9649	0.9607	0.0393
IV	0.9940	0.9884	0.9882	0.9634	0.9734	0.9627	0.9588	0.0412
F	0.99400	0.98840	0.98815	0.96331	0.97338	0.96259	0.95876	0.04124

*For other orbitals the occupation numbers are determined by the alternant properties of the benzyl radical, namely: $n_{\alpha(\beta),8-i} = 1 - n_{\alpha(\beta),i}$ ($i \neq 4$).

2.7.3.8. Determinantal Method to Derive the Electron Density – Bond Order Matrix and the Spin Density with an Account of All Doubly Excited Configurations for Molecular States

The inclusion of more than singly excited configurations leads to a closer description of reactivity, geometry, and other properties of molecules in the ground and excited states. The knowledge of the distribution of the electron density $P_{\mu\mu}$, the spin density $\rho_{\mu\mu}$, and the bond orders $P_{\mu\nu}$ computed with an account of doubly excited configurations is important.

It is not difficult to find in quantum chemistry literature computations when wrong or better to say non-complete formulae for electron distributions mentioned above are used. For example, formula for ${}^{1}P_{\mu\nu}$ used in [30] is valid only for the case of mixing of some particular doubly excited configurations, namely those of the types ${}^{1}\Phi_{i\rightarrow k}_{i\rightarrow k}$ and ${}^{1}\Phi_{i\rightarrow k}$, and of the ground state configuration ${}^{1}\Phi_{0}$. Here the occupied MO's of the ground state of a molecule are designated by *i* and *j*, and the unoccupied – by *k* and *l*. The single-configurational wave function of the ground state of a molecule with 2*n* electrons is

${}^{1}\Phi_{0} = (1\,\overline{1}...i\overline{i}...j\overline{j}...n\overline{n})$

or for the brevity just ${}^{1}\Phi_{0} = |i\overline{i}...j\overline{j}|$. An identical wrong formula was erroneously used in [31 – 34] where singly and/or doubly excited configurations of arbitrary types have been included. The correct formulae for ${}^{1,3}P_{\mu\nu}$ and $\rho_{\mu\mu}$ with the inclusion of only singly excited configurations can be found in [9] where also is mentioned that the use of the widely-spread simple formula [30 – 34] for mixing of configurations of arbitrary types leads to an even qualitatively incorrect electron density distribution, especially for the states of different multiplicity. This appendix summarizes the derivation of the general expressions for ${}^{1,3}P_{\mu\nu}$ of the ground and excited singlet and triplet molecular states and for $\rho_{\mu\mu}$ of the triplet states by the determinantal method in the frame of the CI method including all singly and all doubly excited configurations [21].

2.7.3.8.1. The Wave Functions

The multi-configurational wave functions for the singlet and triplet states are

$${}^{1}\Psi = {}^{1}X_{0}{}^{1}\Phi_{0} + \sum_{i \to k}{}^{1}X_{i \to k}{}^{1}\Phi_{i \to k} + \sum_{i \to k}{}^{1}X_{i \to k}{}^{1}\Phi_{i \to k} + \sum_{j \to k}{}^{1}X_{i \to k}{}^{1}\Phi_{j \to k} + \sum_{i \to k}{}^{1}X_{i \to k}{}^{1}\Phi_{i \to k} + \sum_{i \to k}{}^{1}X_{i \to k}{}^{1}\Phi_{i \to k}{}^{1}+\sum_{j \to l}{}^{1}X_{j \to l}{}^{1}\Phi_{j \to k}{}^{1}+\sum_{j \to l}{}^{1}X_{j \to l}{}^{1}\Phi_{j \to l}{}^{1}$$

$${}^{3}\Psi = \sum {}^{3}X_{i \to k} {}^{3}\Phi_{i \to k} + \sum {}^{3}X_{i \to k} + \sum {}^{$$

where here and in the following equations the summation indexes over MO's are omitted supposing that they run independently over all possible values, and

$${}^{1}\Phi_{i\to k} = \frac{1}{\sqrt{2}} (|i\bar{k}j\bar{j}| - |\bar{i}kj\bar{j}|), {}^{1}\Phi_{i\to k} = |k\bar{k}j\bar{j}|, {}^{1}\Phi_{i\to k} = \frac{1}{\sqrt{2}} (|i\bar{k}j\bar{k}| + |\bar{i}kj\bar{k}|),$$

$${}^{1}\Phi_{i\to k} = \frac{1}{\sqrt{2}} (|k\bar{l}j\bar{j}| + |l\bar{k}j\bar{j}|), {}^{1}\Phi_{i\to k}' = \frac{1}{2} (|i\bar{k}j\bar{l}| + |\bar{i}kj\bar{l}| - |i\bar{k}j\bar{l}| - |\bar{i}\bar{k}j\bar{l}|),$$

$${}^{1}\Phi_{i\to k}'' = \frac{1}{\sqrt{12}} (|i\bar{k}j\bar{l}| + |\bar{i}kj\bar{l}| + |i\bar{k}j\bar{l}| + |i\bar{k}j\bar{l}| + |\bar{i}\bar{k}j\bar{l}| - 2|i\bar{k}j\bar{l}| - 2|\bar{i}\bar{k}j\bar{l}|),$$

$${}^{3}\Phi_{i\to k} = |i\bar{k}j\bar{j}|, {}^{3}\Phi_{i\to k} = |i\bar{k}j\bar{k}|, {}^{3}\Phi_{i\to k} = |k\bar{l}j\bar{j}|, {}^{3}\Phi_{i\to k}' = \frac{1}{\sqrt{2}} (|\bar{i}kj\bar{l}| - |i\bar{k}j\bar{l}| - |i\bar{k}j\bar{l}|),$$

$${}^{3}\Phi_{i\to k}'' = \frac{1}{\sqrt{6}} (|\bar{i}kj\bar{l}| + |i\bar{k}j\bar{l}| - 2|i\bar{k}j\bar{l}|), {}^{3}\Phi_{i\to k}'' = \frac{1}{\sqrt{12}} (|\bar{i}kj\bar{l}| + |i\bar{k}j\bar{l}| - 3|i\bar{k}j\bar{l}|).$$

2.7.3.8.2. The Expectation Value of a One-electron Operator

Let the one-electron operator be given

$$\hat{Q} = \sum_{t} \hat{Q}(t) \, .$$

There should be found its average values

$$\left| \left\langle \hat{Q} \right\rangle \right\rangle = \left\langle {}^{1}\Psi \left| \hat{Q} \right| {}^{1}\Psi \right\rangle$$

and

$${}^{3}\langle\hat{Q}\rangle = \langle {}^{3}\Psi |\hat{Q}| {}^{3}\Psi \rangle.$$

In order to calculate the matrix elements of \hat{Q} on the determinantal functions contained in ${}^{1}\Psi$ and ${}^{3}\Psi$ one may use the known expansion [1]

$$\langle U | \hat{Q} | V \rangle = \sum_{rs} \langle u_r | \hat{Q} | v_s \rangle D(r | s),$$

where

$$U = (u_1 u_2 u_3 ... u_N), \ V = (v_1 v_2 v_3 ... v_N),$$

and D(r|s) is a minor of the determinant $D = \langle U | V \rangle$, received by crossing in *D* the column *r* and the row *s*. Tedious calculations lead to the following expressions for ${}^{1}\langle \hat{Q} \rangle$ through the matrix elements of \hat{Q} in the MO representation and for ${}^{3}\langle \hat{Q} \rangle$ in the spin-MO representations:

$$\begin{split} ^{1} \left\langle \hat{Q} \right\rangle &= 2 \sum_{i=1}^{n} \mathcal{Q}_{ii} + \sum^{1} X_{i \to k}^{-1} X_{i \to k'} (\mathcal{Q}_{kk'} \delta_{ii'} - \mathcal{Q}_{ii'} \delta_{kk'}) + 2 \sum^{1} X_{i \to k}^{2} (\mathcal{Q}_{kk} - \mathcal{Q}_{ii}) + \\ &+ \sum^{1} X_{i \to k}^{-1} X_{i \to k} (2 \mathcal{Q}_{kk} \delta_{ii'} \delta_{jj'} - \mathcal{Q}_{ii'} \delta_{jj'} - \mathcal{Q}_{jj'} \delta_{ii'}) + \\ &+ \sum^{1} X_{i \to k}^{-1} X_{i \to k'} (-2 \mathcal{Q}_{ii} \delta_{kk'} \delta_{ll'} + \mathcal{Q}_{ll'} \delta_{kk'} + \mathcal{Q}_{kk} \delta_{ll'}) + \\ &+ \sum^{1} X_{i \to k'}^{-1} X_{i \to k'}^{-1} (-2 \mathcal{Q}_{ii} \delta_{kk'} \delta_{ll'} + \mathcal{Q}_{ll'} \delta_{kk'} + \mathcal{Q}_{kk'} \delta_{ll'}) + \\ &+ \sum^{1} \left(\frac{1} X_{i \to k'}^{-1} X_{i \to k'}^{-1} + \frac{1} X_{i \to k'}^{-1} X_{j' \to l'}^{-1} \right) (\mathcal{Q}_{kk'} \delta_{ii'} \delta_{jj'} \delta_{ll'} + \mathcal{Q}_{ll'} \delta_{ij'} \delta_{jj'} \delta_{kk'} - \mathcal{Q}_{ii'} \delta_{jj'} \delta_{kk'} \delta_{ll'} - \mathcal{Q}_{jj'} \delta_{ik'} \delta_{kk'} \delta_{ll'}) + \\ &+ 2 \sqrt{2} \sum^{1} X_{i \to k} \left(\frac{1} X_0 + \frac{1}{X_{i \to k}} \right) \mathcal{Q}_{ik} - 2 \sum^{1} X_{i \to k} \frac{1}{X_{i \to k}} \mathcal{Q}_{jk} + 2 \sum^{1} X_{i \to k} \frac{1}{X_{i \to k}} \mathcal{Q}_{il} - \\ &- \sqrt{2} \sum^{1} X_{i \to k} \left(\frac{1} X_{i \to k} + \sqrt{3} \frac{1}{X_{i \to k}} \right) \mathcal{Q}_{jl} + 2 \sqrt{2} \sum^{1} \left(\frac{1} X_{i \to k} + \frac{1}{X_{i \to k}} + \frac{1}{X_{i \to k}} \right) \mathcal{Q}_{jl} + \\ &+ 2 \sqrt{2} \sum^{1} \left(\frac{1} X_{i \to k} + \frac{1}{X_{i \to k}} + \frac{1}{X_{i \to k}} \right) \mathcal{Q}_{kl}, \end{split}$$

$$\begin{split} ^{3} \left\langle \hat{Q} \right\rangle &= \sum_{i=1}^{n} (\mathcal{Q}_{ii} + \mathcal{Q}_{\overline{i}\overline{i}}) + \sum_{j \to k}^{3} X_{i \to k}^{-sk} (\mathcal{Q}_{kk} \delta_{ii'} - \mathcal{Q}_{ii'} \delta_{kk'}) + \\ &+ \sum_{j \to k}^{3} X_{j \to k}^{-sk} [(\mathcal{Q}_{kk} + \mathcal{Q}_{k\overline{k}}) \delta_{ii'} \delta_{jj'} - \mathcal{Q}_{\overline{i}\overline{j}} \delta_{ji'} - \mathcal{Q}_{\overline{j}\overline{j}} \delta_{ii'}] + \\ &+ \sum_{i \to i}^{3} X_{i \to k}^{-sk} [(-\mathcal{Q}_{ii} + \mathcal{Q}_{\overline{i}\overline{i}}) \delta_{kk} \delta_{li'} + \mathcal{Q}_{kk} \delta_{li'} + \mathcal{Q}_{li'} \delta_{kk'}] + \\ &+ \sum_{i \to i}^{3} X_{i \to k}^{-sk} [(\mathcal{Q}_{ki'} \delta_{ii'} \delta_{jj'} \delta_{li'} - \mathcal{Q}_{\overline{j}\overline{j}} \delta_{ik'} \delta_{li'} + \mathcal{Q}_{kk} \delta_{li'} + \mathcal{Q}_{li'} \delta_{kk'}] + \\ &+ \sum_{j \to i}^{3} X_{i \to k}^{-sk} [(\mathcal{Q}_{ki'} \delta_{ii'} \delta_{jj'} \delta_{li'} - \mathcal{Q}_{\overline{j}\overline{j}} \delta_{ik'} \delta_{li'} + \mathcal{Q}_{li'} \delta_{kk'}] + \\ &+ \sum_{j \to i}^{3} X_{i \to k}^{-sk} [(\mathcal{Q}_{ki'} \delta_{ii'} \delta_{jj'} \delta_{li'} - \mathcal{Q}_{\overline{j}\overline{j}} \delta_{ik'} \delta_{li'} + \mathcal{Q}_{li'} \delta_{kk'}] + \\ &+ \sum_{j \to i}^{3} X_{i \to k}^{-sk} [(\mathcal{Q}_{ki'} \delta_{ii'} \delta_{jj'} \delta_{ki'} - \mathcal{Q}_{\overline{j}\overline{j}} \delta_{ik'} \delta_{li'} + \mathcal{Q}_{li'} \delta_{kk'}] + \\ &+ \sum_{j \to i}^{3} X_{i \to k}^{-sk} [(\mathcal{Q}_{ki'} \delta_{ii'} \delta_{jj'} \delta_{ki'} - \mathcal{Q}_{\overline{j}\overline{j}} \delta_{kk'} \delta_{li'} + \mathcal{Q}_{\overline{j}\overline{j}}) \delta_{ii'} \delta_{kk'} \delta_{li'} - \\ &- \frac{1}{2} (\mathcal{Q}_{li'} + \mathcal{Q}_{\overline{j}\overline{j}}) \delta_{ii'} \delta_{kk'} \delta_{li'} - \mathcal{Q}_{\overline{j}\overline{j}} \delta_{kk'} \delta_{li'} + \frac{1}{2} \sum_{j \to i}^{3} X_{j \to k}^{-sk} [(\mathcal{Q}_{ki'} \delta_{ii'} \delta_{jj'} \delta_{ki'} - \\ &- (\mathcal{Q}_{\overline{j}\overline{j}} + 2\mathcal{Q}_{\overline{j}\overline{j}}) \delta_{ii'} \delta_{kk'} \delta_{li'} - (\mathcal{Q}_{ii'} + 5\mathcal{Q}_{\overline{j}\overline{j}}) \delta_{jj} \delta_{kk} \delta_{li'} - \\ &- (\mathcal{U}_{\overline{j}\overline{j}} + \mathcal{Q}_{jj'}) \delta_{ii'} \delta_{kk'} \delta_{li'} - 2\sum_{j \to i}^{3} X_{i \to k}^{-sk} X_{j \to k}^{-sk} (2\mathcal{Q}_{\overline{j}\overline{k}} - 2\sum_{j \to i}^{3} X_{i \to k}^{-sk} \mathcal{Q}_{li} - \\ &- (\mathcal{U}_{\overline{j}\overline{j}} + \mathcal{Q}_{jj'}) \delta_{ii'} \delta_{kk'} \delta_{li'} - 2\sum_{j \to i}^{3} X_{i \to k}^{-sk} X_{j \to k}^{-sk} (2\mathcal{Q}_{ji} - 2\sum_{j \to i}^{3} X_{i \to k}^{-sk} \mathcal{Q}_{li} - \\ &- \sqrt{2}\sum_{j \to i}^{3} X_{i \to k}^{-sk} \mathcal{Q}_{\overline{j}\overline{j}} + \sqrt{\frac{2}{3}}\sum_{j \to i}^{3} X_{i \to k}^{-sk} X_{j \to k}^{-sk} \mathcal{Q}_{li} - \\ &- \sqrt{2}\sum_{j \to i}^{3} X_{i \to k}^{-sk} \mathcal{Q}_{ij} + \sqrt{\frac{2}{3}}\sum_{j \to i}^{3} X_{i \to k}^{-sk} \mathcal{Q}_{ij} - \\ &+ \sqrt{2}\sum_{j \to i}^{3} X_{i \to k}^{-sk} \mathcal{Q}_{ij} + \sqrt{\frac{2}{3}}\sum_{j \to i}^{3} X_{i \to k}$$

2.7.3.8.3. The Electron Density – Bond Order Matrix and the Spin Density

Expanding the MOs in linear combination of AOs

$$\varphi_r = \sum_{\mu} C_{\mu r} \chi_{\mu} \tag{266}$$

one can introduce the matrix elements

$$Q_{\mu\nu} = \left\langle \chi_{\mu} \left| \hat{Q} \right| \chi_{\nu} \right\rangle$$

and obtains an expression for ${}^{1}\langle \hat{Q} \rangle$ in terms of the expansion coefficients $C_{\mu r}$. Comparing it with the known expression

$$^{1,3}\left\langle \hat{Q}\right\rangle =\sum_{\mu\nu}{}^{1,3}P_{\mu\nu}Q_{\mu\nu}$$
(267)

one finally obtains

$${}^{1}P_{\mu\nu} = 2\sum_{i=1}^{n} C_{\mu i}C_{\nu i} + \sum_{i} X_{i \to k} X_{i' \to k'} (C_{\mu k}C_{\nu k'}\delta_{ii'} - C_{\mu i}C_{\nu i'}\delta_{kk'}) + 2\sum_{i \to k} X_{i \to k}^{2} (C_{\mu k}C_{\nu k} - C_{\mu i}C_{\nu i}) + \\ + \sum_{j \to k} X_{j \to k} X_{j' \to k} (2C_{\mu k}C_{\nu k}\delta_{ii'}\delta_{jj'} - C_{\mu i}C_{\nu i'}\delta_{jj'} - C_{\mu j}C_{\nu j'}\delta_{ii'}) + \\ + \sum_{i \to l} X_{i \to k'} X_{i \to k'} (-2C_{\mu i}C_{\nu i}\delta_{kk'}\delta_{ll'} + C_{\mu k}C_{\nu k'}\delta_{ll'} + C_{\mu l}C_{\nu l'}\delta_{kk'}) + \\ + \sum_{i \to l} (X_{i \to k}^{\prime} X_{j' \to k'}^{\prime} + X_{j' \to k}^{\prime}) (C_{\mu k}C_{\nu k'}\delta_{ii'}\delta_{jj'}\delta_{ll'} + C_{\mu l}C_{\nu l'}\delta_{ii'}\delta_{jj'}\delta_{kk'} - C_{\mu i}C_{\nu i'}\delta_{jj'}\delta_{kk'}\delta_{ll'} - \\ - C_{\mu j}C_{\nu j'}\delta_{ii'}\delta_{kk'}\delta_{ll'}) + 2\sqrt{2}\sum_{i \to k} (X_{i \to k} (X_{i \to k}^{\prime} + X_{i \to k}^{\prime})C_{\mu i}C_{\nu k'} - 2\sum_{i \to k} X_{i \to k}^{\prime}C_{\mu j}C_{\nu k} + \\ + 2\sum_{i \to k} X_{i \to k}^{\prime} X_{i \to k} C_{\mu i}C_{\nu l} - \sqrt{2}\sum_{i \to k} (X_{i \to k}^{\prime} + \sqrt{3}X_{i \to k}^{\prime})C_{\mu j}C_{\nu j} + \\ + 2\sqrt{2}\sum_{i \to k} (X_{i \to k}^{\prime} X_{i \to k}^{\prime} + X_{i \to k}^{\prime} X_{i \to k}^{\prime})C_{\mu i}C_{\nu j} + \\ + 2\sqrt{2}\sum_{i \to k} (X_{i \to k}^{\prime} X_{i \to k}^{\prime} + X_{i \to k}^{\prime} X_{i \to k}^{\prime})C_{\mu k}C_{\nu l}, \qquad (268)$$

In order to calculate $\rho_{\mu\mu}$ let put in (265)

$$\hat{Q} = \sum_{t} \hat{S}_{z}(t)$$

Taking into account that

$$(\hat{S}_z)_{ij} = -(\hat{S}_z)_{i\bar{j}}$$

and using the AO basis one obtains after some manipulations

$$\begin{split} \left\langle \sum_{i} \hat{S}_{z}(t) \right\rangle &= \frac{1}{2} \sum_{j \to k}^{3} X_{i \to k}^{-3} X_{i \to k}^{-2} \sum_{\mu} (C_{\mu k} C_{\mu k} \delta_{i l'} + C_{\mu l} C_{\mu l'} \delta_{k k'}) + \\ &+ \frac{1}{2} \sum_{j \to k}^{3} X_{i \to k}^{-3} X_{i \to k}^{-3} \sum_{\mu} (C_{\mu l} C_{\mu l} \sigma_{i l'} + C_{\mu l} C_{\mu l'} \delta_{j l'}) + \frac{1}{2} \sum_{i \to l}^{3} X_{i \to k}^{-3} \sum_{\mu} (C_{\mu k} C_{\mu k} \delta_{i l'} + C_{\mu l} C_{\mu l'} \delta_{k k'}) + \\ &+ \frac{1}{2} \sum_{j \to l}^{3} X_{i \to k}^{-3} X_{i \to k}^{-3} \sum_{\mu} (C_{\mu k} C_{\mu k} \delta_{j l'} + C_{\mu l} C_{\mu l'} \delta_{k k'}) + \frac{1}{6} \sum_{j \to l}^{3} X_{i \to k}^{-3} \sum_{j \to l} (C_{\mu k} C_{\mu k} \delta_{j l'} \delta_{l l'} + C_{\mu l} C_{\mu l'} \delta_{k k'}) + \\ &+ 2C_{\mu l} C_{\mu l'} \delta_{i l} \delta_{j l} \delta_{k k'} + 2C_{\mu l} C_{\mu l'} \delta_{j l'} \delta_{k k} \delta_{l l'} - C_{\mu l} C_{\mu l'} \delta_{i l'} \delta_{k k} \delta_{l l'}) + \\ &+ \frac{1}{12} \sum_{j \to l}^{3} X_{i \to k}^{-3} \sum_{\mu} (C_{\mu k} \delta_{i l'} \delta_{j l'} \delta_{k k'} \delta_{l l'} - C_{\mu l} C_{\mu l'} \delta_{i l'} \delta_{k k'} \delta_{l l'}) + \\ &+ \frac{1}{12} \sum_{j \to l}^{3} X_{i \to k}^{-3} \sum_{\mu} (C_{\mu l} \delta_{i l'} \delta_{j l'} \delta_{k k'}) + \\ &+ \frac{1}{12} \sum_{j \to l}^{3} X_{i \to k}^{-3} X_{i \to k}^{$$

$$\begin{split} \rho_{\mu\mu} &= \sum_{j \to k} {}^{3}X_{i \to k} {}^{3}X_{i' \to k'} (C_{\mu k}C_{\mu k'}\delta_{ii'} + C_{\mu i}C_{\mu i'}\delta_{kk'}) + \\ &+ \sum_{j \to k} {}^{3}X_{j' \to k} (C_{\mu j}C_{\mu j'}\delta_{ii'} + C_{\mu i}C_{\mu i'}\delta_{jj'}) + \sum_{i \to l} {}^{3}X_{i \to k'} (C_{\mu k}C_{\mu k}\delta_{ll'} + C_{\mu l}C_{\mu l'}\delta_{kk'}) + \\ &+ \sum_{j \to l} {}^{3}X_{j' \to k'} (C_{\mu k}C_{\mu k'}\delta_{jj'} + C_{\mu j}C_{\mu j'}\delta_{kk'}) + \frac{1}{3}\sum_{j \to l} {}^{3}X_{j' \to k'} (3C_{\mu k}C_{\mu k'}\delta_{li'} + C_{\mu l}C_{\mu l'}\delta_{kk'}) + \\ &+ 2C_{\mu l}C_{\mu l'}\delta_{ii'}\delta_{jj'}\delta_{kk'} + 2C_{\mu l}C_{\mu i'}\delta_{jj'}\delta_{kk'}\delta_{ll'} - C_{\mu j}C_{\mu j'}\delta_{ii'}\delta_{kk'}\delta_{ll'}) + \\ &+ \frac{1}{6}\sum_{j \to l} {}^{3}X_{j' \to k'} (5C_{\mu l}C_{\mu i'}\delta_{jj'}\delta_{kk'}\delta_{ll'} + 5C_{\mu j}C_{\mu j'}\delta_{ii'}\delta_{kk'}\delta_{ll'}) + \\ &+ \frac{1}{6}\sum_{j \to l} {}^{3}X_{j' \to k'} (5C_{\mu l}C_{\mu i'}\delta_{jj'}\delta_{kk'}\delta_{ll'} + 5C_{\mu j}C_{\mu j'}\delta_{ii'}\delta_{kk'}\delta_{ll'}) + \\ &+ \frac{1}{6}\sum_{j \to l} {}^{3}X_{j' \to k'} (5C_{\mu l}C_{\mu i'}\delta_{jj'}\delta_{kk'}\delta_{ll'} - C_{\mu j}C_{\mu j'}\delta_{ii'}\delta_{kk'}\delta_{ll'}) + \\ &+ \frac{1}{6}\sum_{j \to l} {}^{3}X_{j' \to k'} (5C_{\mu l}C_{\mu i'}\delta_{jj'}\delta_{kk'}\delta_{ll'} - C_{\mu j}C_{\mu j}\delta_{ii'}\delta_{kk'}\delta_{ll'}) + \\ &+ \frac{1}{6}\sum_{j \to l} {}^{3}X_{j' \to k'} (5C_{\mu l}C_{\mu i'}\delta_{jj'}\delta_{kk'}\delta_{ll'} - C_{\mu j}C_{\mu j}\delta_{ii'}\delta_{kk'}\delta_{ll'}) + \\ &+ \frac{1}{6}\sum_{j \to l} {}^{3}X_{j \to l} (5C_{\mu l}C_{\mu i'}\delta_{jj'}\delta_{kk'}\delta_{ll'} + 5C_{\mu j}C_{\mu j}\delta_{ii'}\delta_{kk'}\delta_{ll'}) + \\ &+ \sqrt{\frac{2}{3}}\sum_{j \to l} {}^{3}X_{i \to k} \left(\sqrt{3} {}^{3}X_{i \to k} \right) + \frac{1}{2}\sum_{j \to l} {}^{3}X_{j \to k'} \left(\sqrt{2} {}^{3}X_{j \to l} \right) + \\ &+ \frac{\sqrt{\frac{2}{3}}}{3}\sum_{j \to l} {}^{3}X_{j \to l} \left(\sqrt{3} {}^{3}X_{j \to k'} \right) + \\ &+ \frac{\sqrt{\frac{2}{3}}}{3}\sum_{j \to l} {}^{3}X_{j \to l} \left(\sqrt{2} {}^{3}X_{j \to l} \right) + \\ &+ \frac{\sqrt{\frac{2}{3}}}{3}\sum_{j \to l} {}^{3}X_{j \to l} \left(2C_{\mu j}C_{\mu j}\delta_{il}\delta_{ll'} - C_{\mu l}C_{\mu l'}\delta_{jl'}\delta_{ll'} - C_{\mu l}C_{\mu l'}\delta_{il'}\delta_{jj'}\right) \right)$$

$$(269)$$

The expression (265) also permits to obtain the formula for ${}^{3}P_{\mu\nu}$. Let us carry out the summation in (265) over the spin variables taking the normalization condition of ${}^{3}\Psi$ into account. Using the AO representation and comparing the expression derived so far with (267) one finally obtains

$${}^{3}P_{\mu\nu} = 2\sum_{i=1}^{n} C_{\mu i}C_{\nu i} + \sum_{i} {}^{3}X_{i \to k} {}^{3}X_{i' \to k'} (C_{\mu k}C_{\nu k}\delta_{ii'} - C_{\mu i}C_{\nu i'}\delta_{kk'}) + + \sum_{j \to k} {}^{3}X_{i \to k} {}^{3}X_{i' \to k'} (2C_{\mu k}C_{\nu k}\delta_{ii'}\delta_{jj'} - C_{\mu i}C_{\nu i'}\delta_{jj'} - C_{\mu j}C_{\nu j'}\delta_{ii'}) + + \sum_{i \to l} {}^{3}X_{i \to k'} (-2C_{\mu i}C_{\nu i}\delta_{kk'}\delta_{ll'} + C_{\mu k}C_{\nu k'}\delta_{ll'} + C_{\mu l}C_{\nu l'}\delta_{kk'}) + + \sum_{i \to l} \left({}^{3}X_{i \to k'} {}^{3}X_{i' \to k'} + {}^{3}X_{j' \to k'} {}^{3}X_{j' \to k'} + {}^{3}X_{j' \to k'} {}^{3}X_{j' \to k'} \right) (C_{\mu k}C_{\nu k'}\delta_{ii'}\delta_{jj'}\delta_{ll'} + C_{\mu l}C_{\nu l'}\delta_{ij'}\delta_{jj'}\delta_{kk'} - - C_{\mu i}C_{\nu i'}\delta_{jj'}\delta_{kk'}\delta_{ll'} - C_{\mu j}C_{\nu j'}\delta_{ii'}\delta_{kk'}\delta_{ll'}) + 2\sum_{j \to l} {}^{3}X_{i \to k} {}^{3}X_{i \to k} C_{\mu j}C_{\nu k} - - 2\sum_{j \to k} {}^{3}X_{i \to k} {}^{3}X_{i \to k} C_{\mu l}C_{\nu l} - \sqrt{2}\sum_{j \to k} {}^{3}X_{i \to k} \left({}^{3}X_{i \to k} - \sqrt{3} {}^{3}X_{j \to l'} \right) C_{\mu j}C_{\nu l} + + \sqrt{\frac{2}{3}}\sum_{j \to k} {}^{3}X_{i \to k} \left(\sqrt{3} {}^{3}X_{i \to k} - {}^{3}X_{i \to k'} - 2\sqrt{2} {}^{3}X_{i \to k'} \right) C_{\mu k}C_{\nu l} + + \sqrt{2}\sum_{j \to k} {}^{3}X_{i \to k} \left({}^{3}X_{i \to k} - {}^{3}X_{i \to k'} - 2\sqrt{2} {}^{3}X_{i \to k'} \right) C_{\mu k}C_{\nu l} + + \sqrt{2}\sum_{j \to k} {}^{3}X_{i \to k} \left({}^{3}X_{i \to k} - {}^{3}X_{i \to k'} - 2\sqrt{2} {}^{3}X_{i \to k'} \right) C_{\mu i}C_{\nu l} + + \sqrt{2}\sum_{j \to k} {}^{3}X_{i \to k} \left({}^{3}X_{i \to k'} - {}^{3}X_{i \to k'} - 2\sqrt{2} {}^{3}X_{i \to k'} \right) C_{\mu i}C_{\nu l} +$$

$$(270)$$

The expressions (268) - (270) immediately lead to the formulae [9]

$${}^{1,3}P_{\mu\nu} = 2\sum_{i=1}^{n} C_{\mu i} C_{\nu i} + \sum_{i=1}^{1,3} X_{i\to k} {}^{1,3}X_{i'\to k'} (C_{\mu k} C_{\nu k'} \delta_{ii'} - C_{\mu i} C_{\nu i'} \delta_{kk'}), \qquad (271)$$

and

$$\rho_{\mu\mu} = \sum {}^{3}X_{i\to k} {}^{3}X_{i\to k'} (C_{\mu k} C_{\nu k'} \delta_{ii'} - C_{\mu i} C_{\nu i'} \delta_{kk'}),$$

which are valid for the case of including only singly excited configurations.

The formula for ${}^{1}P_{\mu\nu}$ erroneously used in [30 – 34] may be obtained from (271) if the summation in the latter is restricted by the condition i = i' and k = k'. The validity of the expression for ${}^{1}P_{\mu\nu}$ used in [30] follows from (268) when accounting only for some particular configurations, namely those of the type ${}^{1}\Phi_{0}$, ${}^{1}\Phi_{i\to k}$, and ${}^{1}\Phi_{i\to k}$ which have been included by the authors.

2.7.3.8.4. Some conclusions

The second quantization method has been intensively developed and is widely used for treating many-particle problems. Kouba and Ohrn [35], for example, have considered and solved some of the problems which we discuss in a different way, namely a translation was made of spin projection methods into the language of second quantization. This leads to a new formula for the Sanibel coefficients and expressions convenient to use for automatic calculation of spin projections. We discussed in this review only one aspect of the second quantization method, namely the construction of the multi-configurational wave functions. Our approach is alternative to the usual determinantal method but offers some advantages. The use of the second quantization representation allows the hole which is introduced naturally and which is a mathematical description of the interpretation of the excited configurations in terms of the particles and holes against the vacuum state. The importance of this interpretation is obvious, particularly if the vacuum state is chosen as the Hartree – Fock state. Then the terms with the *N*-products in the Hamiltinian (194) will describe the correlation of the electrons in an explicit form.

Introduction of the hole formalism allows the expressions for the CI matrix elements in a form when the integrals of interaction with the vacuum particles are already summed up, and the vacuum state plays the role of an external field. The use of these expressions reduces the number of summations to a minimum which is essential when the number of particles is large. Despite the relative complexity of the second quantization method it reduces the procedure for the calculations of the matrix elements to a simple logical scheme which can be easily programmed. The corresponding algorithm is universal for all varieties of the matrix elements met in actual computations and reduces to a few simple cases.

Such an algorithm which is based on this logical scheme for CI method was developed. The corresponding program CI-2 is given in details in [26]. We have used this program repeatedly, in particularly for computing the benzyl radical in its ground state [36], and glycine and tyrosine molecules and their neutral and charged radicals [37]. The same logical scheme, but without use of the hole formalism, was incorporated in program CI-3 to perform a complete CI for the benzyl radical in the ground [22, 23] and excited states [38, 39]. Our new approach to the assignment of excited electronic molecular states based on the changes of natural orbital occupation numbers under excitation is demonstrated in Appendix Π -4.

Description of our approach to performing the CI method including the full CI can be also found in [40, 41].

Nonorthogonal representation of the second quantization was also treated by Kryachko and Kruglyak in [42, 43].
References

- 1. P.-O. Lowdin. Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction, *Phys. Rev.*, v. 97, 1474 1508 (1955).
- 2. R. Daudel. R. Lefebvre, C. Moser. *Quantum Chemistry. Methods and Applications*. New York: Interscience, 1959.
- 3. L. Salem. *The molecular orbital theory of conjugated systems*. New York: W. A. Benjamin, 1966.
- 4. J. Koutecky, J. Cizek, J. Dobsky, K. Hlavaty. The effect of the choice of parameters on the order of energy levels of benzene calculated in the π -electron approximation by the configuration interaction method including double- and triple-excited configurations, *Theor. chim. Acta*, v. 2, 462 467 (1964).
- 5. P. Jorgensen, J. Simons. *Second quantization-based methods in quantum chemistry*. New York: Academic Press, 1981.
- 6. J. Cizek. Elements matriciels de l'hamiltonien entre les etats monoexcites et biexcites singulets, *Theor. chim. Acta*, v. 6, 292 298 (1966).
- 7. G. C. Wick. The evaluation of the collision matrix, Phys. Rev., v. 80, 268 272 (1950).
- 8. Yu. A. Kruglyak, V. A. Kuprievich, E. V. Mozdor. Computation of molecular wave functions in multiconfigurational approximation, In A. I. Brodsky (ed.), *Structure of molecules and quantum chemistry*. Kiev: Naukova Dumka, 1970.
- 9. Yu. A. Kruglyak. Calculation of electronic structure of molecules and radicals by SCF and CI methods, In L. P. Kayushin, K. M. Lvov, M. K. Pulatova (eds.), *Study of paramagnetic centers of irradiated proteins*. Moscow: Nauka, 1970.
- 10. P. A. M. Dirac. The principles of quantum mechanics. London: The Clarendon Press, 1958.
- 11. D. A. Kirzhnitz. Field methods in the many-particle theory. Moscow: Gosatomizdat, 1963.
- E. V. Mozdor, Yu. A. Kruglyak, and V. A. Kuprievich. Matrix elements of the physical value operators on single-configurational functions for radicals, *Teor. Eksp. Khimiya*, v. 5: 6, 723 – 730 (1969).
- H. C. Longuet-Higgins, J. A. Pople. The electronic spectra of aromatic molecules. IV. Excited States of Odd Alternant Hydrocarbon Radicals and Ions, *Proc. Phys. Soc. (London)*, v. A68, 591 (1955).
- 14. N. M. Atherton, F. Gerson, J. N. Murrell. Electron spin distribution in the cycl(3,2,2)azine anion, *Molec. Phys.*, v. 6: 3, 265 271 (1963).
- 15. R. McWeeny. Some Recent Advances in Density Matrix Theory, *Rev. Modern Phys.*, v. 32: 2, 335 369 (1960).
- 16. L. Brillouin. La Méthode du Champ Self-Consistent, *Actual. Scient. Indust.*, n. 71, Paris: Hermann, 1933.
- 17. L. Brillouin. Les champs "self-consistents" de Hartree et de Fock, *Actual. Scient. Indust.*, n. 159, Paris: Hermann, 1934.
- 18. G. G. Dyadyusha, V. A. Kuprievich. Theory of the self-consistent field for states with open shells, *Theor. Exp. Chem.*, v. 1: 3, 262 263 (1965).
- 19. C. C. J. Roothaan. Self-consistent field theory for open shells of electronic systems, *Rev. Mod. Phys.*, v. 32: 2, 179 185 (1960).
- 20. V. A. Kuprievich. SCF-CI and SCF open-shell studies of the base components of the nucleic acids, *Intern. J. Quantum Chem.*, v. 1: 5, 561 575 (1967).
- V. I. Danilov, Yu. A. Kruglyak, V. I. Pechenaya. Electron density bond order matrix and spin density in multiconfigurational approximations, *Teor. Eksper. Khim.*, v. 5: 5, 669 – 673 (1969).
- 22. Yu. A. Kruglyak, E. V. Mozdor, V. A. Kuprievich. Full configuration interaction of the benzyl radical, *Ukr. Fiz. Zh.*, v. 15: 1, 47 57 (1970).

- 23. Yu. A. Kruglyak, G. Hibaum, N. E. Radomyselskaya. Electronic structure of the ground state of the benzyl radical in equilibrium geometry, *Rev. Roumaine Chim.*, v. 17, 781 799 (1972).
- 24. G. A. Gallup. *Valence bond methods. Theory and applications.* Cambridge: Cambridge University Press, 2003.
- 25. R. K. Nesbet. Algorithm for diagonalization of large matrices, *J. Chem. Phys.*, v. 43, 311 312 (1965).
- 26. В. И. Лутошкин, Г. Г. Дядюша, Ю. А. Кругляк. Количественная оценка альтернирования связей в полиенах, Сб. Строение молекул и квантовая химия (ред. А. И. Бродский). Киев: Наукова думка, 1970.
- 27. В. С. Куц, Ю. А. Кругляк. К анализу плохо разрешенных спектров ЭПР свободных радикалов, Сб. *Радиоспектроскопические и квантовохимические методы в структурных исследованиях* (ред. Л. А. Блюменфельд, В. В. Воеводский, Г. М. Жидомиров, Я. К. Сыркин). Москва: Наука, 1967.
- 28. Yu. A. Kruglyak, E. V. Mozdor. Study of electronic structure of radicals by the CI method.
 2. Ground state of the benzyl radical, *Theor. chim. Acta*, v. 15, 365 373 (1969).
- 29. Yu. A. Kruglyak, G. G. Dyadyusha, V. A. Kuprievich *et al. Computational Methods for Electronic Structure and Spectra of Molecules*. Kiev: Naukova Dumka, 1969.
- 30. L. I. Egorova, V. N. Mochalkin, R. I. Rakauskas *et al.* Calculation of the electronic structure of nonbenzoid conjugated molecules, *Theor. Exper. Chem.*, v. 2: 3, 221 229 (1966).
- 31. G. I. Kagan, N. Fundiler, G. M. Kagan. An algorithm for self-consistent field MO LCAO computations on conjugated systems with allowance for configuration interaction, *Theor. Exper. Chem.*, v. 2: 5, 440 444 (1966).
- 32. V. N. Mochalkin. Calculation of the charge distribution and the spectrum of perylene, *Theor. Exper. Chem.*, v. 2: 6, 531 534 (1966).
- 33. A. Imamura, H. Fujita, C. Nagata. Electronic structure of peptide and base components of nucleic acids in triplet state, *Bull. Chem. Soc. Japan*, v. 40: 1, 21 27 (1967).
- 34. G. W. Pukanic, D. R. Forshey, B. J. D. Wegener *et al.* LCAO-MO-SCF-CI semi-empirical *π*-electron calculations on heteroaromatic systems, *Theor. chim. Acta*, v. 9: 1, 38 50 (1967).
- 35. J. Kouba, Y. Ohrn. On the Projection of Many-Electron Spin Eigenstates, *Intern. J. Quantum Chem.*, v. 3, 513 521 (1969).
- 36. Yu. A. Kruglyak, E. V. Mozdor. Study of the electronic structure of radicals by the CI method.
 3. Excited states of the benzyl radical, *Theor. chim. Acta*, v. 15, 374 384 (1969).
- 37. Yu. A. Kruglyak, M. K. Pulatova, E. V. Mozdor *et al.* Study of electronic structure of γ-irradiated glycine and tyrosine radicals and their photoinduced reactions, *Biofizika*, v. 13: 3, 401 411 (1968).
- 38. Yu. A. Kruglyak. Interpretation of Electronic excitations in Molecules by Natural Orbital Occupation Numbers using as Example of $1^2B_2 \rightarrow 2^2B_2$ Excitation in the Benzyl Radical, *Preprint ITP-77-3*, Institute of Theoretical Physics, AS of UkrSSR. Kiev, 1977.
- 39. Yu. A. Kruglyak. Interpretation of Electronic excitations in Molecules by Natural Orbital Occupation Numbers using as Example of $1^2B_2 \rightarrow 2^2B_2$ Excitation in the Benzyl Radical, *Zhur. Struct. Khim.*, v. 19: 2, 360 363 (1978).
- 40. Yu. A. Kruglyak. Configuration interaction in the second quantization representation: basics with application up to full CI, *ScienceRise* (Ukraine), v. 4: 2(4), 98 115 (2014).
- Yu. A. Kruglyak. Configuration interaction in the second quantization representation: basics with application up to full CI, Chapter 2 in book A. V. Glushkov, O. Yu. Khetselius, Yu. A. Kruglyak, V. B. Ternovsky. *Calculational Methods in Quantum Geometry and Chaos Theory*, Part 3, Odessa: TES Publishing House, 2015.
- 42. E. S. Kryachko, Yu. A. Kruglyak. Nonorthogonal representation of the second quantization, *Preprint ITP-75-122*, Institute of Theoretical Physics, AS of UkrSSR. Kiev, 1975.
- 43. Е. С. Крячко, Ю. А. Кругляк. Неортогональное представление вторичного квантования, Докл. АН УССР, серия А, № 3, 254 – 257 (1975).

2.8. Многоконфигурационная теория ССП

2.8.1. О методах МК ССП

Как показывают расчеты с очень большим числом конфигураций большинство из них мало влияют на результаты вычислений многих свойств молекулярных систем (§ 2.7.3.7). Вместо этого используют небольшое число специально отобранных конфигураций, содержащих лишь часть доступных одноэлектронных орбиталей, и проводят оптимизацию не только коэффициентов разложения КВ, но и самих выбранных орбиталей. Такой подход называют методом многоконфигурационного самосогласованного поля (МК ССП/MCSCF).

Уточнение волновых функций в рамках общей схемы МК ССП восходит еще к Я. И. Френкелю (1934 год) [1], затем этот подход неоднократно переоткрывался [2 – 5],

Вычисления в рамках МК ССП обычно состоят из двух стадий, повторяемых циклически до достижения сходимости итерационного процесса, если, конечно, такой процесс сходится: при фиксированных текущих одноэлектронных орбиталях решается стандартная линейная вариационная задача определения коэффициентов разложения КВ, а затем оптимизируются одноэлектронные орбитали с фиксированными текущими коэффициентами КВ. Далее такую постановку задачи мы рассмотрим более подробно (§ 2.8.2.1).

При таком подходе может быть реализовано огромное многообразие возможных схем теории МК ССП. Одним из предельных случаев является учет лишь двух (или нескольких) детерминантов, необходимых для учета статической корреляции (§ 2.7.1). Другим предельным случаем является метод полного активного пространства ССП (ПАП ССП/CASSCF) [6]: отбирают небольшое число орбиталей для нескольких электронов и решают задачу вплоть до полного КВ, а остальные электроны распределяют по дважды заполненным орбиталям.

Еще одним подходом в теории МК ССП может служить метод антисимметризованного произведения строго ортогональных геминалей (АПСГ/APSG) [7, 8]. В этом методе используется то обстоятельство, что многие молекулярные системы можно рассматривать состоящими из синглетно связанных пар электронов. Соответствующая волновая функция имеет вид:

$$\Psi(1,2,...,N) = \hat{A} \prod_{i=1}^{N/2} g_i (2i-1,2i) \frac{1}{\sqrt{2}} [\alpha(2i-1)\beta(2i) - \beta(2i-1)\alpha(2i)], \quad (272)$$

и предполагается, что оптимизации подлежат геминали g_i (i = 1, 2, ..., N/2). Каждая геминаль есть симметричная функция своих пространственных координат. Подобные функции требуют выполнения условий строгой ортогональности:

$$\int g_i(1,2)g_j(1,2)dv_1 = \int g_i(1,2)g_j(1,2)dv_2 = 0, \quad (i \neq j),$$
(273)

другими словами, интеграл от произведения разных геминалей, даже взятый по координатам только одного электрона, равен нулю. Сами геминали обычно разлагают по произведениям одноэлектронных функций φ_k :

$$g_i(1,2) = \sum_{k,l} c_{i,kl} \,\varphi_k(1) \,\varphi_l(2). \quad (c_{i,kl} = c_{i,lk}).$$
(274)

Оказывается, что функция (272) фактически является частным случаем конфигурационного ряда (151). Гарантировать строгую ортогональность (273) тривиально, приписав отдельным геминалям ортогональные поднаборы ортонормированного базиса одноэлектронных функций φ_k , не имеющих общих элементов. В методе АПСГ оптимизируются как орбитали φ_k, φ_l , так и коэффициенты разложения c_{ikl} .

Частным случаем АПСГ является метод обобщенных валентных связей Годдарда (OBC/GVB) [9]: каждая геминаль описывается только одной парой одноэлектронных орбиталей без наложения на орбитали требования ортогональности, однако, требование ортогональности к каждой орбитали, используемой в других геминалях, сохраняется.

Перечень разнообразных вариантов многоконфигурационных методов ССП можно продолжать.

Далее достаточно подробно рассматривается метод одноэлектронного гамильтониана в МК теории ССП (ОЭГ МКССП/ОЕН MCSCF), разработанный сотрудниками киевской группы квантовой химии В. А. Куприевичем и О. В. Шрамко [10 – 13].

2.8.2. Метод одноэлектронного гамильтониана в МК теории ССП

2.8.2.1. Общая постановка задачи

Многоконфигурационная волновая функция

$$\Psi = \sum_{k} T_k \Psi_k , \qquad (273)$$

где детерминанты или их линейные комбинации Ψ_k строятся из спинорбиталей, пространственные части которых φ_i далее будем обозначать как $|i\rangle$, и Ψ_k

удовлетворяют обычным стандартным условиям (§ 2.7). Определению подлежат коэффициенты конфигурационного разложения T_k и ортонормированный набор орбиталей { ϕ }, минимизирующих энергетический функционал

$$E = \frac{\langle \Psi | \hat{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle}, \qquad (274)$$

где \hat{H} – стандартный молекулярный гамильтониан (6/гл. 1).

С учетом ортогональности орбиталей

$$\langle i | j \rangle = \delta_{ij} \tag{275}$$

интеграл нормировки волновой функции

$$\langle \Psi \,|\, \Psi \rangle = \sum_{k} T_{k}^{2} \tag{276}$$

и функционал энергии

$$E = \frac{\sum_{k,l} T_k T_l H_{kl}}{\sum_k T_k^2},$$
(277)

где

$$H_{kl} = \langle \Psi_k | \hat{H} | \Psi_l \rangle.$$
(278)

Уравнения, определяющие оптимальные значения T_k и { ϕ } при условиях ортонормировки (275), можно получить путем варьирования функционала

$$E' = \frac{\left(\sum_{k,l} T_k T_l H_{kl} - 2\sum_{i,j} \varepsilon_{ij} \langle i | j \rangle\right)}{\sum_k T_k^2}$$
(279)

по всем T_k и $|i\rangle$, входящим в (277), где условия ортонормировки (275) учтены через неопределенные множители Лагранжа ε_{ij} .

Варьирование (279) дает

$$\sum_{k} \frac{\partial E'}{\partial T_{k}} \,\delta T_{k} + \sum_{j} \frac{\partial E'}{\partial \varphi_{j}} \,\delta \varphi_{j} = 0.$$
⁽²⁸⁰⁾

Полагая вариации δT_k и $\delta \varphi_j$ независимыми, имеем

$$\partial E' / \partial T_k = 0, \qquad (281)$$

$$\partial E' / \partial \varphi_i = 0. \tag{282}$$

Решать систему уравнений (282) надлежит совместно с условиями ортогональности (275).

Выбрав орбитали начального приближения, итерационный процесс, ведущий преположительно к минимуму энергии, включает последовательное выполнение следующих двух шагов:

1) из системы уравнений (281) определяются конфигурационные коэффициенты разложения T_k , минимизирующие функционал энергии (277) при заданном наборе орбиталей { φ };

2) из системы уравнений (282) определяются орбитали $\{\varphi\}$, минимизирующие функционал энергии (277) при фиксированных коэффициентах T_k , определенных на предыдущем шаге. Полученный новый набор орбиталей $\{\varphi\}$ используется в качестве исходного при возвращении к шагу 1).

Учитывая (279), уравнения (281) переписываются в виде:

$$\sum_{k} (H_{lk} - \delta_{lk} E') T_{k} = 0.$$
(283)

Теперь коэффициенты T_k , обеспечивающие минимум функционала энергии при заданном наборе орбиталей { ϕ }, т. е. при определенных значениях матричных элементов H_{lk} (278), вычисляются как компоненты первого собственного вектора матрицы КВ с элементами (278).

Центральная задача МК теории ССП заключается в вычислении оптимального набора орбиталей $\{\varphi\}$, которые при фиксированных коэффициентах конфигурационного разложения T_k находятся из системы уравнений (282). В решении этой задачи различают обычно два подхода.

Традиционный подход заключается в сведении системы вариационных уравнений (282) к задаче на собственный значения некоторого эрмитового одноэлектронного гамильтониана (ОГ). Такой подход восходит еще к классическим работам Хартри и Фока в теории атома.

Другой подход был предложен Мак-Вини [14, 15]. В его основе лежит аппроксимация энергетической поверхности (277) в окрестности некоторой выбранной точки линейной функцией некоторых переменных, связанных с изменением орбиталей, и последующим спуском по этой поверхности в направлении отрицательного градиента. Мы рассмотрим эти оба подхода достаточно подробно.

2.8.2.1.1. Методы оптимизации орбиталей, основанные на вариационных уравнениях Эйлера

В традиционном подходе условия экстремума (282) функционала энергии (277) с фиксированными значениями коэффициентов конфигурационного разложения *T_k* записываются с учетом (279) следующим образом:

$$\sum_{k,l} T_k T_l \frac{\partial H_{kl}}{\partial \varphi_i} - 2 \frac{\partial}{\partial \varphi_i} \sum_j \varepsilon_{ij} \langle i \mid j \rangle = 0, \qquad (284)$$

а оптимальный набор орбиталей {*φ*} определяется системой вариационных уравнений Эйлера

$$\sum_{j} \hat{F}_{ij} | j \rangle = \sum_{k} \varepsilon_{ik} | k \rangle, \qquad (285)$$

где \hat{F}_{ij} есть некоторый эрмитов оператор ($\hat{F}_{ij} = \hat{F}_{ji}^{\dagger}$), зависящий от конкретной структуры учитываемых конфигураций и от самих орбиталей { φ }, а множители Лагранжа ε_{ik} соответствуют условиям ортогональности орбиталей (275). Матрица множителей Лагранжа в (285) должна быть симметричной, т. е.

$$\varepsilon_{ij} = \varepsilon_{ji}, \qquad (286)$$

поскольку для каждой пары орбиталей есть лишь одно условие (275).

Итак, вычисление оптимального орбитального набора { ϕ } сводится к решению системы уравнений (285) с учетом (286) и (275). Подчеркнем, что если опустить условия (286), то эквивалентность новой системы уравнений исходной системе (282) с учетом (275) уже не будет иметь места, так как каждое уравнение из системы уравнений (285) означает лишь то, что функции $\sum_{j} \hat{F}_{ij} | j \rangle$ имеют ненулевые компоненты в разложении по тем орбиталям ортогонального набора { ϕ }, которые входят в выражение для энергии.

Обратимся теперь к методам решения таких уравнений Эйлера типа (285). Поскольку операторы \hat{F}_{ij} зависят от решения системы уравнений, то эта система уравнений (285) нелинейная. Методы решения таких уравнений различаются способом исключения недиагональных множителей Лагранжа и способами линеаризации системы уравнений.

В случае хартри-фоковской волновой функции для систем с замкнутой оболочкой задача решения вариационных уравнений относительно простая. Для такой волновой функции

$$\hat{F}_{ij} = \hat{F} \delta_{ij}, \qquad (287)$$

и уравнения Эйлера (285) упрощаются до

$$\hat{F} |i\rangle = \sum_{k} \varepsilon_{ik} |k\rangle.$$
(288)

Хартри-фоковская волновая функция инвариантна относительно унитарного преобразования входящих в нее орбиталей: уравнения (288) остаются прежними после диагонализации матрицы множителей Лагранжа, т. е. задача определения орбиталей сводится к задаче на собственные значения ОГ [16] в виде оператора Фока:

$$\hat{F} |i\rangle = \varepsilon_i |i\rangle. \tag{289}$$

Ортогональность орбиталей обеспечивается автоматически, поскольку собственные функции, принадлежащие разным собственным значениям эрмитового оператора, ортогональны, и условия (286) в этом случае очевидны.

Подобное сведение уравнений (285) при условиях (286) и (275) к задаче на собственные значения ОГ в ряду других случаев становится уже невозможным. Так, например, для систем с открытой оболочкой даже одноконфигурационная волновая функция уже не будет инвариантной по отношению к произвольному унитарному преобразованию орбиталей и поэтому недиагональные множители Лагранжа должны сохраняться [17]. Эти множители В общем случае многоконфигурационной волновой функции тем более невозможно элиминировать так просто как для хартри-фоковской волновой функции [18].

В таком частном случае, когда многоконфигурационная волновая функция наряду с хартри-фоковской конфигурацией включает также двухкратновозбужденные конфигурации, соответствующие переходу пары электронов с заполненной орбитали на виртуальную, операторы \hat{F}_{ii} имеют вид:

$$\hat{F}_{ij} = \hat{F}_i \,\delta_{ij},\tag{290}$$

где оператор \hat{F}_i эрмитов:

$$\hat{F}_i = \hat{F}_i^{\dagger}.$$
(291)

Уравнения Эйлера (285) теперь выглядят проще [19]:

$$\hat{F}_{i} |i\rangle = \sum_{k} \varepsilon_{ik} |k\rangle, \qquad (292)$$

однако, проблема исключения недиагональных множителей Лагранжа попрежнему сохраняется, что вызывает серьезные трудности в ходе решения вариационных уравнений.

В [20] используется метод оптимизации орбиталей, в котором в вариационные уравнения вводятся лишь множители Лагранжа,

соответствующие условиям нормировки орбиталей. Тогда вместо (292) имеем систему уравнений

$$\hat{F}_i \left| i \right\rangle = \varepsilon_i \left| i \right\rangle, \tag{293}$$

в котором каждое уравнение решается в пространстве, ортогональном к пространству решений остальных уравнений. Отметим, однако, что решение такой системы уравнений с независимым учетом условий ортогональности даже при небольшом числе уравнений может быть весьма громоздкой процедурой.

В атомных расчетах недиагональные множители Лагранжа не вызывают специальных затруднений, поскольку их можно определить численно на каждом итерационном цикле [21]. В молекулярных расчетах, когда нельзя обойтись без разложения искомого орбитального набора по выбранному фиксированному базису, их нужно исключать. Рутан показал [16], что для некоторых одноконфигурационных функций с открытой оболочкой можно определить так называемые связывающие операторы, которые эквивалентны учету недиагональных множителей Лагранжа. Эти операторы затем можно объединить с ОГ \hat{F}_i таким образом, чтобы свести уравнения к задаче на псевдособственные значения. Хузинага [22, 23], а позже Бирс и Фрага [22, 23] распространили этот метод на более широкий класс конфигураций с открытыми оболочками.

Метод связывающих операторов заключается во внесении недиагональных множителей Лагранжа в левую часть уравнений (292). Используя ортонормируемость орбиталей (275), из (292) имеем:

$$\varepsilon_{ik} = \langle k \,|\, \hat{F}_i \,|\, i \rangle, \tag{294}$$

или иначе

$$\varepsilon_{ik} = \langle k \, | \, \hat{F}_k \, | \, i \rangle, \tag{295}$$

что вытекает из условий симметрии множителей Лагранжа (286) и эрмитовости операторов \hat{F}_i . Выделив в левой части уравнений (292) член с k = i и перенеся оставшуюся сумму в левую часть этих уравнений, с учетом (295) получим:

$$(\hat{F}_{i} - \sum_{k(\neq i)} |k\rangle \langle k | \hat{F}_{k}) |i\rangle = \varepsilon_{i} |i\rangle.$$
(296)

Оператор в круглых скобках не обладает свойством эрмитовости из-за неэрмитовости его второго слагаемого. Добавив, однако, к левой части (296) соотношение

$$-\sum_{k(\neq i)} \hat{F}_k |k\rangle \langle k|i\rangle = 0, \qquad (297)$$

уравнения (292) для упомянутого выше частного случая, когда многоконфигурационная волновая функция наряду с хартри-фоковской конфигурацией включает также двухкратновозбужденные конфигурации, соответствующие переходу пары электронов с заполненной орбитали на виртуальную, преобразуются к следующему виду:

$$\hat{\mathfrak{I}}_{i}\left|i\right\rangle = \varepsilon_{i}\left|i\right\rangle,\tag{298}$$

где

$$\hat{\mathfrak{T}}_i = \hat{F}_i - \hat{R}_i \tag{299}$$

есть новый одноэлектронный оператор, в котором связывающий оператор

$$\hat{R}_{i} = \sum_{k(\neq i)} (|k\rangle \langle k | \hat{F}_{k} + \hat{F}_{k} | k\rangle \langle k |).$$
(300)

Оператор $\hat{\mathfrak{I}}_i$ с учетом (291) и вида связывающего оператора (300) теперь является эрмитовым.

Итак, мы получили систему уравнений (298), которую следует решать при дополнительных условиях (275). Орбитали, удовлетворяющие (298), удовлетворяют также уравнениям

$$\langle j | \hat{\mathfrak{I}}_i | i \rangle = \varepsilon_i \, \delta_{ij},$$
 (301)

что с учетом (299) и (300) означает, что для $i \neq j$

$$\langle j | \hat{F}_i - \hat{F}_j | i \rangle = 0.$$
(302)

Используя определения (294) и (295) множителей Лагранжа, из (302) получаем, что $\varepsilon_{ij} = \varepsilon_{ji}$. Это означает, что решения задач на собственные значения (298) с операторами (299) удовлетворяют условиям (286). Поскольку для любой орбитали $|v\rangle$, ортогональной ко всем входящим в выражение для энергии орбиталям $|i\rangle$ и являющейся решением уравнений (298), справедливы соотношения

$$\langle v | \hat{F}_i | i \rangle = \langle v | \hat{\mathfrak{I}}_i | i \rangle = \mathcal{E}_i \langle v | i \rangle = 0, \qquad (303)$$

то функции $\hat{F}_i |i\rangle$ могут быть представлены в виде разложения лишь по тем орбиталям, которые входят в выражение для энергии, т. е. решения уравнений (298) удовлетворяют соотношениям (292). Итак, орбитали, являющиеся решением системы уравнений (298) при условии (275), удовлетворяют также исходной системе вариационных уравнений (292) при условиях (286) и (275).

Подобное доказательство эквивалентности исходной и преобразованной систем уравнений невозможно провести для операторов, введенных в [26, 27] и содержащих операторы типа

$$\hat{R}_{i} = \sum_{k(\neq i)} \left(|k\rangle \langle k | \hat{F}_{i} + \hat{F}_{i} | k\rangle \langle k | \right),$$
(304)

поскольку в этом случае система уравнений (298) при условии (275) не эквивалентна исходной системе, так как для решения новой системы с оператором $\hat{\mathfrak{I}}_i$, содержащим \hat{R}_i в виде (304), условия (286) либо вообще не выполняются, либо выполняются частично [27, 28]. Эта некорректность была устранена [29] путем включения в систему (298) с учетом (275) соответствующих уравнений типа (302).

В работе [19] для построения оператора $\hat{\Im}_i$ предлагается использовать связывающий оператор более общего вида

$$\hat{R}_{i} = \sum_{k(\neq i)} (|k\rangle \langle k | \hat{G}_{i}^{k} + \hat{G}_{i}^{k} | k\rangle \langle k |), \qquad (305)$$

где

$$\hat{G}_{i}^{k} = \hat{G}_{k}^{i} = \mu \hat{F}_{k} + (1 - \mu) \hat{F}_{i}, \quad (k < i), \qquad (306)$$

а *μ* – любое действительное число. Самосогласованные решения уравнений (298) с оператором (305) удовлетворяют как уравнениям (286), так и условиям ортогональности (275).

Методы, использовании связывающих основанные на операторов, лишь при учете конфигурационном разложении (273)возможны В конфигураций определенного типа. Тогда операторы $\hat{\mathfrak{I}}_i$ являются разными для разных орбиталей, и следует решать последовательно ряд связанных между собой задач на собственные значения, а полученные таким путем орбитали ортогонализовать. Промежуточная ортогонализация орбиталей необходима также в методе, предложенном в работе [19], поскольку решения приведенных в этой работе уравнений удовлетворяют условиям (275) только в случае, если орбитали являются самосогласованными.

Вместо решения ряда связанных между собой задач на псевдособственные значения более приемлемым было бы нахождение оптимизированных орбиталей как собственных функций ОГ, общего для всех орбиталей. Такой ОГ для уравнений вида (292) был получен [30] из условия, что его матричные элементы пропорциональны левым частям соответствующих вариационных уравнений. Поскольку число последних меньше числа различных матричных элементов ОГ, некоторые из матричных элементов, а также коэффициенты пропорциональности могут быть выбраны произвольно. Одноэлектронный гамильтониан такого типа можно записать в следующем достаточно общем виде:

$$\hat{\Phi} = \sum_{i,j} \{ \alpha_{ij}[|i\rangle\langle i|(\hat{F}_i - \hat{F}_j)|j\rangle\langle j| + |j\rangle\langle j|(\hat{F}_i - \hat{F}_j)|i\rangle\langle i|] + \beta_{ij}|i\rangle\langle i|\hat{B}|j\rangle\langle j|\}, (307)$$

где α_{ij} и β_{ij} – произвольные числа, удовлетворяющие соотношениям

$$\alpha_{ij} = -\alpha_{ji}, \quad \beta_{ij} = \beta_{ji}, \quad \beta_{ij} \neq 0 \tag{308}$$

только при $\hat{F}_i = \hat{F}_j$, причем $\hat{F}_v = 0$, если орбиталь $|v\rangle$ не входит в выражение для энергии. Можно показать, что орбитали, удовлетворяющие задаче на псевдособственные значения вида (289) с оператором (307), удовлетворяют также исходной системе уравнений (292) с условиями (286) и (275).

Используя аналогичный метод, в работе [30] в рамках МК теории ССП было построено семейство ОГ без ограничений (290), накладываемых на вид вариационных уравнений.

Когда система вариационных уравнений сводится к задаче на собственные значения либо с помощью связывающих операторов, либо непосредственно, такое сведение не является единственно возможным [31] и можно получить многопараметрическое семейство ОГ. Чтобы конкретизировать значения неопределенных параметров необходимо вводить дополнительные предположения. Можно потребовать, например, чтобы при пренебрежении членами межэлектронного взаимодействия в молекулярном гамильтониане он превращался в тривиальгый ОГ для невзаимодействующих электронов. В МК теории ССП ОГ такого типа был предложен Адамсом [33].

Другой способ линеаризации вариационных уравнений (285) заключается в применении к этой системе метода Ньютон – Рафсона [33]. При таком подходе в (285) прежде всего формально исключаются все множители Лагранжа. Для этого на основе уравнений (275), (285) и (286) полагают

$$\varepsilon_{ik} = \varepsilon_{ki} = \frac{1}{2} \sum_{j} \left(\langle k \, | \, \hat{F}_{ij} \, | \, j \rangle + \langle i \, | \, \hat{F}_{kj} \, | \, j \rangle \right), \tag{309}$$

и уравнения (285) записывают в виде

$$\sum_{j} [\hat{F}_{ij} | j\rangle - \frac{1}{2} \sum_{k} (\langle k | \hat{F}_{ij} | j\rangle + \langle i | \hat{F}_{kj} | j\rangle)] = 0.$$
(310)

Подставляя в (310) новые орбитали $\{\varphi\}$, связанные с исходными орбиталями $\{\varphi^0\}$ соотношением

$$|i\rangle = |i^{0}\rangle + |\delta i\rangle, \qquad (311)$$

и учитывая, что $\hat{F}_{ij} = \hat{F}_{ji}^{\dagger}$, в первом порядке по $|\delta i\rangle$ получаем систему линейных уравнений для определения поправок $|\delta i\rangle$, а именно:

$$\sum_{j} \left\{ -\hat{F}_{ij}^{0} + \frac{1}{2} \sum_{k} |k^{0}\rangle \left(\langle k^{0} | \hat{F}_{ij}^{0} + \delta_{ij} \sum_{l} \langle l^{0} | \hat{F}_{kl}^{0} \right) + \varepsilon_{ij} + \sum_{l} |k^{0}\rangle \langle k^{0} | \hat{F}_{ik}^{0} + |k^{0}\rangle \langle i^{0} | \hat{F}_{kj}^{0} \rangle - 2\hat{B}_{ik,j} + \sum_{l} |k^{0}\rangle \langle \langle k^{0} | \hat{B}_{il,j} + \langle i^{0} | \hat{B}_{kl,j} \rangle] \right\} |\delta j\rangle =$$

$$= \sum_{i} (\hat{F}_{ij}^{0} - \varepsilon_{ij}^{0}) |j^{0}\rangle, \qquad (312)$$

где \hat{F}_{ij}^0 – оператор \hat{F}_{ij} в представлении исходных орбиталей, ε_{ij}^0 – значение множителя Лагранжа, вычисленное согласно (309) на орбиталях { φ^0 }, а $\hat{B}_{ij,l}$ определяются конкретной зависимостью оператора \hat{F}_{ij} от орбиталей и от набора конфигураций:

$$\delta \hat{F}_{ij} \mid j^0 \rangle = 2 \sum_{l} \hat{B}_{ij,l} \mid \delta l \rangle \,. \tag{313}$$

Такой подход по сравнению с другими способами линеаризации теоретически обеспечивает наиболее быструю сходимость итерационного процесса. Отметим, однако, что уравнения (310), получающиеся после полного исключения множителей Лагранжа, вместе с условиями ортонормируемости орбиталей (275), образуют совместную переопределенную систему уравнений, из которой в результате применения процедуры Ньютона – Рафсона получается система уравнений (312) при условии (275) вообще говоря уже не совместная. После ортогонализации орбитали будут удовлетворять уравнениям (312) лишь обстоятельство, приближенно. Ha ЭТО которое несомненно должно отрицательно сказаться на скорости сходимости, впервые обратил внимание Браун [34] при обсуждении метода решения вариационных уравнений, предложенного Весселем [35].

Главное обстоятельство, затрудняющее практическое применение рассмотренных итерационных схем, состоит в том, что условия их сходимости не поддаются теоретическому анализу. Неудовлетворительная сходимость основанной процедуры самосогласования, на приведении одноконфигурационных вариационных уравнений К задаче на псевдособственные значения, хорошо известна [34, 36]. Время, требуемое для достижения самосогласования (когда его можно достичь), особенно при расчетах систем с открытыми оболочками, часто может стать значительно большим, чем время, затрачиваемое на вычисление необходимых интегралов [34, 36].

В МК теории ССП положение еще сложнее. Как отмечено в [29], не всегда удается получить самосогласованное решение даже при тщательном выборе начального приближения и в ряде случаев приходится усложнять первоначальную итерационную схему путем применения экстраполяционных методов [37]. Не известно, насколько эффективны такие методы в МК теории ССП, однако, в одноконфигурационном приближении методы экстраполяции сходимость укоряют, но они совершенно неэффективны при осциллирующем характере итерационного процесса [36].

Рассмотренные методы оптимизации орбитального набора, оставляя в стороне вопрос о сходимости итерационной процедуры, не затрагивают и вопроса о характере полученного решения. В силу природы самих вариационных уравнений. выражающих необходимые ЛИШЬ **УСЛОВИЯ** экстремума функционала энергии, самосогласованные решения, полученные таким методом, реализуют его стационарное значение, не обязательно являющееся минимумом. С особой осторожностью следует относиться к решениям, найденным с помощью метода Ньютона – Рафсона, который при неудачном выборе начального приближения может привести к решению, соответствующему седловой точке.

2.8.2.1.2. Градиентный метод оптимизации орбиталей

В МК теории ССП более удобным является прямой подход к определению самосогласованных орбиталей, основанный на непосредственной минимизации энергетического функционала без привлечения уравнений Эйлера. Обычно градиентный метод, основанный используется на аппроксимации энергетической поверхности в окрестности выбранной точки линейной переменных, функцией связанных С преобразованием орбиталей, И последующим скорейшим спуском в направлении отрицательного градиента. При достаточно малом шаге этот метод теоретически должен обеспечить сходимость к стационарной точке, всегда являющейся минимумом энергии.

Предложенный первоначально для случая одной конфигурации [14], этот метод нашел широкое применение в МК теории ССП [15, 38 – 40]. Направление скорейшего спуска по поверхности энергии определялось в пространстве, координатами которого являлись элементы инфинитезимальной матрицы унитарного преобразования орбиталей.

Средняя энергия состояния, описываемого многоконфигурационной волновой функцией (273), записывается через свернутые по спину одно- и двухчастичную матрицы плотности γ и Γ следующим образом [15, 41]:

$$E = \sum_{i,k} \gamma(i \mid k) \langle k \mid \hat{h} \mid i \rangle + \sum_{i,j,k,l} \Gamma(ij \mid kl) \langle kl \mid \hat{g} \mid ij \rangle, \qquad (314)$$

где одно- и двухэлектронные интегралы

$$\langle k | \hat{h} | i \rangle = \int \varphi_k(1) \hat{h}(1) \varphi_i(1) dv_1,$$
 (315)

$$\langle kl | \hat{g} | ij \rangle = \iint \varphi_k(1) \varphi_l(2) \hat{g}(1,2) \varphi_i(1) \varphi_j(2) dv_1 dv_2,$$
 (316)

а элементы матриц плотности $\gamma(i|k)$ и $\Gamma(ij|kl)$ в представлении, определяемом этим же набором орбиталей, зависят от коэффициентов конфигурационного разложения T_k в (273) следующим образом [15]:

$$\gamma(i|k) = \sum_{k,l} T_k T_l \gamma_{kl}(i|k), \qquad (317)$$

$$\Gamma(ij | kl) = \sum_{k,l} T_k T_l \Gamma_{kl}(ij | kl).$$
(318)

В этих равенствах $\gamma_{kl}(i|k)$ и $\Gamma_{kl}(ij|kl)$ не зависят от вариационно определяемых значений коэффициентов конфигурационного разложения T_k и от орбиталей { φ } и представляют собой численные коэффициенты при интегралах (315) и (316) в выражении для элементов матрицы KB, а именно:

$$\langle \Psi_{k} | \hat{H} | \Psi_{l} \rangle = \sum_{i,k} \gamma_{kl}(i | k) \langle k | \hat{h} | i \rangle + \sum_{i,j,k,l} \Gamma_{kl}(ij | kl) \langle kl | \hat{g} | ij \rangle.$$
(319)

Как и при традиционном подходе (§ 2.8.2.1.1), конфигурационные коэффициенты T_k определяются из уравнений (283). Далее мы рассматриваем только шаг оптимизации орбитального набора при фиксированных коэффициентах T_k , так что элементы $\gamma(i|k)$ (317) и $\Gamma(ij|kl)$ (318), явно не зависящие от орбиталей, являются числовыми константами. Поэтому при переходе от орбитального набора { φ } к новому набору { φ' } с помощью малого ортогонального преобразования

$$|k'\rangle = |k\rangle + \sum_{m} D_{mk} |m\rangle$$
(320)

энергия может изменяться лишь за счет изменений интегралов (315) и (316), и с точностью до членов второго порядка по D_{mk} это изменение равно

$$\Delta E \equiv E' - E = \sum_{k < m} V_{km} D_{mk} , \qquad (321)$$

где

$$V_{km} = 2\sum_{i} [\gamma(k \mid i)\langle i \mid \hat{h} \mid m \rangle - \gamma(i \mid m)\langle k \mid \hat{h} \mid i \rangle] + 4\sum_{i,j,l} [\Gamma(kl \mid ij)\langle ij \mid \hat{g} \mid ml \rangle - \Gamma(il \mid mj)\langle kj \mid \hat{g} \mid il \rangle].$$
(322)

Для получения соотношения (321) использовалось свойство антисимметрии матрицы преобразования

$$D_{km} = -D_{mk}, \qquad (323)$$

вытекающее из условия ортогональности исходного и нового наборов орбиталей. Преобразование (320) следует рассматривать как корректирующее преобразование исходного орбитального набора на каждом цикле итераций, которое используется в любой процедуре преобразования.

Если в выражении (321) величины D_{mk} при m > k рассматривать как независимые переменные, то оно будет представлять собой линейную функцию, аппроксимирующую поверхность энергии вблизи точки, определяемой системой орбиталей { φ }, а величины V_{km} имеют смысл первых производных энергии по переменным D_{mk} .

Возьмем ненулевые действительные числа ξ_{km} и введем новые независимые переменные

$$y_{km} = D_{km} / \xi_{km}, \qquad (324)$$

подстановка которых в (321) дает

$$\Delta E = \sum_{k < m} \xi_{km} V_{km} y_{mk} \,. \tag{325}$$

Переменные *у*_{*mk*} трактуются как координаты вектора (шага) в евклидовом пространстве с метрикой, определяемой квадратом длины шага

$$l^{2} \equiv \sum_{k < m} y_{mk}^{2} = \sum_{k < m} D_{mk}^{2} / \xi_{mk}^{2}.$$
(326)

Шаг, выбранный в направлении противоположном градиенту *E*, т. е. вектор с компонентами

$$y_{mk} = -\lambda (\nabla E)_{mk} = -\lambda \xi_{mk} V_{km}$$
(327)

обеспечивает скорейший относительно данной метрики спуск по энергетической поверхности. Положительная константа λ определяет длину шага скорейшего спуска. В градиентном методе Мак-Вини [14, 15, 39] все коэффициенты масштабного преобразования (324) полагаются равными единице, в величину параметра λ выбирают эмпирически [40]. Леви [38] выбирал величины $\lambda \xi_{km}^2$ разными для разных координат D_{mk} , исходя из грубых оценок вторых производных энергии.

Итак, переходя от начального набора $\{\phi\}$ к новому набору $\{\phi'\}$ с помощью преобразования (320), где

$$D_{mk} = -\lambda \xi_{mk}^2 V_{km}, \qquad (328)$$

получим новое значение энергии, которое будет по крайней мере не выше, чем первоначальное. Метод продвижения к минимуму энергии очевиден, а именно: выбирают орбитали начального приближения { ϕ }, затем с использованием (322) вычисляют матрицу преобразования D и с ее помощью определяют новые орбитали { ϕ '} по (320). После определения из уравнений (283) новых коэффициентов T_k , этот процесс повторяют, взяв в качестве исходных предварительно ортогонализованные орбитали, полученные на предыдущем цикле. Самосогласование считается достигнутым, если изменение энергии, согласно (321),

$$\Delta E = -\lambda \sum_{k < m} \xi_{mk}^2 V_{km}^2 \tag{329}$$

обратится в нуль с некоторой заданной точностью.

Градиентный метод представляется эффективным методом расчета МКволновых функций, так как он не связан с вариационными уравнениями Эйлера и свободен от сопутствующих их решению недостатков (§ 2.8.2.1.1). В градиентном методе, однако, к сожалению нет некоторых преимуществ традиционной схемы ССП. В частности, преобразование орбиталей (320) сохраняет их ортогональность только в первом порядке по D_{mk} . Для того, чтобы ее сохранить, орбитали между итерациями нужно корректировать с помощью какого-либо процесса ортогонализации.

С другой стороны, при традиционном подходе (§ 2.8.2.1.1), когда орбитали находятся либо непосредственно из решения вариационных уравнений Эйлера, либо, когда это возможно, с помощью ОГ, невозможно обеспечить стабильную сходимость процесса самосогласования и быть уверенным в том, что полученный экстремум является минимумом энергии. К тому же, почти все рассмотренные в § 2.8.2.1.1 схемы линеаризации вариационных уравнений и в этом случае требуют промежуточной ортогонализации орбиталей. В этом смысле они не аналогичны методу Хартри – Фока в одноконфигурационном приближении, так как в большинстве своем они не соответствуют задаче на псевдособственные значения вида (289).

В связи со сказанным выше представляется актуальной постановка следующей задачи. В МК приближении (273) с произвольным набором конфигураций сформулировать практический метод построения ОГ, одного и общего для всех орбиталей, обеспечивающего стабильную сходимость процедуры самосогласования к стационарному решению, соответствующему минимуму функционала энергии. Эта задача была решена в работах Куприевича и Шрамко [10 – 13, 42].

161

2.8.2.2. Метод ОГ в МК теории ССП

Сведение задачи отыскания оптимизированных орбиталей к задаче на псевдособственные значения вида (287) для некоторого одного и общего для всех орбиталей эрмитового оператора в теории ССП является наиболее естественным и удобным в практических расчетах. В этом случае орбитали после каждой итерации будут автоматически удовлетворять условиям ортогональности. Однако оператор должен обеспечивать сходимость процедуры самосогласования к минимуму энергетического функционала. В связи с этим представляется необходимым более последовательное изучение вопроса об учете геометрических особенностей энергетической поверхности при отыскании оптимизированных орбиталей.

Исходя из квадратичной аппроксимации средней энергии, далее строится метод ОГ и анализируется ход процедуры самосогласования на различных ее стадиях. На основе полученных результатов исследуются возможности управления ходом процесса самосогласования в зависимости от геометрических особенностей энергетической поверхности с целью построения на основе метода ОГ вычислительной схемы, обеспечивающей стабильную сходимость для широкого круга задач при фактически минимальном объеме вычислительной работы.

2.8.2.2.1. Квадратичная аппроксимация энергетической поверхности в пространстве элементов унитарной матрицы преобразования орбиталей

В МК теории ССП волновая функция задается орбитальным набором { ϕ } и набором конфигурационных коэффициентов T_k . Процедура самосогласования заключается в поочередной оптимизации { ϕ } и T_k . Внимание далее мы сосредоточим на оптимизации ортонормированного набора { ϕ }, т. е. на построении набора, минимизирующего энергетический функционал при фиксированных коэффициентах T_k .

Уточнение орбиталей выполняется, как обычно, по итерационной схеме. Задав исходный ортонормированный набор { ϕ }, рассмотрим один шаг такого уточнения, приводящий к ортонормированному набору { ϕ '} следующего приближения. При этом будем исходить из преобразования орбиталей, аналогичного использующемуся в градиентном методе (§ 2.8.2.1.2), однако, в отличие от последнего искомые орбитали, как и в одноконфигурационном методе ХФ, будем предполагать нормированными собственными функциями некоторого эрмитового оператора с невырожденным спектром – ОГ $\hat{\Phi}$, вид

162

которого определим позже. Другими словами, потребуем, чтобы искомые орбитали удовлетворяли уравнениям

$$\hat{\Phi}|i\rangle = \Lambda_i |i\rangle. \tag{330}$$

Переходу $\{\phi\} \rightarrow \{\phi'\}$ будет соответствовать цикл процедуры самосогласования, не нарушающий, однако, условий их ортогональности.

Предположим, что исходный набор орбиталей { φ } близок к самосогласованному, т. е. матрица оператора $\hat{\Phi}$ в представлении этих орбиталей близка к диагональной и уточнение орбиталей будет небольшим. Тогда во втором порядке теории возмущений Рэлея – Шредингера (Приложение П-5) установим приближенно связь преобразования орбиталей (320) с матричными элементами оператора $\hat{\Phi}$ на орбиталях исходного набора, а именно:

$$D_{mk} = D_{mk}^{(1)} + D_{mk}^{(2)}, ag{31a}$$

$$D_{mk}^{(1)} = \Phi_{mk} / \omega_{km}, \quad D_{kk}^{(1)} = 0, \quad (m \neq k)$$
 (3316)

$$D_{mk}^{(2)} = \sum_{i(\neq k)} \frac{\Phi_{mi} \Phi_{ik}}{\omega_{ki} \omega_{km}}, \quad (m \neq k)$$
(331b)

$$D_{kk}^{(2)} = -\frac{1}{2} \sum_{i(\neq k)} \frac{\Phi_{ik}^2}{\omega_{ki}^2},$$
(331r)

где ω_{km} являются разностями диагональных матричных элементов оператора $\hat{\Phi}$, которые фиксируются заранее

$$\omega_{km} = \Phi_{kk} - \Phi_{mm} \,. \tag{332}$$

Выражения (331в) и (331г) можно объединить в одно выражение, вводя величину

$$\Theta_{mk}^{i} = \begin{cases} 1, & (\Pi p \mu \quad k = m) \\ 2 \frac{\omega_{im}}{\omega_{km}}. & (\Pi p \mu \quad k \neq m) \end{cases}$$
(331д)

Тогда с учетом (331б) окончательно имеем:

$$D_{mk}^{(2)} = \frac{1}{2} \sum_{i(\neq k)} \Theta_{mk}^{i} D_{mi}^{(1)} D_{ik}^{(1)}.$$
 (331e)

Поскольку элементы матриц плотности $\gamma(i | k)$ (317) и $\Gamma(ij | kl)$ (318), входящие в выражение для средней энергии (314), не зависят от орбитального

набора, для получения энергии *E'* на преобразованных орбиталях нужно лишь заменить орбитали $|i\rangle$ в одно- и двухэлектронных интегралах $\langle k | \hat{h} | i \rangle$ и $\langle kl | \hat{g} | ij \rangle$ на соответствующие орбитали из набора { φ' }. Подставляя в выражения для интегралов разложения (320) с учетом (331а) и (331е) и опуская члены, в которые входят произведения трех и более величин $D_{mk}^{(1)}$, окончательно получим:

$$E' = E + \sum_{m,k} D_{mk}^{(1)} v_{km} + \frac{1}{2} \sum_{k,m,p,q} D_{mk}^{(1)} D_{qp}^{(1)} a_{kmpq}, \qquad (332)$$

где

$$v_{km} = 2\sum_{i} [\gamma(k|i)\langle i|\hat{h}|m\rangle + 2\sum_{j,l} \Gamma(ki|jl)\langle jl|\hat{g}|mi\rangle], \qquad (333)$$

$$a_{kmpq} = 2\gamma(k \mid p) \langle m \mid \hat{h} \mid q \rangle + \delta_{kq} \Theta_{pm}^{q} v_{pm} + 4\sum_{i,j,l} \Gamma(kj \mid li) \left[\delta_{jp} \langle mq \mid \hat{g} \mid li \rangle + \delta_{lp} \langle mj \mid \hat{g} \mid qi \rangle + \delta_{ip} \langle mj \mid \hat{g} \mid lq \rangle \right].$$
(334)

Пусть размерность базиса, в котором определены орбитали, есть n. Тогда матрицы унитарных преобразований имеют форму $n \times n$ и образуют n(n-1)/2-параметрическое семейство. Элементы матриц малых унитарных преобразований задаются соотношениями (331) в явном виде с точностью до членов третьего порядка малости. При таком способе задания в качестве независимых параметров выступают n(n-1)/2 величин $D_{mk}^{(1)}$ при m > k, так как из (331) следует зависимость

$$D_{mk}^{(1)} = -D_{km}^{(1)}.$$
(335)

Исключив в (332) с помощью выражения (335) $D_{mk}^{(1)}$ при m < k и сгруппировав соответствующие члены, получим E' в виде разложения в ряд Тейлора по независимым переменным $D_{mk}^{(1)}$ с m > k, а именно:

$$E' = E + \sum_{m>k} D_{mk}^{(1)} V_{km} + \sum_{m>k, q>p} D_{mk}^{(1)} D_{qp}^{(1)} A_{kmpq}, \qquad (336)$$

где

$$V_{km} = (1 - \hat{P}_{km}) v_{km}, \qquad (337)$$

$$A_{kmpq} = \frac{1}{2} (1 + \hat{P}_{kp} \hat{P}_{mq}) (1 - \hat{P}_{km}) (1 - \hat{P}_{pq}) a_{kmpq}.$$
(338)

Символом \hat{P}_{ij} обозначен оператор перестановки индексов *i* и *j* (Приложение П-3). Отметим, что формула (337) представляет собой иную запись выражения (322).

2.8.2.2.2. Построение ОГ первого приближения

Если в выражении (336) ограничиться лишь членами первого порядка по $D_{mk}^{(1)}$, то переходя к новым независимым переменным по формуле (324) и выбирая шаг в направлении отрицательного градиента *E* по формуле (327), как это делалось в § 2.8.2.1.2, мы с помощью преобразования орбиталей (320), где $D_{mk}^{(1)}$ определяются согласно (328), будем перемещаться по поверхности средней энергии к минимуму. В обычном градиентном методе для оптимизации орбиталей используется непосредственно преобразование (320), которое является унитарным лишь приближенно, поэтому после каждого шага спуска полученный набор орбиталей необходимо ортогонализовать. В отличие от этого воспользуемся мы воспользуемся связью (3316) элементов $D_{mk}^{(1)}$

$$\Phi_{km} = \omega_{km} D_{mk}^{(1)} \,. \tag{339}$$

Поскольку для продвижения к минимуму *E* величины $D_{mk}^{(1)}$ должны определяться по соотношению (328), легко найти, выражая ω_{km} через фиксированные диагональные матричные элементы оператора согласно формуле (332), явный вид недиагональных матричных элементов искомого ОГ, а именно:

$$\Phi_{km} = \lambda (\Phi_{mm} - \Phi_{kk}) \xi_{km}^2 V_{km}. \quad (k \neq m)$$
(340)

В выражении (340) лишь величины V_{km} полностью определяются соотношениями (337) и (333). Диагональные матричные элементы Φ_{kk} вместе с метрическими коэффициентами ξ_{km}^2 и величиной шага спуска λ рассматриваются как параметры, произвол в выборе которых ограничивается лишь следующими условиями:

 $\lambda \xi_{km}^2 | V_{km} | \ll 1, \quad \Phi_{kk} \neq \Phi_{mm}$ (для каждой пары k, m) (341a)

$$\lambda > 0. \tag{3416}$$

Условия (341а) обеспечивают применимость теории возмущений. Когда же удовлетворяются условия (341б), цикл процедуры самосогласования будет шагом спуска по энергетической поверхности, если такой шаг достаточно мал. Так как при достижении экстремума все V_{km} должны обратиться в нуль, при подходе к экстремальной точке они должны по модулю уменьшаться, хотя и не обязательно монотонно.

О приближении к экстремальной точке можно судить по одному из следующих критериев:

$$\varepsilon = \sum_{m>k} V_{km}^2 \tag{342}$$

ИЛИ

$$\delta = \max |V_{km}|, \tag{343}$$

значения которых в точке экстремума обращаются в нуль. При уменьшении величин ε или δ условие (341a) удовлетворяется все более строго. Поэтому можно заключить, что если процесс самосогласования, основанный на ОГ (340) сходится, то полученные орбитали реализуют минимум (по крайней мере локальный) энергетического функционала (314) при заданных элементах матриц плотности $\gamma(i|k)$ и $\Gamma(ij|kl)$.

2.8.2.2.3. Выбор параметров ОГ

При применении ОГ вида (340) для оптимизации орбиталей МК волновой функции важным является вопрос о выборе его параметров. По сравнению с градиентным методом в методе ОГ новыми являются лишь параметры Φ_{kk} . Однако, как видно из выражения (340) и как показали результаты численных расчетов, выполненных с несколькими сильно отличающимися между собой наборами элементов Φ_{kk} при фиксированных значениях остальных параметров, выбор Φ_{kk} не влияет на процесс самосогласования. Диагональные элементы ОГ можно положить равными различным константам, например, как это было сделано в одной из численных реализаций метода, последовательным натуральным числам

$$\Phi_{kk} = k \,. \tag{344}$$

выбор метрических коэффициентов Простейший ξ_{km} состоит В приравнивании всех их единице, как это делалось в стандартном градиентном методе [15, 39]. Тогда условия (341) удовлетворяются при достаточно малом положительном значении λ . Малое значение λ обеспечивает сходимость процедуры самосогласования к минимуму энергии. Однако, как показывает соотношение (329), понижение энергии за один цикл пропорционально значению λ . Таким образом, с малым λ число циклов самосогласования, необходимых для достижения минимума энергии, может быть слишком большим. С большим же λ шаг спуска может превратиться в шаг подъема и возникнут осцилляции. Наиболее разумным является компромиссный выбор некоторого значения λ , которое можно определить только эмпирическим путем.

С метрическими коэффициентами ξ_{km} равными единице цикл процедуры самосогласования с использованием ОГ (340) приближенно воспроизводит шаг спуска по поверхности средней энергии в градиентном методе Мак-Вини [15]. Анализ сходимости этого метода показал [36], что даже в одконфигурационном случае скорость его сходимости мала и бывает настолько медленной, что изменение орбиталей на соседних циклах становится практически неразличимым, хотя значение энергии еще не достигло минимума. В работе [38] отмечалась неудовлетворительная сходимость градиентного метода также в МК теории ССП.

Более подходящий выбор метрических коэффициентов позволяет достичь лучшей сходимости. Для рассмотрения этой возможности следует учесть, что параметр λ и метрические коэффициенты ξ_{km} входят в выражение для ОГ (340) только в виде произведения $\lambda \xi_{km}^2$. Эти произведения согласно (328) находятся в близком соответствии с величинами λ_{km} из работы [38], где для их оценки использовалась связь их со вторыми производными энергии. Согласно [38] разные метрические коэффициенты для разных координат являются более предпочтительными в расчетах с применением МК теории ССП.

Неопределенность в выборе параметров для ОГ является следствием неопределенности в выборе масштабов для координат в градиентном методе. Этот метод обеспечивает наилучшую сходимость, когда поверхности равной энергии близки к сферическим. Такой случай на практике встречается очень редко, поэтому для достижения наилучшей сходимости нужно делать преобразование координат, которое привело бы эти поверхности к нужной геометрии. Использование в [38] разных значений составляющих шага спуска по разным координатам по существу соответствует такому преобразованию. К более подробному исследованию выбора оптимальных значений λ и ξ_{km} для ускорения сходимости процесса самосогласования в рамках МК теории ССП еще возвратимся в § 2.8.2.2.5.

2.8.2.2.4. Построение ОГ второго приближения

Рассмотренные до сих пор методы оптимизации орбиталей основываются на определении первой вариации энергетического функционала. Опыт их применение позволяет заключить, что для построения эффективной процедуры самосогласования со стабильной сходимостью недостаточно вычисления только первых производных энергии, и требуется дополнительная информация о поведении энергетической поверхности. Для улучшения сходимости метода ОГ первого приближения, описанного в §§ 2.8.2.2.2 и 2.8.2.2.3, также требуется такая информация, поскольку он основан на линейной аппроксимации

энергетической поверхности. Далее укажем метод построения ОГ, в котором информация о поведении поверхности средней энергии используется более полно. Такой метод, основанный на квадратичной аппроксимации энергетической поверхности, называют методом второго приближения.

При построении ОГ второго приближения исходим из выражения (336), аппроксимирующего энергию вблизи исходной точки квадратичной функцией независимых переменных $D_{mk}^{(1)}$. Обозначив через *V* и *D* векторы-столбцы, составленные из V_{km} и $D_{mk}^{(1)}$ при k < m, перепишем выражение (336) в матричной форме

$$\Delta E = E' - E = V^{\dagger} D + \frac{1}{2} D^{\dagger} A D, \qquad (345)$$

где А – квадратная матрица вторых производных (338).

Для исследования поведения энергетической поверхности, определяемой выражением (345), рассмотрим задачу на собственные значения

$$AX = X\varepsilon, \qquad (346a)$$

$$\boldsymbol{X}^{\dagger}\boldsymbol{X} = \boldsymbol{I} , \qquad (3466)$$

где X – матрица собственных векторов матрицы A, ε – диагональная матрица ее собственных значений, а I – единичная матрица. Определив из (346) матрицу X, построим с ее помощью векторы-столбцы \tilde{V} и \tilde{D} , а именно:

$$\tilde{V} = X^{\dagger} V , \qquad (347)$$

$$\tilde{\boldsymbol{D}} = \boldsymbol{X}^{\dagger} \boldsymbol{D} \,. \tag{348}$$

Компоненты вектора-столбца \tilde{D} назвали нормальными координатами. В этих координатах приращение энергии, определяемое выражением (345), распадается на сумму независимых парциальных приращений ΔE_p по каждой нормальной координате \tilde{D}_p , а именно:

$$\Delta E = \sum_{p} (\tilde{V}_{p} \tilde{D}_{p} + \frac{1}{2} \varepsilon_{p} \tilde{D}_{p}^{2}).$$
(349)

По координате p, которой соответствует положительное значение ε_p , энергетическая поверхность будет иметь минимум. Для такой нормальной координаты оптимальное значение компоненты \tilde{D}_p вектора шага определяется из условия

$$\tilde{D}_p = -\tilde{V}_p / \varepsilon_p \,. \tag{350}$$

Если матрица *А* является положительно определенной, соотношение (350) полностью определяет вектор шага, реализующий минимум энергетического функционала в рамках квадратичной аппроксимации. Пользуясь соотношением

$$\boldsymbol{D} = \boldsymbol{X} \tilde{\boldsymbol{D}} \,, \tag{351}$$

вытекающим из формулы (348), можно найти оптимальные значения $D_{km}^{(1)}$. Тогда искомые недиагональные элементы ОГ определяются согласно формуле (331б) следующим образом:

$$\Phi_{km} = \omega_{km} D_{mk}^{(1)}. \tag{352}$$

Очевидно, что чем меньше будут отношения $\tilde{V}_p / \varepsilon_p$, тем точнее квадратичная функция (345) аппроксимирует энергетическую поверхность вблизи минимума и, следовательно, тем более существенного улучшения волновой функции можно ожидать с помощью оператора (352). Однако, если бы хотя бы некоторые ε_p близки к нулю или отрицательны, распространение квадратичной аппроксимации вблизи выбранной точки на область минимума энергетического функционала является неправомерным.

Отрицательные или близкие к нулю ε_p могут возникнуть по двум причинам. Первая из них связана с тем, что среди координат имеются такие $D_{mk}^{(1)}$, первые и вторые производные средней энергии по которым тождественно равны нулю вследствие определенной структуры матриц плотности. Этот случай будет всегда иметь место, если орбитали $|m\rangle$ и $|k\rangle$ не входят вообще ни в одну из конфигураций, или входят вместе в каждую из конфигураций так, что их унитарное преобразование не изменяет волновую функцию. Такие $D_{mk}^{(1)}$, естественно, надо исключить из рассмотрения, и в дальнейшем будем предполагать, что в исходное выражение (345) они не входят.

Близость к нулю или отрицательность некоторых ε_p может быть обусловлена также тем, что исходная точка выбрана вблизи седловой точки на поверхности средней энергии. В этом случае следует отойти от седловой точки, двигаясь по соответствующим нормальным координатам небольшими шагами в направлении отрицательного градиента и непрерывно контролируя значение второй производной, с тем, чтобы своевременно перейти к вычислению оптимального шага по формуле (350). Такую стратегию можно реализовать, вычисляя длину шага по нормальной координате *p* согласно формуле

$$\tilde{D}_p = -\frac{\tilde{V_p}}{\sqrt{\varepsilon_p^2 + \kappa^2 \tilde{V_p}^2}} = -\frac{\tilde{V_p}}{|\tilde{V_p}|} \times \frac{1}{\sqrt{(\varepsilon_p / \tilde{V_p})^2 + \kappa^2}},$$
(353)

где к – некоторая безразмерная константа.

Формула (353) при большом по модулю отношении $\tilde{V}_p / \varepsilon_p$ определяет шаг по нормальной координате в направлении отрицательного градиента длиной, близкой к 1/ κ . На численных примерах было показано, что значение κ в пределах 5 – 10 обеспечивает достаточно быстрый спуск и в то же время малость шага. Когда отношение $\tilde{V}_p / \varepsilon_p$ уменьшается по абсолютной величине, формула (353) асимптотически переходит в точную формулу (350).

Таким образом, процедура самосогласования с ОГ второго приближения состоит в следующем. Задавшись исходным набором орбиталей { φ } и определив из уравнения (283) набор конфигурационных коэффициентов T_k , согласно (333), (334), (337) и (338) строим матрицы V и A. Решая систему уравнений (346), получаем собственные векторы X и собственные значения ε матрицы A. Воспользовавшись уравнением (347), далее находим матрицу \tilde{V} и затем по формуле (353) определяем матрицу D, из которой согласно соотношениям (351) и (352) находим недиагональные матричные элементы искомого ОГ. Диагональные элементы ОГ можно, как и ранее, взять в виде (344). Решая уравнение (330), определяем новый набор орбиталей, для которого вновь находим коэффициенты конфигурационного разложения T_k и так далее до тех пор, пока величина ε , определяемая соотношением (342), не обратится в нуль с заданной точностью.

2.8.2.2.5. Улучшенный метод ОГ первого приближения

Построение ОГ второго приближения, основанного на квадратичной аппроксимации энергетической поверхности, сопряжено с большой вычислительной работой на каждом цикле итераций, связанной с построением и диагонализацией матрицы вторых производных. Весьма полезным оказался подход, состоящий в пренебрежении смешанными производными энергии. Матрица *A* в этом случае будет диагональной

$$A_{kmpq} = \delta_{kp} \delta_{mq} A_{kmkm} \tag{354}$$

и величины \tilde{V}_p и \tilde{D}_p будут совпадать с величинами V_{km} и $D_{mk}^{(1)}$, соответственно. Таким образом, соотношение (353) переходит в равенство

$$D_{mk}^{(1)} = -\frac{V_{km}}{\sqrt{A_{kmkm}^2 + \kappa^2 V_{km}^2}},$$
(355)

которое определяет значение координат $D_{mk}^{(1)}$, используемых для построения ОГ согласно формуле (352).

Сравнение соотношения (355) с формулой (328) показывает, что пренебрежение смешанными производными энергии в методе ОГ второго приближения равносильно использованию в методе ОГ первого приближения метрических коэффициентов и величин шага, удовлетворяющих равенству

$$\lambda \xi_{km}^2 = \frac{1}{\sqrt{A_{kmkm}^2 + \kappa^2 V_{km}^2}}.$$
(356)

Учитывая это, можно записать выражение (340) для ОГ в виде

$$\Phi_{km} = \frac{(\Phi_{mm} - \Phi_{kk})V_{km}}{\sqrt{A_{kmkm}^2 + \kappa^2 V_{km}^2}}.$$
(357)

Метод ОГ, основанный на использовании соотношения (357), называют улучшенным методом ОГ первого приближения.

2.8.2.2.6. Матричная формулировка метода ОГ и его вычислительная схема

В методе ОГ для отыскания оптимизированных орбиталей при фиксированных конфигурационных коэффициентах T_k необходимо решать уравнения (330). Способы построения оператора $\hat{\Phi}$, входящего в уравнения (330), в орбитальном представлении в зависимости от того, какое приближение используется, были даны в §§ 2.8.2.2.2 – 2.8.2.2.5. Далее в общих чертах описывается вычислительная схема решения соответствующих уравнений.

Как уже отмечалось ранее в § 2.8.2.1, используемые орбитальные наборы должны быть полными в некотором линейном пространстве. Стандартный практический подход к конкретизации пространства состоит в представлении орбиталей { ϕ } в виде разложения по базисному набору { χ } фиксированной длины:

$$|k\rangle = \sum_{\mu} C_{\mu k} |\mu\rangle \tag{358}$$

и задача определения орбиталей $\{\varphi\}$ сводится к нахождению матрицы коэффициентов разложения C, на которую вследствие соотношения (275) наложено условие

$$\boldsymbol{C}^{\dagger}\boldsymbol{S}\boldsymbol{C} = \boldsymbol{I} \,, \tag{359}$$

где *S* – матрица перекрывания базисных орбиталей, элементы которой определяются соотношением

$$S_{\mu\nu} = \langle \mu | \nu \rangle. \tag{360}$$

Для нахождения оптимизированных орбиталей вместо решения уравнений (330) теперь необходимо решать матричные уравнения

$$\boldsymbol{\Phi}^{\chi}\boldsymbol{c}_{i} = \Lambda_{i}\boldsymbol{S}\boldsymbol{c}_{i} \tag{361}$$

при дополнительном условии нормировки полученных решений. В уравнениях (361) c_i – столбцы матрицы C, а Φ^{χ} – матрица ОГ, определенная на базисных орбиталях { χ }. Для получения последней в явном виде нужно сделать преобразование

$$|\mu\rangle = \sum_{k} |k\rangle \sum_{\nu} C_{\nu k} S_{\nu \mu}, \qquad (362)$$

которое приводит к матричному соотношению

$$\boldsymbol{\Phi}^{\boldsymbol{\chi}} = \boldsymbol{S} \boldsymbol{C} \boldsymbol{\Phi}^{\boldsymbol{\varphi}} \boldsymbol{C}^{\dagger} \boldsymbol{S}^{\dagger}, \qquad (363)$$

где Φ^{φ} – матрица ОГ в представлении текущих орбиталей { φ }. Для ее получения нужно величины V_{km} и A_{kmpq} , с помощью которых она строится, выразить через элементы матрицы коэффициентов *C* и интегралы, вычисленные на базисных орбиталях { χ }. С этой целью, подставляя (358) в (333) и (334), получим следующие выражения для величин и a_{kmpq} :

$$v_{km} = 2\sum_{\mu,\nu} \langle \mu | \hat{h} | \nu \rangle \sum_{i} \gamma(k | i) C_{\mu i} C_{\nu m} + 4 \sum_{\mu,\nu,\rho,\tau} \langle \mu \nu | \hat{g} | \rho \tau \rangle \sum_{i,j,l} \Gamma(ki | jl) C_{\mu j} C_{\nu l} C_{\rho m} C_{\tau i}, \quad (364)$$

$$a_{kmpq} = 2\gamma(k \mid p) \sum_{\mu,\nu} \langle \mu \mid \hat{h} \mid \nu \rangle C_{\mu m} C_{\nu q} + \delta_{kq} \Theta_{pm}^{q} \nu_{pm} + 4 \sum_{\mu,\nu,\rho,\tau} \langle \mu \nu \mid \hat{g} \mid \rho \tau \rangle \sum_{i,j,l} \Gamma(kj \mid li) [\delta_{jp} C_{\mu m} C_{\nu q} C_{\rho l} C_{\tau i} + \delta_{lp} C_{\mu m} C_{\nu j} C_{\rho q} C_{\tau i} + \delta_{ip} C_{\mu m} C_{\nu j} C_{\rho l} C_{\tau q}],$$
(365)

через которые по формулам (337) и (338) находятся нужные для определения величины $\boldsymbol{\Phi}^{\varphi}$ первых и вторых производных.

Такая вычислительная схема кажется на первый ВЗГЛЯД ДОВОЛЬНО громоздкой. Действительно, сначала нужно строить оператор $\boldsymbol{\Phi}^{\varphi}$ В представлении текущих орбиталей, затем преобразовывать его в представление базисных орбиталей Φ^{χ} и лишь потом находить искомую матрицу C, решая уравнения (361). Однако следует заметить, что рассмотренные в § 2.8.2.1.1 методы оптимизации орбиталей МК волновой функции также предполагают преобразование «своих» операторов \hat{F}_{ii} или \hat{F}_i из орбитальных представлений в базисные. Преобразование (363) не является исключительной особенностью вычислительной схемы, основанной на методе ОГ, а связано лишь с использованием разложения орбиталей по фиксированному базису. Более того, в отличие от методов, требующих построения для каждой орбитали своего оператора или требующих представления каждого оператора в разных орбитальных базисах, где невозможно обойтись без преобразования (363), в методе ОГ имеется возможность избежать требующего затраты времени преобразования матрицы Φ^{φ} в представление фиксированного базиса и организовать вычислительный процесс таким образом, чтобы использовать непосредственно сравнительно простые выражения для матричных элементов ОГ на текущих орбиталях. Такой прием применялся в программах самосогласования, основанных на стационарных ОГ в одноконфигурационной теории ССП [43, 44] и далее будет показано, как это можно сделать в МК теории ССП.

Для решения уравнений (361) при дополнительных условиях нормированности решений полезным является метод диагонализации Якоби. Действительно, уравнения (361) представляют собой задачу на собственные значения Л, и собственные векторы с, эрмитовой матрицы, а метод Якоби именно и предназначен для решения такой задачи. При этом решения уравнений (361) будут удовлетворять не только условиям ортогональности, но и условиям нормировки, если исходный набор орбиталей был ортонормирован. Однако удобство метода Якоби не ограничивается только этим. Главное достоинство его применения в таких задачах состоит в том, что он удачно сочетается с процессом самосогласования.

Процесс диагонализации по Якоби заключается, как известно, в преобразованиях подобия диагонализуемой матрицы $M_{(0)}$ с помощью последовательности унитарных матриц $U_{(1)}, U_{(2)}, ..., U_{(p)}$, приводящих к тому, что матрица $M_{(p)}$ будет диагональной с заданной точностью. Матрица очередного, *i*-го приближения и приближенные векторы при выполнении одной итерации по Якоби изменяются следующим образом:

$$\boldsymbol{M}_{(i)} = \boldsymbol{U}_{(i)}^{\dagger} \boldsymbol{M}_{(i-1)} \boldsymbol{U}_{(i)}, \qquad (366a)$$

$$c_{(i)} = c_{(i-1)}U_{(i)},$$
 (3666)

где $U_{(i)} = U_{r_i s_i}(\omega_i)$ является матрицей вращения пары строк r_i и s_i , или в случае диагонализации Φ^{χ} пары орбиталей $|r_i\rangle$ и $|s_i\rangle$, на угол ω_i . Если исходная матрица $C_{(0)}$ удовлетворяет соотношению

$$\boldsymbol{C}_{(0)}^{\dagger}\boldsymbol{S}\boldsymbol{C}_{(0)} = \boldsymbol{I} , \qquad (367)$$

а матрица $M_{(0)}$ имеет вид

$$\boldsymbol{M}_{(0)} = \boldsymbol{C}_{(0)}^{\dagger} \boldsymbol{M} \boldsymbol{C}_{(0)}, \qquad (368)$$

то полученная в результате последовательного выполнения итераций (366) матрица $C_{(p)}$ будет матрицей собственных векторов матрицы M относительно матрицы S.

Важным является тот факт, что окончательный результат процесса по Якоби не зависит от выбора исходной матрицы $C_{(0)}$ в пределах выполнения требования (367). Поэтому при решении урвнений (361) можно использовать наиболее простой выбор начальной матрицы, а именно:

$$\boldsymbol{C}_{(0)} = \boldsymbol{C}_s (\boldsymbol{C}_s^{\dagger} \boldsymbol{S} \boldsymbol{C}_s)^{-1/2}, \qquad (369)$$

где C_s – матрица собственных векторов матрицы перекрывания *S*. В частном случае, когда базисные орбитали { χ } ортонормированны, т. е. *S* будет диагональной матрицей, матрица C_s , а вместе с ней и $C_{(0)}$, будет просто единичной матрицей.

При выполнении расчетов методом ССП простейший выбор (369) имеет смысл использовать лишь для получения орбиталей начального приближения. В дальнейшем, когда требуется диагонализовать матрицу ОГ, построенную на орбиталях *k*-го приближения, определяемых матрицей коэффициентов $C^{(k)}$ в качестве матрицы $C_{(0)}$, более целесообразно использовать саму матрицу $C^{(k)}$:

$$C_{(0)} = C^{(k)}. \tag{370}$$

Действительно, метод Якоби не нарушает ортогональности векторов $c_{(i)}$, поэтому соотношение (367), выполнявшееся с матрицей $C_{(0)}$, заданной в виде (369), на первом цикле самосогласования, будет попрежнему выполняться и для матрицы $C^{(k)}$, но теперь в качестве матрицы $M_{(0)}$ для процесса Якоби будет выступать матрица $C^{(k)\dagger} \Phi^{(k+1)} C^{(k)}$, которая, если процесс самосогласования сходится, является приближенно диагональной и время, требуемое для ее диагонализации, значительно сокращается.

Использование соотношения (370) для исходной матрицы процесса Якоби на промежуточных циклах самосогласования, кроме тог, позволяет еще более упростить задачу, так как в этом случае нет необходимости преобразовывать матрицу ОГ ϕ^{φ} в представление базисных орбиталей { χ }. В самом деле, если для начала процесса Якоби требуется согласно (368) матрица

$$\boldsymbol{M} = \boldsymbol{C}_{(0)}^{\dagger} \boldsymbol{\Phi}^{\boldsymbol{\chi}} \boldsymbol{C}_{(0)} \tag{371}$$

и в качестве $C_{(0)}$ выбрать не матрицу (369), а матрицу C орбитальных коэффициентов, полученных на предыдущем цикле самосогласования, то учитывая (363), будем иметь

$$\boldsymbol{M} = \boldsymbol{C}^{\dagger} \boldsymbol{S} \boldsymbol{C} \boldsymbol{\Phi}^{\varphi} \boldsymbol{C}^{\dagger} \boldsymbol{S} \boldsymbol{C} \,, \tag{372}$$

откуда, принимая во внимание (359), находим

$$\boldsymbol{M} = \boldsymbol{\Phi}^{\boldsymbol{\varphi}},\tag{373}$$

т. е. исходной для процесса Якоби является матрица ОГ в представлении текущих орбиталей.

Таким образом, независимо от выбранного варианта метода ОГ для построения матрицы соответствующего оператора необходимо иметь в своем распоряжении матрицу V и, если используется метод ОГ второго приближения (§ 2.8.2.2.4) или улучшенный метод первого приближения (§ 2.8.2.2.5), также и матрицу A в представлении текущих орбиталей. Построение этих матриц по формулам (364), (365), (337) и (338) для электронных конфигураций произвольной структуры является довольно трудоемкой процедурой. Поэтому лучше строить их не по формулам, а выполняя с помощью компьютера символическое дифференцирование выражения для энергии (314), которое в свою очередь нетрудно построить также на компьютере на основе процедуры расчета элементов матрицы КВ [44, 45]. Построенная на основе такой процедуры формула (314) для энергии хранится в массиве, одни элементы которого содержат в упакованном виде номера орбиталей, входящих в выражение для интегралов $\langle k | \hat{h} | i \rangle$ или $\langle kl | \hat{g} | ij \rangle$, а другие – соответствующие этим интегралам значения элементов матриц плотности $\gamma(i | k)$ или $\Gamma(ij | kl)$.

Для дифференцирования энергии и построения матриц V и A был разработан специальный алгоритм, суть которого состоит в следующем. Выражение для энергии (314) представляет собой сумму членов, каждый из которых состоит из интеграла $\langle k_1 | \hat{h} | k_2 \rangle$ или $\langle k_1 k_2 | \hat{g} | k_3 k_4 \rangle$, умноженного соответственно на константу $\gamma(k_2 | k_1)$ или $\Gamma(k_3 k_4 | k_1 k_2)$, не зависящую от орбитального набора. При переходе к новому орбитальному набору { φ' } посредством преобразования (320) с учетом соотношений (331) в новое выражение для энергии войдет умноженный на ту же константу интеграл

$$\langle k_1' | \hat{h} | k_2' \rangle = R_1 \langle k_1 | \hat{h} | k_2 \rangle \tag{374a}$$

ИЛИ

$$\langle k_1' k_2' \,|\, \hat{g} \,|\, k_3' k_4' \rangle = R_2 \langle k_1 k_2 \,|\, \hat{g} \,|\, k_3 k_4 \rangle \,, \tag{3746}$$

а оператор R_r имеет вид

$$R_{r} = 1 + \sum_{i} \sum_{p=1}^{2r} D_{ik_{p}}^{(1)} Q_{ik_{p}} + \sum_{i,j} \sum_{p=1}^{2r} \Theta_{ik_{p}}^{j} D_{ij}^{(1)} D_{jk_{p}}^{(1)} Q_{ik_{p}} + \sum_{i,j} \sum_{p=1}^{2r-1} \sum_{q=p+1}^{2r} D_{ik_{p}}^{(1)} D_{jk_{q}}^{(1)} Q_{ik_{p}} Q_{ik_{p}},$$
(374B)

где величины $\Theta_{ik_p}^{j}$ определяются с помощью соотношения (331д), а действие операторов Q_{ik_p} заключается в том, что в интегралах $\langle k_1 | \hat{h} | k_2 \rangle$ или $\langle k_1 k_2 | \hat{g} | k_3 k_4 \rangle$ орбиталь $|k_p\rangle$ заменяется орбиталью $|i\rangle$, как например,

$$Q_{ik_{3}}\langle k_{1}k_{2} | \hat{g} | k_{3}k_{4} \rangle = \langle k_{1}k_{2} | \hat{g} | ik_{4} \rangle.$$
(375)

На основе выражений (374) и был построен алгоритм, который вычисляет коэффициенты при величинах $D_{mk}^{(1)}$ и $D_{mk}^{(1)}D_{qp}^{(1)}$ и накапливает их в соответствующих ячейках памяти компьютера, отведенных для элементов матриц *V* и *A*. При этом интегралы, входящие в эти коэффициенты, в соответствии с приведенными выше замечаниями следует вычислять на текущих орбиталях.

Построение остальных частей алгоритма в зависимости от выбранной модификации метода должно быть ясно из §§ 2.8.2.2.2 – 2.8.2.2.5.

2.8.2.2.7. Тестирование методов ОГ в рамках МК теории ССП

Выше довольно формально рассматривалась математическая проблема получения МК волновой функции (273) реализующей минимум состояния молекулярной системы, описываемой молекулярным гамильтонианом в приближении Борна – Оппенгеймера (§ 1.1). Далее обсуждаются результаты численного применения различных модификаций метода ОГ в рамках теории ССП к конкретным молекулярным расчетам π -сопряженных молекул в модели ППП и молекулы LiH *ab initio* [42, 46].

2.8.2.2.7.1. π-Сопряженные молекулы

2.8.2.2.7.1.1. Урацил и полиен С₈

В качестве объектов исследования были выбраны π-электронные состояния молекул урацила и полиена C₈H₁₀ (рис. 3) [12, 13, 42].

Базисный набор функций $\{\chi\}$, входящих в разложение (358), для обеих молекул состоял из восьми ортонормированных функций, каждая из которых относится к атому, содержащему π -электроны.

Рис. 3. Нумерация π-атомов в молекулах урацила и полиена С₈H₁₀.

Для описания системы $N \pi$ -электронов (N = 8 для полиена и N = 10 для урацила) использовался модельный гамильтониан ППП, который обычно применяется для полуэмпирического расчета таких сопряженных систем и определяется он через матричные элементы на базисных орбиталях следующим образом:

$$\langle \mu | \hat{h} | \nu \rangle = H_{\mu\nu}^{core},$$
 (376a)

$$\langle \mu \nu | \hat{g} | \kappa \lambda \rangle = \delta_{\mu\kappa} \delta_{\nu\lambda} \gamma_{\mu\nu}. \tag{3766}$$

Значения величин $H_{\mu\nu}^{core}$ и $\gamma_{\mu\nu}$ (в эВ) выбирались согласно работе [47]:

$$H_{\mu\mu}^{core} = -I_{\mu} - \sum_{\nu(\neq\mu)} n_{\nu} \gamma_{\mu\nu}, \quad (\mu \neq \nu)$$
(377a)

$$H_{\mu\nu}^{core} \equiv \begin{cases} \beta_{\mu\nu} = -B_{\mu\nu} e^{-5.007 r_{\mu\nu}}, & \begin{cases} для атомов, связанных \\ химической связью друг с другом \\ 0, & для остальных пар атомов \end{cases} (3776)$$

$$\gamma_{\mu\mu} = I_{\mu} - A_{\mu}, \qquad (378a)$$

$$\gamma_{\mu\nu} = a_{\mu\nu} / b_{\mu\nu}, \quad (\text{урацил})$$
 (3786)

$$\gamma_{\mu\nu} = a_{\mu\nu} / \sqrt{b_{\mu\nu}},$$
 (полиен) (378в)

где

$$a_{\mu\nu} = (\gamma_{\mu\mu} + \gamma_{\nu\nu})/2, \tag{378}{r}$$

$$b_{\mu\nu} = 1 + 0.06944 \, a_{\mu\nu} r_{\mu\nu}. \tag{378д}$$

В приведенных формулах

 I_{μ} – потенциал ионизации,

 A_{μ} – электронное сродство атома μ в его валентном состоянии,

 n_v – число π -электронов, поставляемых в систему атомом v,

 $r_{\mu\nu}$ – расстояние в ангстремах между атомами μ и ν .

Значения I_{μ} , $\gamma_{\mu\mu}$ и $B_{\mu\nu}$ для рассматриваемых типов атомов приведены в табл. 9.

1 worningw >	Таблица	9
--------------	---------	---

Значения параметров модельного

гамильтониана ППП, эВ

Атом	I_{μ}	A_{μ}	Связь	$B_{\mu u}$
С	11.16	11.13	C–C	2518
N	28.71	16.75	C–N	1927
0	17.70	15.23	С–О	1349

Координаты атомов в обеих молекулах (рис. 3) приведены в табл. 10.

Таблица 10 Координаты атомов, поставляющих π-электроны в π-электронную систему урацила и полиена С₈

μ	Ура	Полиен		
	Х	Y	Х	Y
1	0	0	0	0
2	0	1.380000	1.212435	0.7
3	1.230151	2.009585	2.424870	0
4	2.437126	1.340547	3.637305	0.7
5	2.363333	- 0.067520	4.849740	0
6	1.144865	- 0.715391	6.062175	0.7
7	-1.040221	2,017448	7.274610	0
8	3.504162	1.932015	8.487045	0.7

Построение ОГ выполнялось в соответствии с параграфами выше. Руководствуясь §§ 2.8.2.2.2 – 2.8.2.2.6, для обеих рассматриваемых π-электронных систем ОГ получались в виде матриц 8×8.

Для сравнения сходимости метод ОГ использовался в трех модификациях: метод первого приближения (§2.8.2.2.2), метод второго приближения (§2.8.2.2.4) и улучшенный метод первого приближения (§2.8.2.2.5).

В качестве объектов рассмотрения служили следующие волновые функции *π*-электронных сосотояний:

синглетная и триплетная одноконфигурационные функции,

синглетная двухконфигурационная функция и

синглетная волновая функция, аппроксимировавшаяся 16-ю

конфигурациями для урацила и 17-ю конфигурациями для полиена. В двух последних случаях сравнивалась эффективность метода ОГ лишь в двух модификациях – метод ОГ первого приближения и улучшенный метод первого приближения.

В двухконфигурационную волновую функцию входила основная конфигурация (у урацила 5 дважды заполненных орбиталей, а у полиена таких орбиталей 4) и дополнительная конфигурация, соответствующая переходу двух электронов с верхней орбитали, заполненной в основной конфигурации, на нижнюю незаполненную орбиталь.

Для 16- и 17-конфигурационных волновых функций в набор входили кроме этих двух выше упомянутых конфигураций еще для урацила 14 конфигураций, а для полиена еще 15 двухкратно возбужденных конфигураций, соответствующих всем остальным переходам одной пары электронов с заполненных орбиталей на виртуальные. Такой набор конфигураций соответствует «полной» МК теории Вейларда и Клементи [27].

В качестве орбиталей начального приближения в многоконфигурационных орбитали, случаях использовались самосогласованные В одноконфигурационном приближении, т. е. ХФ орбитали для данного модельного гамильтониана. Коэффициенты при конфигурациях уточнялись КΒ каждого шага уточнения орбиталей. В методом после одноконфигурационном приближении в качестве исходных выбирались орбитали, диагонализующие хюккелевскую матрицу для этих молекул. Схема самосогласования была такая же, отпала лишь необходимость в определении коэффициента при конфигурации.

Для характеристики сходимости процесса самосогласования использовался критерий ε (342), который характеризует наклон энергетической поверхности. Величина критерия уменьшается, если процесс самосогласования сходится, обращаясь в нуль при достижении минимума энергии.

На рисунках 4 – 7 приведены графики изменения величин lg ε в зависимости от числа циклов самосогласования с применением различных ОГ для указанных наборов конфигураций урацила и полиена.

Рис. 4. Ход процесса самосогласования основного состояния урацила (а) и полиена (б) в одноконфигурационном приближении с использованием ОГ первого приближения (1), улучшенного ОГ первого приближения (1') и ОГ второго приближения (2).

Рис. 5. Ход процесса самосогласования нижнего триплетного состояния урацила (а) и полиена (б) в одноконфигурационном приближении с использованием ОГ первого приближения (1), улучшенного ОГ первого приближения (1') и ОГ второго приближения (2).

Рис. 6. Ход процесса самосогласования основного состояния урацила (а) и полиена (б) в двухконфигурационном приближении с использованием ОГ первого приближения (1), улучшенного ОГ первого приближения (1') и ОГ второго приближения (2).

Рис. 7. Ход процесса самосогласования основного состояния урацила (а) и полиена (б) с использованием ОГ первого приближения (1) и улучшенного ОГ первого приближения (1'). В волновую функцию кроме основной конфигурации входили 15 для урацила и 16 для полиена двухкратно возбужденных конфигураций. В качестве исходных орбиталей выбирались орбитали, диагонализующие хюккелевскую матрицу.

В выражении (340) для ОГ первого приближения все метрические коэффициенты ξ_{km} выбирались равными единице и использовались разные значения параметра λ , однако на рисунках 4 – 7 приведены результаты с использованием оптимального значения λ , которое оказалось равным 1/30 во всех случаях, за исключением одноконфигурационного расчета основного состояния урацила, для которого это значение было равным 1/40.

Для улучшенного ОГ первого приближения и ОГ второго приближения единственный параметр κ в (357) и соответственно в (353) также варьировался в пределах от 1 до 10, однако такие изменения практически не влияли на скорость сходимости процесса самосогласования. На рисунках 4 – 7 приведены результаты с использованием в этих ОГ значения $\kappa = 3$.

Приведенные на рисунках 4 – 6 графики показывают, что переход к методу ΟΓ второго приближения резко ускоряет сходимость процесса самосогласования, особенно для случая двухконфигурационного приближения. Рассмотрение наклона кривой lg є показывает, что сходимость метода ОГ первого приближения имеет характер, близкий к экспоненциальному. В начале самосогласования значения первых разностей процесса уменьшаются, впоследствии стабилизируясь. Для метода ОГ второго приближения характерен резкий наклон кривой, особенно ярко выраженный на последних циклах. Сходимость метода в этом случае близка к квадратичной.

Интересно проследить за изменением в процессе самосогласования спектра собственных значений ε_p (346) матрицы вторых производных энергии. На рис. 8 графически представлены спектры матриц А для урацила после приближения. каждого цикла самосогласования с ΟΓ второго При рассмотрении характера изменений спектра обращают на себя внимание резкие отличия в характере спектра для различных состояний. Все собственные значения матрицы А для одноконфигурационного основного состояния сосредоточены в области 15 – 55 эВ. Для триплетного состояния спектр начинается с небольших отрицательных значений, причем собственные значения располагаются почти равномерно на интервале до 55 эВ. В случае двухконфигурационного приближения в спектре четко выделяются две области. Спектр В одной ИЗ них сходен co спектром ДЛЯ одноконфигурационного основного состояния. Своим происхождением эта область обязана TOMV, что основная конфигурация входит В двухконфигурационную функцию с большим весом. Остальные собственные значения матрицы вторых производных собраны в компактную группу, расположенную вблизи нуля, что обусловлено сравнительно небольшим весом дополнительной конфигурации.

Рис. 8. Изменение спектра собственных значений матрицы вторых производных энергии в ходе процесса самосогласования с применением ОГ второго приближения для основного состояния урацила в одноконфигурационном (*a*) и двухконфигурационном (*c*) приближениях и первого триплетного состояния (*b*).

В ходе процесса самосогласования начало спектра сдвигается вправо, так что начиная со второго цикла все ε_p становятся положительными, что и должно иметь место вблизи минимума. Начиная с третьего цикла спектр стабилизируется и, как видно из рис. 6а, отмечается особенно резкое ускорение сходимости, что соответствует уменьшению добавки $\kappa^2 \tilde{V}_p^2$ в формуле (353).

Применение метода ОГ второго приближения, приводящее к резкому уменьшению числа циклов самосогласования, сопровождается одновременно значительным увеличением вычислительной работы, связанной с построением и диагонализацией матрицы вторых производных. Поэтому весьма полезным представляется использование улучшенного метода ОГ первого приближения, состоящего в пренебрежении смешанными вторыми производными энергии (§ 2.8.2.2.5). Результаты применения улучшенного метода ОГ первого приближения с оператором (357) также приведены на рис. 4 – 7. Сходимость этого метода в отличие от метода ОГ второго приближения имеет экспоненциальный характер, однако, как видно из графиков, скорость сходимости значительно выше, чем при применении метода ОГ первого приближения.

Спектры диагональных элементов *A*_{*kmkm*} матриц вторых производных очень похожи на приведенные на рис. 8 спектры собственных значений этих матриц

для соответствующих состояний. Анализ отмеченных выше особенностей в виде спектра урацила в различных случаях позволяет объяснить значительные отличия в скорости сходимости процесса самосогласования с ОГ первого приближения при $\xi_{km}^2 = 1$.

Рассмотрение формулы (356) показывает, что чем большим будет разброс обратных величин A_{kmkm} , тем худшей должна біть сходимость при $\xi_{km}^2 = 1$. Для одноконфигурационного основного состояния с наиболее компактным спектром сходимость действительно оказывается наиболее высокой. Наличие двух областей в спектре для двухконфигурационного случая требует введения по крайней мере двух видов метрических коэффициентов ξ_{km} , каждого для своей области. Как показано в [12], такая мера приводит к значительному улучшению сходимости. Однако более радикальным решением вопроса является использование вторых производных (356) оператора (357).

Подводя итоги обсуждения приведенных численных результатов, следует отметить, что использование в методе ОГ вторых производных энергии по координатам шага является весьма перспективным путем ускорения сходимости процесса самосогласования. Применение описанного в § 2.8.2.2.4 метода ОГ второго приближения с квадратичной сходимостью обеспечивает получение самосогласованного решения за малое число циклов. Определение координат шага по (353) обеспечивает спуск по энергетической поверхности даже в тех случаях, когда начальное приближение выбрано таким образом, что эта поверхность оказывается выпуклой по некоторым направлениям.

Очевидная трудность применения метода ОГ второго приближения построением И диагонализацией полной матрицы связана с вторых пренебрежении При смешанными производных. производными вычислительная схема метода ОГ второго приближения совпадает по форме с вычислительной схемой метода ОГ первого приближения, которая дополняется лишь вычислением диагональных элементов матрицы вторых производных для определения метрических коэффициентов и длины шага спуска. Как показала времени расчетов, соответствующие затраты машинного практика на построение диагонали матрицы вторых производных не более чем втрое превышает время, нужное для определения первых производных. Кроме того, стабильность позволяет использовать однажды спектра вычисленные диагональные элементы матрицы вторых производных В нескольких последующих циклах. В конечном счете, эти дополнительные затраты с избытком окупаются за счет высокой скорости сходимости. Как показали проведенные расчеты, при применении улучшенного метода ОГ первого

приближения для получения самосогласованного решения с заданной точностью в многоконфигурационном случае требуется примерно такое же число циклов, как и в одноконфигурационном приближении. Таким образом, среди вариантов метода ОГ улучшенный метод первого приближения представляется наиболее практичным методом получения самосогласованных решений в рамках МК теории ССП.

2.8.2.2.7.1.2. Полиены C₆, C₈, C₁₀, урацил и бензильный радикал

В более ранних расчетах перечисленных в названии сопряженных систем [11] использовался метод ОГ первого приближения (§ 2.8.2.2.2). Приводим здесь полученные результаты, поскольку они представляют значительный методический интерес.

Величины элементов одно- и двухчастичной матриц плотности $\gamma(i | k)$ и $\Gamma(ij | kl)$, необходимые для построения ОГ, определяются выбором набора конфигураций и коэффициентами Т, при них. Расчеты проводились с различными наборами конфигураций, однако большая часть приведенных далее результатов получено с набором конфигураций, состоящих из двухкратно заполненных орбиталей. Каждую из таких конфигураций можно определить указанием номеров двухкратно заполненных орбиталей. Удобнее, однако, ввести число заполнения n_i^k орбитали $|i\rangle$ в конфигурации Ψ_k , равное единице, если эта орбиталь дважды заполнена в данной конфигурации, и равное нулю в противном случае. Тогда каждая конфигурация задается указанием соответствующих значений чисел заполнения для всех орбиталей.

Для конфигураций указанного типа величина диагонального элемента матрицы КВ определяется формулой

$$\langle \Psi_k | \hat{H} | \Psi_k \rangle = 2 \sum_i n_i^k \langle i | \hat{h} | i \rangle + \sum_{i,j} n_i^k n_j^k (2 \langle ij | \hat{g} | ij \rangle - \langle ij | \hat{g} | ji \rangle).$$
(379)

Для рассмотрения недиагональных матричных элементов между конфигурациями Ψ_k и Ψ_l введем величину ω_{ij}^{kl} , отличную от нуля и равную единице лишь тогда, когда для этих конфигураций числа заполнения всех орбиталей, кроме $|i\rangle$ и $|j\rangle$ равны. В последнем случае конфигурация Ψ_l будет двухкратно возбужденной по отношению к конфигурации Ψ_k , и тогда можно записать, что

$$\langle \Psi_k | \hat{H} | \Psi_l \rangle = \sum_{i < j} \omega_{ij}^{kl} \langle ij | \hat{g} | ji \rangle. \quad (k \neq l).$$
(380)

С учетом этих выражений для элементов матрицы КВ средняя энергия (277) при нормировке волновой функции Ψ на единицу будет иметь вид:

$$E = 2\sum_{k} T_{k}^{2} \sum_{i} n_{i}^{k} \langle i | \hat{h} | i \rangle + \sum_{k} T_{k}^{2} \sum_{i,j} n_{i}^{k} n_{l}^{k} (2 \langle ij | \hat{g} | ij \rangle - \langle ij | \hat{g} | ji \rangle) + \sum_{k \neq l} T_{k} T_{l} \sum_{i < j} \omega_{ij}^{kl} \langle ij | \hat{g} | ji \rangle.$$
(381)

При действительных орбиталях интеграл в последней сумме равен обменному интегралу во второй сумме. Объединив эти суммы и сравнивая полученное выражение с выражением (314), получим окончательно

$$\gamma(i|k) = 2n_i \delta_{ik}, \qquad (382a)$$

$$\Gamma(ij|kl) = 2a_{ij}\delta_{ik}\delta_{jl} - b_{ij}\delta_{il}\delta_{jk}, \qquad (3826)$$

где

$$n_i = \sum_k T_k^2 n_i^k , \qquad (383)$$

$$a_{ij} = \sum_{k} T_k^2 n_i^k n_j^k , \qquad (384)$$

$$b_{ij} = \sum_{k} T_k^2 n_i^k n_j^k - \sum_{k \neq l} T_k T_l \, \omega_{ij}^{kl} \,. \tag{385}$$

Согласно (382а) матрица плотности первого порядка в представлении орбиталей $\{ \phi \}$ диагональна, следовательно, эти орбитали являются И естественными орбиталями для волновой функции, построенной ИЗ конфигураций рассматриваемого типа. Числа заполнения естественных орбиталей определяются формулой (383).

Матрицам плотности с элементами (382) соответствует следующее выражение для величин V_{km} , которое получается непосредственно из (322), а именно:

$$V_{km} = 4(n_k - n_m)\langle k | \hat{h} | m \rangle + 4\sum_{l} [2(a_{kl} - a_{ml})\langle kl | \hat{g} | ml \rangle - (b_{kl} - b_{ml})\langle kl | \hat{g} | ml \rangle].$$
(386)

Полученное выражение для V_{km}, а также формулы (379) и (380) для элементов матрицы КВ, определяют все исходные величины, необходимые для построения методом ОГ первого приближения (§ 2.8.2.2.2) самосогласованной МК волновой функции при учете конфигураций рассматриваемого типа. Простой соотношений обусловлен ВИД этих однотипностью набора учитываемых конфигураций. При смешанных наборах конфигураций, включающих конфигурации разной структуры, выражения для величин V_{km}

можно получить таким же методом, однако из-за громоздкости вывода и самих выражений такой подход непрактичен.

В программе, с помощью которой проводились все расчеты, величины V_{km} вычислялись путем символического дифференцирования энергии, как это было описано в § 2.8.2.2.6. Следует, однако, отметить, что за универсальность приходится расплачиваться некоторым программы уменьшением ee быстродействия. Поэтому в случаях, когда можно получить сравнительно не (386), целесообразно выражения типа сложные программировать непосредственно эти выражения.

Для нахождения самосогласованных решений применялся, как и ранее, двухшаговый итерационный процесс, в котором орбитали и конфигурационные коэффициенты корректировались последовательно вплоть до достижения сходимости с нужной точностью, если сходимость вообще может быть достигнута. Исходные орбитали получались диагонализацией хюккелевской матрицы или использовались самосогласованные орбитали, соответствующие набору конфигураций меньшей размерности. Исходные коэффициенты Т_и определялись методом КВ на выбранных орбиталях. Для корректировки орбиталей при фиксированных *T_k* в методе ОГ первого приближения использовалась простейшая метрика с $\xi_{ii}^2 = 1$, а диагональные матричные учетом элементы гамильтониана выбирались в виде (344). С этого недиагональные матричные элементы ОГ первого приближения (340)строились по формуле

$$\Phi_{ij} = \lambda (j-i) V_{ij} \,. \tag{387}$$

Оптимальные значения λ в этом выражении находились в пределах 1.40 – 1.30.

Для всех рассчитанных систем использовались стандартные гамильтонианы ППП (§ 2.8.2.2.7.1.1). Геометрическая структура полиенов и бензильного радикала предполагалась равносвязной с длиной связи 1.4 Å и углами между связями 120°. Значения параметров I_{μ} , $\gamma_{\mu\mu}$ и $\beta_{\mu\nu}$ модельного гамильтониана для рассматриваемых сопряженных систем составляли 11.16. и –2.274 эВ. Недиагональные интегралы соответственно 11.13 электронного взаимодействия вычислялись по формуле Оно (378в). Для урацила геометрия и модельный гамильтониан определялись так же, как и в § 2.8.2.2.7.1.1.

Перейдем к обсуждению результатов вычислений.

При расчетах основного состояния полиенов использовались лишь двухкратно возбужденные конфигурации, как и в [27, 28], по отношению к

основной, которую будем обозначать дальше как Ψ_0 . Если принять, что в основную конфигурацию входят орбитали с номерами от 1 до *n*, где *n* есть половина числа электронов, то двухкратно возбужденная конфигурация $\Psi_{kk \rightarrow pp}$ получается из основной заменой орбиталей $|k\rangle$ $(k \le n)$ на орбитали $|p\rangle$ (p > n). Набор, в который входят все такие конфигурации при $n - r < k \le n$ и n ,где $r \le n$, будем в дальнейшем обозначать символом S_r . Размерность набора конфигураций S_r , очевидно, равна $r^2 + 1$. Тривиальный набор S_0 представляет конфигурацию. Если обозначить собой основную через T_0 И T_{kn} конфигурации конфигурационные коэффициенты Т при основной И соответственно при конфигурации, получившейся из основной заменой орбитали $|k\rangle$ на орбиталь $|p\rangle$, то выражения (383) для чисел заполнения естественных орбиталей принимают вид:

$$n_k = 1 - \sum_{p(>n)} T_{kp}^2, \quad (k \le n)$$
(388a)

$$n_{p} = \sum_{k(\leq n)} T_{kp}^{2}. \quad (p > n)$$
(3886)

Расчеты π -электронной структуры полиенов с числом углеродных атомов 6, 8 и 10 выполнялись в многоконфигурационном приближении с наборами конфигураций S_0 , S_1 , S_2 и S_n . Получив для данного набора самосогласованные орбитали, они использовались для расчета той же системы методом КВ со всеми последующими наборами. Значение энергии, полученное с набором A, который построен на орбиталях, самосогласованных для набора B, обозначим через $E_A(B)$, принимая значение $E_{S_0}(S_0)$ за ноль отсчета энергии. Поскольку $E_{S_0}(S_0)$ – это хартри-фоковская энергия, то величина $E_A(B)$ представляет собой часть энергии корреляции, учитываемой в многоконфигурационном приближении.

Вычисленные значения $E_A(B)$ приведены в табл. 11.

Каждая строка табл. 11 содержит значения энергии, рассчитанные с разными наборами конфигураций, построенными на одном и том же орбитальном базисе, и понижение энергии по строке слева направо отражает тот простой факт, что при расширении набора конфигураций точность аппроксимации увеличивается. Каждый столбец табл. 11 содержит результаты расчета, полученные с одним и тем же набором конфигураций, построенных, однако, на различных орбитальных наборах. Наименьшие значения энергии в каждом столбце расположены на диагонали таблицы – они соответствуют орбитальному набору, самосогласованному для данного набора конфигураций.

Для определения той части энергии корреляции, которая учитывается в МК приближении, был проведен расчет синглетных состояний полиенов с числом атомов 6 и 8 методом КВ с учетом всех одно- и двухкратно возбужденных конфигураций на орбиталях, самосогласованных для основной конфигурации. Значения энергии этих молекул, отсчитанные от энергии конфигурации Ψ_0 , оказались равными соответственно –1.01450 и –1.31786 э*B*.

Таблица 11

Значения энергии *E_A*(*B*), *эВ* основного состояния полиенов с числом углеродных атомов 2*n*, рассчитанные в МК приближении с набором конфигураций *A*, построенном на орбиталях, самосогласованных для набора *B*. За ноль отсчета энергии принято ее ХФ значение. В скобках даны отношения в %% величины *E_A*(*B*) к энергии корреляции.

2.	$A \rightarrow$	S_0	S_1	S_2	S_n
Zn	$B\downarrow$				
	S_0	0	-0.19232 (18)	-0.25952 (24)	-0.29686 (28)
6	S_1	0.00015	-0.31870 (30)	-0.36757 (34)	-0.41520 (39)
0	S_2	0.00107		-0.36815 (35)	-0.41251 (39)
	S_n	0.00005			-0.41828 (39)
	S_0	0	-0.15133 (11)	-0.21458 (16)	-0.27603 (20)
8	S_1	0.03386	-0.26422 (19)	-0.31816 (23)	-0.38155 (28)
0	S_2	0.02683		-0.33363 (24)	-0.39823 (29)
	S_n	0.02350			-0.41635 (30)
10	S ₀	0	-0.11802 (6)	-0.17864 (10)	-0.25973 (19)
	S_1	0.00037	-0.30096 (17)	-0.34008 (19)	-0.44051 (25)
	S_2	0.00186		-0.35677 (20)	-0.46469 (27)
	S_n	0.00118			-0.49552 (28)

Приняв, что с набором всех двухкратно возбужденных конфигураций учитывается около 95% энергии корреляции, оценочные значения энергии корреляции получаются –1.068 и –1.387 эВ, что составляет приблизительно –0.175 эВ/атом. Для полиена С₁₀ энергия корреляции принята равной –1.75 эВ.

Величины отношения $E_A(B)/E_{corr}$ с использованием для энергии корреляции E_{corr} полученных выше оценок также приведены в табл. 11. Как видно из этой таблицы, относительная часть энергии корреляции, учтенной с одним и тем же набором конфигураций, уменьшается при увеличении размеров

молекулы. Это связано с тем, что заданный набор конфигураций с увеличением *n* включает в себя все меньшую долю конфигураций, возможных при данном *n*. В то же время с увеличением *n* становится все более ощутимым выйгрыш в энергии, получаемой при переходе от простого КВ к самосогласованному решению при том же наборе конфигураций.

Наибольший эффект от оптимизации орбиталей достигается при малых наборах конфигураций. Для наборов S_n величина учитываемой части энергии корреляции также заметно увеличивается при переходе от ХФ орбиталей к орбиталям, самосогласованным для набора S_n . Однако практически те же результаты получаются также при учете КВ для набора S_n с использованием орбиталей, самосогласованных для меньших наборов S_1 или S_2 .

Для анализа полученных закономерностей установим связь поправки к энергии с числом заполнения орбиталей. Для всех рассматриваемых систем основная конфигурация вносит в основное состояние доминирующий вклад. Поэтому корреляционная добавка к ХФ энергии $E_{\rm HF} \equiv E_{S_0}(S_0)$ с хорошей точностью определяется во втором порядке теории возмущений (Приложение П-5), а именно:

$$E = \langle \Psi_0 | \hat{H} | \Psi_0 \rangle - E_{\rm HF} - \sum_{l(\neq 0)} T_l^2 (\langle \Psi_l | \hat{H} | \Psi_l \rangle - \langle \Psi_0 | \hat{H} | \Psi_0 \rangle).$$
(389)

Конкретизируя обозначения для рассматриваемых наборов конфигураций, получаем

$$E_{S_q}(S_r) = E_{S_0}(S_r) - \sum_{k(\le n)} \sum_{p(>n)} T_{kp}^2 [\langle \Psi_{kk,pp}(S_r) | \hat{H} | \Psi_{kk,pp}(S_r) \rangle - E_{S_0}(S_r)].$$
(390a)

Выражение в квадратных скобках является разностью между энергией конфигурации, соответствующей переходу пары электронов с орбитали k на орбиталь p, и энергией основной конфигурации. Для приближенной оценки второй суммы будем считать это выражение приближенно равным $2(\varepsilon_p - \varepsilon_k)$, где величины ε_i могут рассматриваться как параметры, играющие роль эффективных одноэлектронных энергий. Выполнив эту замену, получим:

$$E_{S_q}(S_r) \approx E_{S_0}(S_r) - 2\left(\sum_{p(>n)} \varepsilon_p \sum_{k(\le n)} T_{kp}^2 - \sum_{k(\le n)} \varepsilon_k \sum_{p(>n)} T_{kp}^2\right).$$
(3906)

Заменив ε_p и ε_k под знаком суммы средними значениями и обозначив разность этих средних через ε , с учетом (388) получаем

$$E_{S_a}(S_r) \approx E_{S_0}(S_r) - 2\varepsilon n_{(u)}, \qquad (390B)$$

где *n*_(*u*) является суммой чисел заполнения орбиталей, не входящих в основную конфигурацию, а именно:

$$n_{(u)} = \sum_{p(>n)} n_p = \sum_{p(>n)} \sum_{k(\le n)} T_{kp}^2 .$$
(391)

Значения $E_{s_0}(S_r)$ представлены в первом столбце табл. 11. Как видно из этой таблицы, всегда положительный первый член в (390) вносит незначительный вклад в корреляционную добавку к энергии, и величина последней в основном определяется отрицательным вторым членом.

Сопоставление значений $E_{S_q}(S_r)$ из табл. 11 с рассчитанными значениями $n_{(u)}$, представленными в табл. 12, показывает, что значения ε для наборов S_1 , S_2 и S_n лежат соответственно в пределах

$$3.3-3.9, 4.3-4.7, 4.9-5.5$$
 при $2n = 6,$
 $2.9-3.3, 3.8-4.4, 4.6-5.9$ при $2n = 8,$
 $2.7-3.8, 4.1-4.3, 5.1-6.4$ при $2n = 10.$
Таблица 12

Значения n_(и) (391) для основного состояния

полиенов с числом углеродных атомов 2*n*, рассчитанные в МК приближении с набором конфигураций *A*, построенном на орбиталях, самосогласованных для набора конфигураций *B*

2,0	$A \rightarrow$	S_1	S ₂	S_n
Zn	$B\downarrow$			
	S_0	0.02933	0.02750	0.02663
6	S_1	0.04012	0.04177	0.04220
0	S_2		0.04259	0.04278
	S_n			0.04019
	S_{0}	0.02588	0.02411	0.02322
8	S_1	0.04498	0.04575	0.04443
0	S_2		0.04141	0.04228
	S_n			0.04032
	S_0	0.02183	0.02056	0.01999
10	S_1	0.03905	0.04103	0.04284
10	\overline{S}_2		0.04281	0.04490
	S_n			0.04153

Как видно из приведенных данных, средняя величина эффективной энергии перехода увеличивается при расширении набора конфигураций, что

связано с учетом все более высоколежащих переходов. Принимая во внимание приближенное постоянство ε для данного набора конфигураций, можно утверждать, что значительный выигрыш в энергии при оптимизации орбиталей достигается за счет существенного увеличения величины $n_{(u)}$, т. е. в конечном итоге за счет увеличения абсолютной величины коэффициентов T_{tm} .

В общем случае связь корреляционной поправки К энергии С коэффициентами при конфигурациях не является такой простой, как для рассмотренных наборов конфигураций. Однако из (389) следует, что при самосогласовании орбитали должны изменяться таким образом, чтобы повышение энергии основной конфигурации с избытком компенсировалось увеличением по абсолютной величине отрицательной добавки за счет функцию увеличения вклада В волновую остальных конфигураций. Выполненный расчет основного состояния урацила с учетом кроме основной конфигурации всех синглетных однократно возбужденных конфигураций служит показательной иллюстрацией такого вывода. Очевидно, что орбитали, самосогласованные для основной конфигурации, удовлетворяют также ΜК теории ССП с уравнениям указанным набором вариационным конфигураций, так как при этом, согласно теореме Брилюэнна (§ 2.2.1), вклад в основное состояние однократно возбужденных конфигураций равен нулю. В то же время учет однократно возбужденных конфигураций на хюккелевских орбиталях приводит в ряде случаев к энергии основного состояния более низкой, чем хартри-фоковская энергия. По этой причине представлялось интересным найти самосогласованные орбитали, реализующие минимум энергии основного состояния урацила с набором всех однократно возбужденных конфигураций.

В качестве начальных были взяты орбитали, получающиеся ИЗ самосогласования хюккелевских после одного цикла для основной конфигурации. Таким образом, исходные величины V_{km} были малыми, однако, не строго равными нулю. Для получения самосогласованных решений ΟΓ (387) $\lambda = 1/30$. использовался с Ход процесса самосогласования иллюстрируется кривыми, приведенными на рис. 9.

Как видно из этого рисунка, вначале медленное, а затем все более быстрое орбиталей сопровождается увеличением основной изменение энергии конфигурации при одновременном резком увеличении вклада однократно возбужденных конфигураций, что приводит в конечном итоге к существенному понижению энергии основного состояния. Окончательная величина корреляционной добавки к энергии получилась равной –0.5334 эВ.

Рис. 9. Ход процесса самосогласования для основного состояния урацила с учетом всех однократно возбужденных конфигураций. За начало отсчета энергии основной конфигурации *E*₀ и энергии состояния *E* принята хартрифоковская энергия.

Основное состояние урацила было рассчитано также В приближении конфигураций двухконфигурационном с набором S_1 . Корреляционная добавка к энергии, полученная на орбиталях, самосогласованных для основной конфигурации, оказалась равной -0.2469 эВ. Самосогласование орбиталей приводит к возрастанию этой добавки до -0.6198 эВ. К сожалению, нет данных, которые позволили бы оценить энергию корреляции в урациле. Однако, величина корреляционной добавки, значительно бо́льшая соответствующей величины для полиена, дает основание утверждать, что выигрыш в энергии за счет оптимизации орбиталей в гетероатомной системе значительно больше, чем в регулярном полиене с тем же числом электронов.

В расчете дублетного основного состояния бензильного радикала использовался конфигурационный набор, включающий кроме основной конфигурации все однократно возбужденные конфигурации симметрии ${}^{2}B_{2}$, т. е. набор конфигураций, который обычно используется при вычислении спиновой плотности. Расчет методом КВ с этим набором конфигураций, построенном на орбиталях, самосогласованных для основной конфигурации, приводит к энергии на 0.1696 эВ ниже самосогласованной энергии основной конфигурации. При оптимизации добавка к самосогласованной энергии основной конфигурации равна -0.3909 эВ, что составляет около 42 % вычисленной в § 2.7.3.7.1 энергии для бензильного радикала в модели ППП.

Приведенные выше результаты иллюстрируют ряд закономерностей, связанных с переходом от несамосогласованных МК волновых функций к самосогласованным. Эти закономерности имеют общий характер и должны проявляться при учете электронного взаимодействия в любой модели, независимо от способа вычисления базисных интегралов.

Оптимизация орбиталей в МК волновой функции приводит к ее существенному улучшению, несмотря на то, что использованные небольшие наборы АО ограничивали в значительной степени возможные вариации. Симметрия и альтернантность полиенов и бензильного радикала накладывали дополнительные ограничения на вариации орбиталей, поэтому для нерегулярной системы с гетероатомами поправки к энергии оказались значительно бо́льшими.

Количественные полученные оценки, для сопряженных систем, разумеется, не применимы к неэмпирическим моделям. Следует, однако, ожидать, что в неэмпирических расчетах молекул, где обычным стало использование базиса в несколько десятков и даже сотен АО, оптимизация орбиталей в МК волновой функции даст особенно большой эффект. Нахождение самосогласованного решения при малых наборах конфигураций не связано с большими дополнительными затратами машинного времени. Полученную волновую функцию можно при необходимости улучшить далее, расширяя набор конфигураций без проведения самосогласования. Такой путь уточнения волновых функций является наиболее эффективным.

2.8.2.2.7.2. Молекула LiH ab initio

2.8.2.2.7.2.1. К постановке задачи

Ставится задача построения потенциальной кривой и вычисление ряда таких свойств молекулы гидрида лития как равновесное расстояние, дипольный момент, спектроскопические константы. При решении этой задачи наряду с апробацией метода ОГ в неэмпирическом приближении ставилась также цель исследовать возможности МК теории ССП для построения потенциальной функции с учетом корреляционных эффектов, что существенно для молекулы LiH, диссоциирующей гомолитически на атомы с открытыми оболочками.

Четырехэлектронная молекула LiH описывалась гамильтонианом в приближении Борна – Оппенгеймера. При таком подходе для построения потенциальной функции нужно решать электронную задачу для ряда значений межъядерного расстояния.

Молекула LiH исследовалась методами квантовой механики многими авторами. Однако в подавляющем большинстве исследований, обширная библиография которых приведена в [48, 49], электронная структура этой молекулы изучалась при равновесном межъядерном расстоянии или вблизи него, и есть лишь следующие публикации [48, 50 – 55], содержащие полные результаты расчета потенциальной кривой и спектроскопических констант.

Кейдом и Хао [48] потенциальная кривая молекулы LiH рассчитывалась в приближении одноконфигурационном ХΦР в интервале изменений межъядерного расстояния R от 2 до 4.2 *ат. ед.* Использование расширенного базиса атомных функций слэтеровского типа с оптимизацией экспонент позволили авторам практически достичь хартри-фоковского предела. Для тех спектроскопических констант, которые определяются поведением потенциальной кривой в области минимума, они получили хорошее согласие с экспериментом. Однако с ростом R резко увеличивается энергия корреляции, поэтому в приближении ХФ невозможно получить удовлетворительного значения энергии диссоциации этой молекулы.

Учет корреляционных эффектов в волновой функции обеспечивает получение более реалистичных потенциальных кривых. Так, поведение LiH, Каро потенциальной кривой молекулы полученной [50] при использовании метода КВ, показывает, что волновая функция в таком приближении описывает образование молекулы лучше, чем одноконфигурационная функция Кейда и Хао. Однако минимум энергии у Каро расположен гораздо выше, чем минимум у Кейда и Хао, что связано в первую размерностью минимальной базиса очередь с атомных функций, использованных Каро для разложения МО. Существенное улучшение положения потенциальной кривой, построенной с помощью метода КВ, удалось получить лишь при расширении базисного набора и при значительном увеличении числа членов конфигурационного разложения волновой функции [52 – 54].

Иная процедура для учета корреляционных эффектов использовалась в работах [51, 55], в которых для построения потенциальной кривой LiH волновая функция записывалась в виде антисимметризованных произведений сильно ортогональных двухэлектронных функций. Полученные таким образом потенциальные кривые оказались почти совпадающими с кривыми [50, 53], рассчитанными методом КВ при соответствующих базисах.

В работах [53 – 55] получены достаточно точные результаты, однако, использованные в них методы требуют значительных вычислительных мощностей. В этом смысле более приемлемыми являются методы МК теории ССП. К молекуле LiH такой подход применялся лишь в работе (39), однако, только при равновесном межъядерном расстоянии.

При расчете потенциальной кривой и ряда свойств LiH в основном состоянии в работах [42, 46] использовался метод ОГ (§ 2.8.2.2), применение которого обеспечивает получение решений вариационных уравнений МК теории ССП, соответствующих минимуму энергетического функционала. Чтобы уменьшить ограничения на возможные вариации орбиталей при их оптимизации, использовался расширенный базисный набор из 16 атомных орбиталей. Для более корректного определения спектроскопических констант энергетические характеристики рассчитывались для 18 межъядерных расстояний в интервале от 2 до 8 *ат. ед.*, а также при бесконечном разведении ядер; при этом плотность точек на потенциальной кривой в области минимума была значительно увеличена.

Как для гетероядерной молекулы, прослеживалось не только изменение энергии молекулы LiH при разведении ядер, но и изменение ее дипольного момента, поскольку значение его характеризует распределение электронной плотности. Кроме того, у молекул LiH есть две оболочки и поэтому она является хорошим объектом для рассмотрения особенностей применения МК теории ССП для учета внутриоболочечной корреляции (§ 2.7.1) в валентной и внутренней оболочках одновременно. Рассматривалась также структура полученных многоконфигурационных функций.

2.8.2.2.7.2.2. Методика расчета

Волновая функция основного состояния молекулы LiH записывалась в виде разложения (273) по следующим трем одноконфигурационным функциям:

$$\Psi_{0} = |\psi_{1}\bar{\psi}_{1}\psi_{2}\bar{\psi}_{2}|, \qquad (392a)$$

$$\Psi_1 = |\psi_1 \overline{\psi}_1 \psi_3 \overline{\psi}_3|, \qquad (3926)$$

$$\Psi_2 = |\psi_4 \overline{\psi}_4 \psi_2 \overline{\psi}_2|. \tag{392B}$$

Спинорбитали ψ_i и $\overline{\psi}_i$ представляли собой произведения орбитали $|i\rangle$ о-типа на спиновые функции α и β , соответственно, т. е. угловая корреляция не рассматривалась. В этом случае нормированные слэтеровские детерминанты (392) являются синглетными собственными функциями оператора \hat{S}^2 , и построенная таким образом волновая функция молекулы Ψ соответствует состоянию $X^1\Sigma^+$.

Если в качестве основной принять конфигурацию Ψ_0 , то двухкратно возбужденные по отношению к ней конфигурации Ψ_1 и Ψ_2 позволяют учесть корреляцию электронов в валентной и внутренней оболочках, соответственно. Выбранный таким образом набор конфигураций дает возможность учесть в волновой функции внутриоболочечную корреляцию, которая по сравнению с межоболочечной корреляцией является определяющей [56].

Молекулярные орбитали выбирались в виде разложения (358) по базисному набору атомных функций слэтеровского типа

$$|\mu\rangle \equiv |n_{\mu}l_{\mu}m_{\mu}\varsigma_{\mu}\rangle = \sqrt{\frac{(2\varsigma_{\mu})^{2n_{\mu}+1}(2l_{\mu}+1)(l_{\mu}-m_{\mu})!}{4\pi(2n_{\mu})!(l_{\mu}+m_{\mu})!}}r^{n_{\mu}-1}e^{-\varsigma_{\mu}r}P_{l_{\mu}}^{|m_{\mu}|}(\cos\theta)e^{im_{\mu}\phi}, \quad (393)$$

где *r*, θ и φ – сферические координаты, n_{μ} , l_{μ} , m_{μ} – квантовые числа μ -ой AO, $P_{l_{\mu}}^{|m_{\mu}|}(\cos \theta)$ – присоединенный полином Лежандра, ς_{μ} – орбитальная экспонента. Используемый в расчетах базисный набор приведен в табл. 13.

У всех 16 атомных функций магнитное квантовое число *m* полагалось равным нулю. Таким образом, все МО относились к σ-типу и угловая корреляция электронов в расчетах не учитывалась.

Приведенные в табл. 11 значения орбитальных экспонент *с* найдены Кейдом и Хао [48] в результате минимизации самосогласованной хартрифоковской энергии основного состояния молекулы LiH при равновесном межъядерном состоянии. Эти же авторы показали, что при расчетах потенциальных кривых дополнительная оптимизация базисного набора лишь незначительно отражается на результатах. В работе [56] при использовании МК теории ССП также было найдено малое различие в орбитальных экспонентах для равновесного межъядерного расстояния и для случая разведенных атомов. С другой стороны, опыт расчетов двухатомных гомоядерных молекул свидетельствует о том, что базисный набор АО, оптимизированный в приближении ХФР, при переходе к многоконфигурационному приближению практически не требует корректировки. Поэтому базисный набор, приведенный в табл. 13, использовался для всех межъядерных расстояний.

v	n	l	ς	v	п	l	ς
1	1	0	2.52117	9	3	1	3.20000
2	1	0	4.69900	10	3	2	0.64232
3	2	0	0.79722	11	3	2	1.20000
4	2	0	1.20000	12	4	3	0.92480
5	3	0	2.75000	13	1	0	0.88775
6	2	1	0.73691	14	1	0	1.56567
7	2	1	1.20000	15	2	0	1.20000
8	2	1	2.75000	16	2	1	1.37646

Таблица 13 Базисный набор* слэтеровских орбиталей Кейда и Хао [48]

*AO с $\nu = 1 \rightarrow 12$ соответствуют атому Li, остальные – атому H.

Необходимые для расчетов одно- и двухэлектронные интегралы на базисных функциях (380) вычислялись по алгоритму, разработанному В. А. Куприевичем, О. В. Шрамко и В. Е. Клименко и встроенному в программу расчетов по МК теории ССП [59].

Среднее значение кинетической энергии электронов и электронная составляющая дипольного момента μ_{el} в МК приближении при фиксированном значении *R* вычислялись по формуле

$$\Omega = \sum_{i,j} \gamma(i \mid j) \sum_{\mu,\nu} C_{\mu j} C_{\nu i} \, \omega_{\mu \nu} \,, \tag{394}$$

где Ω – искомое среднее значение, $\gamma(i \mid j)$ – элементы одночастичной матрицы плотности (317), $C_{\mu i}$ – коэффициенты разложения (358) орбиталей по фиксированному базису, а $\omega_{\mu\nu}$ – либо элементы матрицы кинетической энергии

$$t_{\mu\nu} = -\frac{1}{2}\varsigma_{\mu}^{2} \begin{bmatrix} 4(n_{\mu} + l_{\mu})(n_{\mu} - l_{\mu} - 1) / \sqrt{2n_{\mu}(2n_{\mu} - 1)(2n_{\mu} - 2)(2n_{\mu} - 3)} \times \\ \times \langle n_{\mu} - 2, l_{\mu}m_{\mu}\varsigma_{\mu} | n_{\nu} l_{\nu}m_{\nu}\varsigma_{\nu} \rangle - 4n_{\mu} / \sqrt{2n_{\mu}(2n_{\mu} - 1)} \langle n_{\mu} - 1, l_{\mu}m_{\mu}\varsigma_{\mu} | n_{\nu} l_{\nu}m_{\nu}\varsigma_{\nu} \rangle + \\ + \langle n_{\mu}l_{\mu}m_{\mu}\varsigma_{\mu} | n_{\nu} l_{\nu}m_{\nu}\varsigma_{\nu} \rangle \end{bmatrix}, (395)$$

либо элементы матрицы дипольного момента

$$d_{\mu\nu} = \frac{1}{\varsigma_{\mu}R} \sqrt{\frac{(n_{\mu}+1)(n_{\mu}+1/2)}{(2l_{\mu}+1)}} \begin{bmatrix} \frac{l_{\mu}+1}{\sqrt{2l_{\mu}+3}} \langle n_{\mu}+1, l_{\mu}+1, m_{\mu}\varsigma_{\mu} | n_{\nu} l_{\nu}m_{\nu}\varsigma_{\nu} \rangle + \\ + \frac{l_{\mu}}{\sqrt{2l_{\mu}-1}} \langle n_{\mu}+1, l_{\mu}-1, m_{\mu}\varsigma_{\mu} | n_{\nu} l_{\nu}m_{\nu}\varsigma_{\nu} \rangle \end{bmatrix} .$$
(396)

Величина потенциальной энергии вычислялась как разность между полной и кинетической энергиями молекулы.

Оптимизация коэффициентов *С*_{µi} в задаче вида (361) проводилась улучшенным методом ОГ первого приближения (§ 2.8.2.2.5) с матричными элементами (357) и (344).

Для апробации алгоритма воспроизводился ряд точек потенциальной кривой, построенной Кейдом и Хао [48] в приближении ХФР. Максимальное отличие обнаружилось в значениях энергии $E_{\rm HF}$ на две единицы в шестой значащей цифре, которое, вероятно, связано с небольшими отличиями в значениях базисных интегралов. Поскольку ХФ потенциальная кривая приведена в [48] лишь до значения *R*, равного 4.2 *ат. ед.*, расчет был продолжен в том же приближении до *R* = 8 *ат. ед.*

Расчет волновой функции при бесконечном разведении ядер выполнялся с вычисленным на базисных функциях набором интегралов, в котором все двухцентровые интегралы занулялись. Обычная рутановская процедура самосогласования орбиталей, сходившаяся при конечных значениях R, в этом случае приводила к осцилляциям. Поэтому при $R = \infty$ для получения одноконфигурационного самосогласованного решения применялся, как и в многоконфигурационном случае, улучшенный метод ОГ первого приближения.

2.8.2.2.7.2.3. Расчет потенциальной кривой, спектроскопических констант и дипольного момента

Для расчета потенциальной кривой молекулы LiH в МК приближении ССП энергия ee основного состояния вычислялась С помощью двухконфигурационной волновой функции, конфигурации включающей Ψ₀ (392a) и Ψ₁(392б). Такой же вид волновой функции использовался и при расчете энергии Е_{ст} обычным методом КВ на орбиталях, самосогласованных в ХФ приближении. Основные результаты этих расчетов – значения полной энергии E_{MC} , кинетической энергии T, вириального отношения V/T и квадратов коэффициентов T_1^{CI} и T_1^{MC} при конфигурации Ψ_1 как функции межъядерного расстояния приведены в табл. 14. Величины (T₁^{MC})² для использованного набора конфигураций, как было показано в § 2.8.2.2.7.1.2, находятся в простой связи со значениями чисел заполнения естественных орбиталей. В этой же таблице даны вычисленные при соответствующих значениях *R* величины корреляционных добавок

$$\Delta E_{\rm CI} = E_{\rm CI} - E_{\rm HF}, \qquad (397)$$

$$\Delta E_{\rm MC} = E_{\rm MC} - E_{\rm HF}.$$
(398)

Значения кинетической энергии и вириального отношения, рассчитанных с двухконфигурационной волновой функцией методом КВ, не приводятся, поскольку они оказались близкими к соответствующим хартри-фоковским значениям из работы [48].

Вычисленные потенциальные кривые в сравнении с экспериментальной кривой [57] и потенциальными кривыми, построенными по данным из работ [50, 51, 52 – 55], графически представлены на рис. 10.

Для определения значения равновесного межъядерного расстояния R_e и соответствующих ему величин энергии и ее второй производной потенциальная кривая в области минимума интерполировалась полиномами разных степеней от трех до семи с использованием наборов точек, расположенных как симметрично, так и асимметрично по отношению к минимуму. Все полиномы, начиная с четвертого порядка, приводили к практически не отличающимся результатам: значения энергии совпадали в пяти десятичных знаках, а разброс значений R_e и второй производной энергии составлял 0.001 и 0.05 %, соответственно.

Значения равновесного расстояния R_e , полной энергии E_e в минимуме, энергии диссоциации D_e и колебательной константы ω_e , вычисленные с применением аппроксимации потенциальной кривой полиномом седьмой

степени, приведены в табл. 15. Там же для сравнения приводятся соответствующие значения этих величин, рассчитанных с применением аналогичной аппроксимации для XФ потенциальной кривой.

Таблица 14

Энергетические характеристики состояния *X*¹*Σ*⁺ молекулы LiH как функции межъядерного расстояния

R	E _{MC}	$\Delta E_{\rm CI}$	$\Delta E_{ m MC}$	Т	V/T	$(T_1^{CI})^2$	$(T_1^{MC})^2$
2.0	-7.92951	-0.00009	-0.01629	8.32450	-1.95255	0.00012	0.01686
2.5	-7.98908	-0.00011	-0.01544	8.14052	-1.98140	0.00015	0.01668
2.6	-7.99435	-0.00012	-0.01546	8.11188	-1.98551	0.00016	0.01695
2.7	-7.99820	-0.00012	-0.01554	8.08575	-1.98947	0.00017	0.01736
2.8	-8.00088	-0.00013	-0.01570	8.06194	-1.99243	0.00019	0.01786
2.9	-8.00259	-0.00014	-0.01591	8.04031	-1.99531	0.00020	0.01852
3.015	-8.00356	-0.00014	-0.01623	8.01789	-1.99821	0.00022	0.01951
3.1	-8.00371	-0.00016	-0.01652	8.00274	-2.00012	0.00023	0.02024
3.2	-8.00337	-0.00017	-0.01690	7.98649	-2.00212	0.00025	0.02142
3.3	-8.00258	-0.00018	-0.01733	7.97175	-2.00389	0.00027	0.02268
3.4	-8.00141	-0.00019	-0.01780	7.95839	-2.00541	0.00030	0.02411
3.5	-7.99994	-0.00021	-0.01832	7.94636	-2.00674	0.00032	0.02565
4.0	-7.98965	-0.00031	-0.02140	7.90183	-2.01111	0.00050	0.03603
5.0	-7.96561	-0.00069	-0.02984	7.86815	-2.01239	0.00131	0.07483
6.0	-7.94702	-0.00159	-0.04173	7.87898	-2.00864	0.00349	0.15047
7.0	-7.93712	-0.00363	-0.05750	7.90967	-2.00347	0.00939	0.26754
8.0	-7.03312	-0.00780	-0.07444	7.92795	-2.00065	0.02286	0.35830
8	-7.93121		-0.17433				0.49998

Величина R_{a} , рассчитанная в двухконфигурационном приближении, получается несколько завышенной не только по сравнению с экспериментальным значением, но также и со значением, полученным в приближении ХФР. Интерполяция по табличным значениям вириального отношения (табл. 14), которое может быть использовано для определения равновесного межъядерного расстояния, дает для R_e величину 3.095 ат. ед., что на 0.08 ат. ед. больше, чем R, соответствующее минимуму потенциальной кривой. Следует отметить, что сдвиг значения равновесного расстояния в сторону больших *R* является типичным для большинства расчетов молекулы LiH с учетом корреляционных эффектов [53].

Рис. 10. Потенциальные кривые молекулы LiH, вычисленные в хартрифоковском (ХФ) и двухконфигурационном (МК ССП) приближениях в сравнении с экспериментальной кривой (57) и с потенциальными кривыми, построенными по данным из других работ: 1 [50, 51], 2 [58], 3 [53], 4 [54], 5 [55], 6 – сумма хартри-фоковских энергий отдельных атомов Li и H. Потенциальная кривая из работы [52] во всех точках от 2 до 6 *ат. ед.* совпадает с кривой МК ССП.

Таблица 15 Значения спектроскопических констант молекулы LiH в состоянии X¹Σ⁺, рассчитанные при соответствующих равновесных межъядерных расстояниях на двухконфигурационных (МК ССП) и хартри-фоковских (ХФ) волновых функциях, и их экспериментальные значения (Эксп.) [48].

Свойство	МК ССП	ΧΦ	Эксп.
R_e, a_0	3.087	3.034	3.015
$E_{_e}$, $E_{_h}$	-8.00371	-7.98732	-8.0705
D_e , E_h	0.07250	0.23044	0.09246
$\omega_{_{e}}, CM^{-1}$	1305	1433	1405.6
μ_{e}, A^*	-5.739	-6.018	-5.88
$ heta_{e}$	1.998	1.647	1.80 ± 0.3

*1 Дебай = 3,33564·10⁻³⁰ Кл·м

Приведенные в табл. 15 значения энергии диссоциации определялись как разность полной энергии молекулы при разведении ядер на бесконечно большое расстояние и минимального значения энергии Е. Значение D., рассчитанное таким образом по ХФ кривой, более чем вдвое превышает экспериментальное значение. Величина энергии диссоциации, полученная в двухконфигурационном приближении, гораздо лучше согласуется С экспериментальным значением (ошибка в 22%) даже по сравнению С «рационализированным» значением D_e, равным 0.0546 am. ed. [48], которое представляет собой разность между суммой хартри-фоковских энергий отдельных атомов и хартри-фоковской энергией молекулы в минимуме.

На основе полученных двухконфигурационных волновых функций были рассчитаны величины дипольного момента μ для различных значений *R*. Для сравнения рассчитывалась также зависимость $\mu(R)$ с использованием ХФ волновой функции. Численные результаты сведены в табл. 16 и представлены графически на рис. 11. Интерполяцией по табличным значениям $\mu(R)$ определялись величины μ_e и $\theta_e = \mu_e/R_e(d\mu/dR)_{R_e}$ (табл. 15), соответствующие равновесным межъядерным расстояниям.

Величина дипольного момента, относящаяся к R_e , в обоих приближениях близка к экспериментальному значению. При разведении ядер величина дипольного момента, рассчитанная в приближении ХФР, растет почти

пропорционально R. Для больших R этому дипольному моменту соответствуют эффективные остаточные заряды на ядрах в 0.6 заряда электрона. Такое аномальное поведение зависимости $\mu(R)$ в приближении ХФР обусловлено завышением вклада ионных структур в ХФ волновой функции.

В двухконфигурационном приближении кривая $\mu(R)$ проходит через максимум, расположенный вблизи R = 5 *ат. ед.*, и при дальнейшем увеличении R спадает к нулю, что соответствует диссоциации молекулы LiH на нейтральные атомы. Рассчитанная зависимость $\mu(R)$ находится в хорошем согласии с результатами в работах [52, 53].

Таблица 16 Значения дипольного момента молекулы LiH в состоянии $X^{1}\Sigma^{+}$, рассчитанные на двухконфигурационных (μ^{MC}) и хартри-фоковских (μ^{HF}) волновых функциях, и дипольного момента внутренней оболочки ($2\mu_{12}$). Величины дипольных моментов даны в дебаях. Положительным направлением для дипольного момента

является направление от Li к H.

R	$\mu^{ ext{MC}}$	$\mu^{ ext{HF}}$	$2\mu_{12}$
2.0	-4.9741	-5.0313	0.0494
2.5	-5.2750	-5.4374	0.0437
2.6	-5.3484	-5.5376	0.0418
2.7	-5.4224	-5.6427	0.0400
2.8	-5.5029	-5.7524	0.0383
2.9	-5.5829	-5.8661	0.0368
3.015	-5.6703	-6.0013	0.0352
3.1	-5.7506	-6.1043	0.0344
3.2	-5.8244	-6.2279	0.0340
3.3	-5.9063	-6.3542	0.0326
3.4	-5.9859	-6.4828	0.0318
3.5	-6.0699	-6.6131	0.0312
4.0	-6.4253	-7.2859	0.0282
5.0	-6.5078	-8.6946	0.0218
6.0	-5.2653	-10.1516	0.0149
7.0	-2.7034	-11.5466	0.0071
8.0	-1.4397	-12.7759	0.0044

Рис. 11. Зависимость дипольного момента молекулы LiH от межъядерного расстояния. Зависимость 1 построена по данным [52], кривая 2 получена в [53].

Рассчитанная на двухконфигурационной волновой функции электронная составляющая дипольного момента выражается через диагональные элементы μ_{ii} матрицы матрицы дипольного момента на орбиталях { ϕ } следующим образом:

$$\mu_{el} = 2\mu_{11} + 2(T_0^2\mu_{22} + T_1^2\mu_{33}), \qquad (399)$$

т. е. вклады от каждой оболочки входят в дипольный момент аддитивным образом. Представляет интерес рассмотреть вклад от внутренней оболочки, который определяется членом $2\mu_{11}$. Из табл. 16 видно, что величина этого члена мала. В области, близкой к R_e , дипольный момент внутренней оболочки составляет менее 1% полного дипольного момента. Это свидетельствует о том, что внутренняя оболочка практически не участвует в образовании химической связи, оставаясь практически сферически симметричной. Незначительная поляризация внутренней оболочки, противоположная по знаку поляризации валентной оболочки, как и следовало ожидать, исчезает при разведении ядер.

2.8.2.2.7.2.4. Обсуждение энергетических результатов

Опираясь на результаты расчета энергетических свойств молекулы LiH (табл. 14). обсудим теперь учет корреляционных эффектов В двухконфигурационном приближении и влияние его на рассчитанные энергетические характеристики. О степени учета корреляции можно судить, корреляционных добавок с величиной сопоставляя величину энергии корреляции, которая определяется как разность экспериментального и ХФ значения энергии.

Включение в волновую функцию помимо ХФ конфигурации второй конфигурации, построенной на ХФ орбиталях, приводит к незначительному понижению энергии; лишь при больших *R* величина ΔE_{cr} становится более заметной. Это связано с тем, что величина квадрата коэффициента T_1^{cr} , которая определяет вес второй конфигурации в волновой функции, близка к нулю.

Оптимизация орбитального набора приводит к тому, что величина корреляционной добавки ΔE_{MC} при R = 3.015 *ат. ед.* возрастает по отношению к ΔE_{cl} на два порядка и составляет около 20% энергии корреляции, равной -0.0832 ат. ед. При увеличении R корреляционная добавка ΔE_{MC} ПО абсолютной величине монотонно увеличивается И на бесконечности превышает $\Delta E_{\rm MC}$ для равновесного значения R более чем в 10 раз. Экспериментальное значение энергии изолированных атомов лития и водорода, полученное из спектроскопических данных, составляет -7.9780 ат. ед. [48]. Значение этой же величины, вычисленное при использовании для системы Li + Н хартри-фоковской волновой функции, равно -7.75688 am. ед. Таким образом, энергия корреляции в этом случае составляет -0.2211 ат. ед. Такая завышенная величина энергии корреляции при больших межъядерных расстояниях свидетельствует о неадекватности ХФ волновой функции при описании удаленных атомов с открытыми оболочками.

Поведение корреляционной добавки ΔE_{MC} связано с характером изменения значений квадрата коэффициента T_1^{MC} при конфигурации Ψ_1 . При расстояниях *R* близких к R_e , с использованной двухконфигурационной волновой функции учитывается около 40 % корреляционной энергии в валентной оболочке.

Указанное отличие в степени учета корреляционных эффектов проявляется в том, что рассчитанная потенциальная кривая в области $R > R_e$ по сравнению с экспериментальной получается более пологой, а ХФ кривая, наоборот, поднимается вверх более круто. Эта особенность поведения потенциальной кривой явилась причиной смещения величины равновесного расстояния в сторону бо́льших R, а величина энергии диссоциации оказалась несколько

заниженной. Вследствие этого кривизна рассчитанной потенциальной кривой также получилась несколько меньшей, что естественно, отразилось на значении колебательной константы ω_e . Учет дополнительных валентных конфигураций должен привести к уточнению рассмотренных характеристик, так как при этом ожидается существенное понижение энергии лишь в области близкой к R_e .

2.8.2.2.7.2.5. Корреляция во внутренней оболочке

МК теория ССП использовалась также для учета корреляционных эффектов во внутренней оболочке LiH при экспериментальном равновесном межъядерном расстоянии 3.015 *ат. ед.* Для этой цели в волновую функцию наряду с двумя конфигурациями, которые использовались при построении потенциальной кривой, ввели третью конфигурацию Ψ_2 . Согласно (392в) эта конфигурация соответствует переходу двух электронов внутренней оболочки на новую орбиталь $|4\rangle$.

В качестве исходных орбиталей $|1\rangle$, $|2\rangle$ И $|3\rangle$ использовались соответствующие орбитали, самосогласованные для набора конфигураций Ψ_0 и Ψ_1 . Для выбора исходной орбитали $|4\rangle$ проводился расчет основного состояния молекулы LiH методом КВ с использованием набора конфигураций, в который входили, кроме конфигурации Ψ_0 , еще 28 двухкратно возбужденных $\Psi_{ii \to ii}$. Все конфигурации строились на орбиталях, конфигураций вида самосогласованных в двухконфигурационном приближении. Рассчитанное значение энергии получилось равным -8.01642 ат. ед.; аналогичный расчет с ΧФ орбиталей этой использованием дает для величины значение -8.0059 ат. ед. Среди конфигураций типа $\Psi_{ii \to ii}$ с наибольшим коэффициентом *T*_{*k*}, равным 0.0218, входила конфигурация, соответствующая пары электронов с первой орбитали на двенадцатую. Она была и выбрана в качестве исходного приближения к орбитали |4>.

Самосогласованное значение энергии, рассчитанное с трехконфигурационной волновой функцией, равно –8.01638 *ат. ед.*, а значение E_{c1} на орбиталях исходного набора составляет –8.00775 *ат. ед.* Таким образом, корреляционная добавка получилась равной –0.02905 *ат. ед.*, что лишь на 0.00004 *ат. ед.* больше, чем корреляционная добавка, полученная при учете 29 конфигураций методом КВ. С помощью двухконфигурационной волновой функции учитывается часть этой добавки в –0.01623 *ат. ед.*, относящаяся к валентной оболочке. Оставшуюся часть энергии в –0.01282 *ат. ед.*, в соответствии со структурой третьей конфигурации, следует отнести к внутренней оболочке.

Представляет интерес сопоставить эту величину с чистым значением корреляционной добавки для внутренней оболочки. С этой целью была рассчитана система LiH⁺⁺ при R = 3.015 am. ed., используя тот же, что и для LiH, базис атомных функций. Значение энергии, полученное в XФ и двухконфигурационном приближениях равны соответственно –6.90598 и –6.92002 am. ed. Корреляционная добавка в –0.01404 am. ed. оказалась весьма близкой к приведенному выше значению –0.01282 am. ed. Таким образом, при учете внутриоболочечной корреляции с помощью оптимизированных конфигураций можно говорить об аддитивности корреляционных поправок к энергии от отдельных оболочек. Это свидетельствует об определенной изолированности оболочек при описании электронных состояний молекулы многоконфигурационной волновой функцией.

2.8.2.2.7.2.6. Обсуждение орбитальной структуры МК волновых функций

Определенный интерес представляет сравнение оптимизированных орбитальных наборов, относящихся к различным МК волновым функциям, включая ХФ функции, для систем LiH и LiH⁺⁺. В качестве критерия для сравнения орбиталей φ_i^P и φ_i^Q , относящихся к наборам *P* и *Q*, был выбран их интеграл перекрывания

$$\langle \varphi_i^P \, | \, \varphi_i^Q \rangle = \sum_{\mu,\nu} C^P_{\mu i} C^Q_{\nu i} \langle \, \mu \, | \, \nu \rangle \,. \tag{400}$$

Так как орбитали являются нормированными, этот интеграл представляет собой величину проекции одной орбитали на другую. Чем более сходны орбитали φ_i^P и φ_i^Q из различных наборов, тем больше величина этой проекции, достигающая единичного значения при полном совпадении орбиталей.

Значение интеграла перекрывания (400) для всех четырех орбиталей, входящих по крайней мере в одну из учитываемых конфигураций, приведены в табл. 17.

При рассмотрении этих данных обращает на себя внимание то, что первая орбиталь практически не чувствительна к перестройке в валентной оболочке, оставаясь почти не изменной даже при полном ее удалении. По этой причине использованное в работе [56] приближение «фиксированного» остова может служить хорошим приближением в МК теории ССП.

Следует указать также на довольно большие значения интегралов $\langle \varphi_2^P | \varphi_2^Q \rangle$ в четвертом столбце этой таблицы. Для объяснения этого факта рассмотрим выражение для корреляционной добавки в многоконфигурационном приближении, выделив члены, связанные с основной конфигурацией, а именно:

$$\Delta E_{\rm MC} = T_0^2 (H_{00} - E_{\rm HF}) + 2\sum_k T_0 T_k H_{0k} + \sum_{k,l(\neq 0)} T_k T_l (H_{kl} - \delta_{kl} E_{\rm HF}).$$

Таблица 17

Значения интегралов перекрывания $\langle \varphi_i^P | \varphi_i^Q \rangle$, рассчитанные при $R = 3.015 \ am. \ ed.$ для разных пар *P*,*Q* орбитальных наборов

Орбитальные наборы		Орбитали			
Р	Q	$ 1\rangle$	$ 2\rangle$	3>	$ 4\rangle$
Ι	II	1.0000	0.9993	0.4364	0.9998
Ι	III	0.9997	0.9990	0.4254	0.8097
Ι	IV	0.9997	0.9580	0.8176	0.9819
Ι	V	0.9997	0.9201	0.4605	0.7520
II	III	0.9997	0.9997	0.9994	0.8109
II	IV	0.9997	0.9519	0.7416	0.9826
II	V	0.9997	0.9252	0.9424	0.7535
III	IV	0.9993	0.9517	0.7276	0.7791
III	V	0.9993	0.9249	0.9409	0.9504
IV	V	1.0000	0.8235	0.6711	0.7005

I и IV – хартри-фоковские орбитали LiH и LiH⁺⁺,

II и V – наборы орбиталей для LiH и LiH⁺⁺,

оптимизированные в двухконфигурационном приближении,

III – набор орбиталей, самосогласованных

в трехконфигурационном приближении.

Энергия основной конфигурации H_{00} достигает максимального значения $E_{\rm HF}$, если для построения конфигурации Ψ_0 используются ХФ орбитали. При отклонении орбиталей от хартри-фоковских положительный первый член в правой части этого выражения увеличивается, что при самосогласовании в рамках МК теории ССП должно с избытком компенсироваться остальными членами. Как правило $T_k \leq T_0$, поэтому самосогласованные орбитали, входящие в конфигурацию Ψ_0 , должны мало отличаться от хартри-фоковских. Это подтверждается результатами, приведенными в табл. 17. Существенные отличия между хартри-фоковским и многоконфигурационным наборами, отличаются только для тех орбиталей, которые входят в дополнительные конфигурации.

На основании проведенного рассмотрения можно считать, что набор орбиталей, в котором фиксируются не только орбитали остова, но и остальные

орбитали, входящие в основную конфигурацию, будет во многих случаях хорошим приближением к оптимизированному набору. Такое приближение «фиксированной» основной конфигурации приводит к заметному сокращению объема вычислительной работы, так как оптимизируются лишь орбитали, входящие в дополнительные конфигурации. Однако к использованию этого приближения надо относиться с осторожностью, применяя его лишь тогда, когда вклад дополнительных конфигураций ожидается небольшим. Приближение «фиксированного» остова с успехом может использоваться для построения потенциальных кривых во всем диапазоне изменения межъядерного расстояния.

2.8.2.3. Метод ОГ в одноконфигурационной теории ССП

До сих пор рассматривалась общая задача МК теории ССП и были предложены методы определения ортонормированного набора орбиталей, минимизирующих энергетический функционал. В квантовой химии и поныне широко используется одноконфигурационная теория ССП. Поэтому несомненно представляет интерес детальное рассмотрение задачи оптимизации орбиталей волновых функций, соответствующих одной конфигурации с замкнутой или открытой оболочкой, чему и посвящен этот раздел.

Задачу определения наилучшей в смысле вариационного принципа одноконфигурационной волновой функции логично рассматривать как простейший частный случай общей МК теории ССП (§ 2.8.2). Единственный коэффициент разложения волновой функции в этом случае определяется из условия ее нормировки, и оптимизировать нужно лишь орбитальный набор. Кроме того, в отличие от МК приближения, для случая одной конфигурации спектр собственных значений матрицы вторых производных имеет более компактный вид, поэтому для оптимизации орбиталей можно использовать простейший вариант метода ОГ – метод ОГ первого приближения (§ 2.8.2.2.2). В этом приближении И будет рассмотрено построение ΟΓ, цикл самосогласования орбиталей с которым соответствует шагу спуска по энергетической поверхности.

В одноконфигурационной теории ССП для получения оптимизированных орбиталей широкое применение нашли такие ОГ как оператор Фока для конфигурации с замкнутой оболочкой и оператор Рутана для конфигурации с открытой оболочкой. Эти операторы были получены в результате преобразования вариационных уравнений, а при таком подходе, как отмечалось в § 2.8.2.1.1, вопрос о характере сходимости основанных на них процедур самосогласования остается в стороне. Этот вопрос будет также детально рассмотрен ниже.

2.8.2.3.1. Построение одноэлектронных гамильтонианов в одноконфигурационном приближении

Одноэлектронный гамильтониан первого приближения, в соответствии с формулой (340) в § 2.8.2.2.2, определяется величинами V_{km} , которые выражаются с помощью соотношения (322) через элементы матриц плотности $\gamma(i|j)$ и $\Gamma(ij|kl)$. В рассматриваемых далее частных случаях матрицы плотности легко получить, сопоставив выражение для среднего значения молекулярного гамильтониана в приближении Борна – Оппенгеймера (6), рассчитанного на одноконфигурационных волновых функциях, с выражением для средней энергии в общем виде (314).

Для основного состояния системы с замкнутой оболочкой, описываемого волновой функцией в виде детерминанта Слэтера, составленного из дважды заполненных орбиталей, среднее значение энергии определяется как (см. также формулы (69) и (83))

$$E = 2\sum_{k=1}^{N/2} \langle k | \hat{h} | k \rangle + \sum_{k,l=1}^{N/2} (2 \langle kl | \hat{g} | kl \rangle - \langle kl | \hat{g} | lk \rangle).$$
(401)

Вводя числа заполнения n_i , равные 1 при $i \le N/2$ и 0 в остальных случаях и сопоставляя выражение (401) с (314), легко записать матричные элементы матриц плотности в представлении орбиталей следующим образом:

$$\gamma(i \mid j) = 2n_i \delta_{ii}, \tag{402a}$$

$$\Gamma(ij | i'j') = (2\delta_{ii'}\delta_{jj'} - \delta_{ij'}\delta_{i'j})n_i n_j.$$
(4026)

Подставив далее (402) в (322) и выполнив суммирования, получим

$$V_{ij}^{c} = 4(n_i - n_j)F_{ij}, \qquad (403a)$$

где

$$F_{ij} = \langle i | \hat{h} | j \rangle + \sum_{i'=1}^{N/2} (2\langle ii' | \hat{g} | ji' \rangle - \langle ii' | \hat{g} | i'j \rangle)$$

$$(4036)$$

есть хорошо известное выражение для матричного элемента оператора Фока \hat{F} . Таким образом, матрицу величин V_{ij}^c для конфигурации с замкнутой оболочкой можно схематически представить в виде конструкции (404)

Орбитали	Орбитали	
замкнутой	пустой	
оболочки	оболочки	
		Орбитали
0	$4\hat{F}$	замкнутой
		оболочки
		Орбитали
$-4\hat{F}$	0	пустой
		оболочки

Для состояний с открытой оболочкой большой класс практически важных состояний описывается следующим выражением для энергии [16]:

$$E = 2\sum_{k} \langle k | \hat{h} | k \rangle + \sum_{k,l} (2 \langle kl | \hat{g} | kl \rangle - \langle kl | \hat{g} | lk \rangle) + f \left[2\sum_{m} \langle m | \hat{h} | m \rangle + f \sum_{m,n} (2a \langle mn | \hat{g} | mn \rangle - b \langle mn | \hat{g} | nm \rangle) + 2\sum_{k,m} (2 \langle km | \hat{g} | km \rangle - \langle km | \hat{g} | mk \rangle) \right].$$

$$(405)$$

Здесь и далее индексы k и l обозначают орбитали, относящиеся к замкнутой оболочке, m и n – орбитали открытой оболочки; пустые орбитали обозначаются индексами p и q, а произвольные орбитали – индексами i и j. В выражении (405) постоянная f обозначает отношение числа одновременно заполненных орбиталей открытой оболочки к их максимальному возможному числу, a a и b – численные постоянные, зависящие от конкретной ситуации. В случае наполовину занятой оболочки f = 1/2, a = 1, b = 2. Значения этих постоянных для других ситуаций [16] приведены выше (§ 2.5.3).

Сопоставив (405) с (314), легко получить выражения для элементов матрицы плотности, соответствующие средней энергии (405), а именно:

$$\gamma(i|j) = 2n_i \delta_{ij}, \qquad (406a)$$

$$\Gamma(ij \mid i'j') = (2\delta_{ii'}\delta_{jj'} - \delta_{ij'}\delta_{ij})n_in_j + \frac{n_in_j(1-n_i)(1-n_j)}{(1-f)^2} [2(a-1)\delta_{ii'}\delta_{jj'} - (b-1)\delta_{ij'}\delta_{ij}].$$
(4066)

В (406) n_i – число заполнения орбитали $|i\rangle$, равное 1, *f* или 0, если эта орбиталь входит в замкнутую, открытую оболочку или соответственно является незаполненной. Подстановка (406) в (322) дает

$$V_{ij}^{o} = 4(n_i - n_j)F_{ij}^{\mathrm{T}} + 4[n_i(1 - n_i) - n_j(1 - n_j)Q_{ij}/(1 - f)], \qquad (407)$$

где F_{ij}^{T} и Q_{ij} – матричные элементы операторов, определяемых соотношениями:

$$\hat{F}^{\rm T} = \hat{h} + 2\hat{J}^c - \hat{K}^c + 2\hat{J}^o - \hat{K}^o, \qquad (408)$$

$$\hat{Q} = 2(a-1)\hat{J}^o - (b-1)\hat{K}^o, \qquad (409)$$

в которых кулоновские \hat{J}^c , \hat{J}^o и обменные \hat{K}^c , \hat{K}^o операторы строятся из орбиталей замкнутой и открытой оболочек, соответственно.

Таким образом, для рассматриваемых состояний с открытой оболочкой матрицу величин V_{ij}^{o} можно составить из соответствующих блоков матриц $\|F_{ij}^{T}\|$ и $\|Q_{ij}\|$ следующим образом: (410)

Орбитали	Орбитали	Орбитали	
замкнутой	открытой	пустой	
оболочки	оболочки	оболочки	
			Орбитали
0	$4[(1-f)\hat{F}^{\mathrm{T}}-f\hat{Q}]$	$4\hat{F}^{ ext{T}}$	замкнутой
			оболочки
			Орбитали
$-4[(1-f)\hat{F}^{\mathrm{T}}-f\hat{Q}]$	0	$4f(\hat{F}^{\mathrm{T}}+\hat{Q})$	открытой
			оболочки
			Орбитали
$-4\hat{F}^{ ext{T}}$	$-4f(\hat{F}^{\mathrm{T}}+\hat{Q})$	0	пустой
			оболочки

Определив матрицы V^c и V^o теперь легко построить матрицу ОГ первого приближения. В соответствии с (340) переход от матрицы V к матрице Φ после задания ее диагональных элементов Φ_{ii} сводится к умножению недиагональных элементов V_{ii} на $\lambda(\Phi_{ji} - \Phi_{ii})\xi_{ij}^2$.

2.8.2.3.2. Стандартные ОГ

В методе одноэлектронного гамильтониана самосогласованные орбитали удовлетворяют соотношению

$$\Phi_{ij} = \Lambda_{ij} \delta_{ij} \,. \tag{411}$$

В силу (340) для них должно выполняться условие

$$V_{ii} = 0.$$
 $(i < j)$ (412)

Это означает, что для оптимальных орбиталей первые производные энергии по независимым элементам матрицы ортогонального преобразования орбиталей равны нулю, т. е. выполняются условия стационарности энергии. Поскольку в методе ОГ первого приближения при выполнении условий (341) каждый цикл самосогласования орбиталей соответствует шагу спуска по поверхности средней энергии, эта стационарная точка будет минимумом энергии.

Для орбиталей, удовлетворяющим уравнениям на собственные значения с одноэлектронными операторами, широко использующимися В [16], одноконфигурационных расчетах нельзя определенно сказать, минимуму, максимуму или какой-либо другой соответствуют ли ОНИ стационарной точке на энергетической поверхности. Это связано с тем, что гамильтонианы получены вариационных уравнений, стандартные ИЗ выражающих лишь необходимое, но не достаточное условие экстремума

функционала энергии. Характер экстремума, реализуемого такими орбиталями, можно определить, установив условия, при которых цикл процедуры самосогласования будет соответствовать шагу спуска по энергетической поверхности. Для того, чтобы найти эти условия, нужно обобщить выражение (340).

В рассматриваемых случаях одной конфигурации, как видно из (404) и (410), если обе орбитали $|i\rangle$ и $|j\rangle$ принадлежат замкнутой оболочке, открытой оболочке или являются пустыми, то соотношение (412) выполняется тождественно. Это является следствием того, что унитарное преобразование такой пары орбиталей не изменяет средней энергии. Поскольку энергия не зависит от элементов D_{ij} , для которых $V_{ij} \equiv 0$, соответствующие матричные элементы Φ_{ij} одноэлектронного гамильтониана согласно (339) можно положить равными произвольным величинам B_{ij} . С учетом этого обстоятельства, вводя величину Δ_{ij} , принимающую значение 0, если $V_{ij} \equiv 0$, и значение 1 в противном случае, выражение (340) для ОГ первого приближения можно обобщить следующим образом:

$$\Phi_{ij} = \Phi_{ji} = \lambda (\Phi_{jj} - \Phi_{ii}) \xi_{ij}^2 \Delta_{ij} V_{ij} + (1 - \Delta_{ij}) B_{ij}. \quad (i < j)$$
(413)

Условия сходимости (341) процедуры самосогласования с ОГ вида (413) остаются прежними, остается справедливым и вывод о характере получающегося экстремума. Поэтому, если показать, что стандартные одноэлектронные операторы являются частным случаем ОГ вида (415), то одновременно получим и условия сходимости основанных на их применении процедур самосогласования.

Одноэлектронный оператор Фока \hat{F} является является частным случаем ОГ вида (413) с V_{ij} определенными формулой (403). Действительно, если в (413) положить

$$\Phi_{ii} = F_{ii}, \quad B_{ij} = F_{ij}, \tag{414a}$$

$$\lambda \xi_{ij}^2 = 1/[4(F_{jj} - F_{ii})], \qquad (4146)$$

то получим $\Phi_{ij} = F_{ij}$.

При рассмотрении операторов для конфигураций с открытой оболочкой учтем ограничения на индексы, которые использовались в выражении (405), и введем операторы проектирования (Приложение П-2)

$$\hat{P}^{c} = \sum_{k} |k\rangle \langle k|, \quad \hat{P}^{o} = \sum_{m} |m\rangle \langle m|, \quad \hat{P}^{u} = \sum_{q} |q\rangle \langle q|.$$
(415)

С помощью этих операторов ОГ Рутана [16] примет вид

$$\hat{\Phi}^{R} = \hat{F}^{T} - \frac{1}{2(1-f)} [(\hat{P}^{c} - \hat{P}^{u})\hat{Q} + (2f-1)\hat{P}^{o}\hat{Q} + \hat{Q}(\hat{P}^{c} - \hat{P}^{u}) + (2f-1)\hat{Q}\hat{P}^{o}], \quad (416)$$

где \hat{F}^{T} и \hat{Q} определяются формулами (408) и (409). Из (416) легко найти, что матричные элементы оператора, вычисленные на орбиталях $|i\rangle$ в блоках, где $V_{ii}^{o} \equiv 0$, имеют следующий вид:

$$\Phi_{kl}^{R} = F_{kl}^{T} - 1/(1-f)Q_{kl},$$

$$\Phi_{mn}^{R} = F_{mn}^{T} - (2f-1)/(1-f)Q_{mn},$$

$$\Phi_{pq}^{R} = F_{pq}^{T} + 1/(1-f)Q_{pq}.$$
(417a)

Остальные матричные элементы пропорциональны V_{ij}^o, определяемым по формуле (407):

$$\Phi^{R}_{km} = V^{o}_{km} / [4(1-f)],
\Phi^{R}_{kp} = V^{o}_{kp} / 4,
\Phi^{R}_{mp} = V^{o}_{mp} / (4f).$$
(4176)

Соотношения (417) показывают, что оператор $\hat{\Phi}^{R}$ является частным случаем оператора (413), причем

$$\Phi_{ii} = \Phi_{ii}^{R}, \quad B_{ij} = \Phi_{ij}^{R}, \quad (418a)$$

$$\lambda \xi_{km}^{2} = 1/[4(1-f)(\Phi_{mm}^{R} - \Phi_{kk}^{R})], \quad (4186)$$

$$\lambda \xi_{kp}^{2} = 1/[4(\Phi_{pp}^{R} - \Phi_{kk}^{R})], \quad (4186)$$

$$\lambda \xi_{mp}^{2} = 1/[4f(\Phi_{pp}^{R} - \Phi_{mm}^{R})].$$

Если орбитали $|k\rangle$, $|m\rangle$ и $|p\rangle$, относящиеся соответственно к замкнутой, открытой и пустой оболочкам, пронумеровать так, чтобы выполнялись неравенства k < m < p, и в каждом цикле самосогласования распределять их по оболочкам в соответствии с условиями

$$F_{kk} < F_{pp}$$
 (для конфигураций с замкнутой оболочкой) (419)

ИЛИ

$$\Phi_{kk}^{R} < \Phi_{mm}^{R} < \Phi_{pp}^{R}$$
, (для конфигураций с открытой оболочкой) (420)

то первые части выражений (414б) и (418б) будут положительными и будут выполняться соотношения (341б). При этих условиях к оператору Фока и к оператору Рутана полностью применимы рассуждения, приведенные в конце § 2.8.2.2.2, так что если процесс самосогласования, основанный на
использовании этих операторов, сходится, то полученные самосогласованные решения реализуют минимум энергии соответствующей конфигурации.

2.8.2.3.3. Оптимизация орбиталей в одноконфигурационной теории ССП

Практическое применение того или иного одноэлектронного гамильтониана требует ответа на два вопроса: сходится ли процедура самосогласования и соответствует ли полученное решение минимуму энергии. Ответ на второй вопрос был дан в предыдущем § 2.8.2.3.2. Изложенные там же результаты позволяют ответить также на первый вопрос.

Уже упоминалось в конце § 2.8.2.1.1 о плохой сходимости стандартных методов самосогласования в одноконфигурационной теории ССП. Теперь после установления связи стандартных гамильтонианов с ОГ первого приближения, можно указать причины этого.

Во-первых, в процессе самосогласования из-за неверного отнесения орбиталей к оболочкам возможны нарушения условий (419) или (420), что приведет к изменению направления движения к минимуму по энергетической поверхности на противоположное.

Во-вторых, величина шага спуска в (414б) и (418б) может оказаться слишком большой, что также может превратить спуск в подъем.

В-третьих, направление спуска в стандартных методах оптимизации орбиталей определяется наперед заданной метрикой, которая может не соответствовать наилучшему направлению. Использование для оптимизации орбиталей в одноконфигурационных расчетах метода ОГ (§ 2.8.2) позволяет избежать указанных трудностей.

Применение ОГ первого приближения вида (340) предполагает задание параметров Φ_{kk} , ξ_{ij}^2 и λ . Как указывалось в § 2.8.2.2.3, выбор значений диагональных элементов Φ_{kk} является несущественным и для их задания можно использовать соотношение (344). Параметры ξ_{ij}^2 и λ , определяющие направление спуска по поверхности энергии и длину шага спуска, подбираются эмпирически. Опыт представленных в § 2.8.2 расчетов показывает, что для основного состояния с замкнутой оболочкой в однодетерминантном приближении хорошие результаты получаются уже при всех ξ_{ij}^2 равных единице.

В качестве иллюстрации рассмотрим результаты расчета основного состояния молекулы полиена C₈ в приближении ППП. Модельный гамильтониан системы определялся так, как было описано в § 2.8.2.2.7.1.1, однако для интегралов электронного взаимодействия использовалась

216

аппроксимация Матаги – Нишимото (378в). Самосогласование проводилось с гамильтонианом (340) при следующих значениях параметров:

$$\Phi_{ii} = i, \quad \xi_{ij}^2 = 1, \quad 4\lambda = 0.05 - 0.19.$$

На рис. 12 показано изменение величины ε (342) в зависимости от числа итераций, и для сравнения показана зависимость, полученная с использованием стандартного оператора Фока.

Рис. 12. Ход процесса самосогласования для основного состояния полиена C₈. Сплошные кривые получаются с применением ОГ первого приближения (340). Пунктирная кривая соответствует оператору Фока.

Как видно из этого рисунка, метод ОГ первого приближения, как и стандартный метод Фока, обладает экспоненциальной сходимостью. Увеличение значения λ приводит вначале к ускорению сходимости. При дальнейшем увеличении λ сходимость ухудшается, а затем процесс самосогласования даже расходится. Оптимальным оказалось значение λ , близкое к 0.035.

Для конфигураций с открытой оболочкой более препочтительным оказывается выбор различных значений параметров ξ_{ij}^2 в разных блоках матрицы оператора $\hat{\Phi}$. Хорошая сходимость получается, если положить $\xi_{ij}^2 = 1$ в блоке, связывающем орбитали замкнутой оболочки с орбиталями пустой оболочки, и $\xi_{ij}^2 = 4$ в блоках, связывающих орбитали открытой оболочки как с орбиталями замкнутой оболочки, так и с орбиталями пустой оболочки. Такое различие в выборе метрических коэффициентов для систем с замкнутой и систем с открытой оболочками основано на обсуждавшихся ранее (§ 2.8.2.2.7.1.1) спектральных свойствах матриц вторых производных энергии.

По сравнению с конфигурациями с замкнутой оболочкой для конфигураций с открытой оболочкой, как показывает весь опыт расчетов в рамках МК теории ССП, скорость сходимости процесса самосогласования с применением ОГ первого приближения несколько ниже. Скорость является все же удовлетворительной, особенно, если учесть, что в случае конфигураций с открытой оболочкой при использовании стандартных ОГ часто вообще не удается получить самосогласованное решение из-за расходимости или осцилляции процесса самосогласования.

В качестве примера продемонстрируем осцилляции, возникающие при расчете π -электронного триплетного состояния молекулы 5-нитроурацила с использованием гамильтониана [30], который, как показано там же, очень близок по характеру сходимости к оператору Рутана [16]. Параметры модельного гамильтониана ППП (376) π -электронной системы 5-нитроурацила выбирались так же, как и для урацила (§ 2.8.2.2.7.1.1). Значения параметра $B_{\mu\nu}$ в (3776) для связи атома азота нитрогруппы с углеродом пиримидинового кольца и для связи азот – кислород в нитрогруппе положены равными 2719.3 и 1349 э*B*, соответственно. Нумерация атомов в этой молекуле и их координаты приведены в таблицах 10 и 18.

Ход процесса самосогласования для триплетного состояния 5-нитроурацила представлен на рис. 13.

При использовании стандартного ОГ уже на первых циклах появляются осцилляции, амплитуда которых быстро стабилизируется. Энергия системы также осциллирует с амплитудой примерно в 0.5 эB около значения, которое на 3 эB выше самосогласованного.

218

*Координаты остальных атомов приведены в табл. 10.

Использование ОГ первого приближения (340) с параметрами $\Phi_{ii} = i, \quad \xi_{kp}^2 = 1, \quad \xi_{km}^2 = \xi_{mp}^2 = 4, \quad \lambda = 1/80$ обеспечивает монотонную сходимость к самосогласованному решению с энергией $E_{\pi} = -614.1628 \ \beta B$, что на 0.0345 βB ниже энергии основного состояния.

Приведенное выше рассмотрение показывает, что в одноконфигурационном приближении переход от стандартной процедуры самосогласования к использованию метода ОГ первого приближения дает возможность управлять процессом самосогласования и позволяет, особенно для состояний с открытой оболочкой, заметно улучшать его сходимость.

Подведем итоги раздела 2.8.2. Достаточно подробно изложен метод ОГ – метод оптимизации орбиталей в МК теории ССП. Существенной особенностью метода является стабильная сходимость процедуры самосогласования к решению, которое минимизирует функционал энергии стационарного состояния многоэлектронной системы.

Получено выражение для квадратичной по независимым элементам матрицы ортогонального преобразования орбиталей аппроксимации средней энергии и описано три модификации метода ОГ в зависимости от степени учета геометрических особенностей энергетической поверхности.

Исследована сходимость итерационных процедур оптимизации орбиталей для трех модификаций метода ОГ и показана возможность активного управления этим процессом в зависимости от поведения геометрических характеристик энергетической поверхности при самосогласовании и описан наиболее приемлемый с вычислительной точки зрения вариант метода оптимизации.

219

Рис. 13. Ход процесса самосогласования для триплетного состояния 5-нитроурацила: сплошная кривая получена с применением ОГ (340), а пунктирная соответствует оператору из работы [47].

Рассмотрена задача оптимизации одноконфигурационной волновой функции. Продемонстрировано, что широко использующиеся для ее решения процедуры самосогласования, основанные на гамильтонианах Фока и Рутана, ОΓ. являются частным случаем простейшей модификации метода Проанализированы причины плохой сходимости итерационного процесса, основанного на использовании стандартных операторов Фока и Рутана, и продемонстрирована необходимость учета при оптимизации волновых функций свойств матрицы вторых производных энергии.

Литература

- 1. Я. И. Френкель. Волновая механика, ч. 2. Ленинград Москва: ОНТИ ГТТИ, 1934.
- R. McWeeny. On the basis of orbital theories, *Proc. Roy. Soc.(London)*, v. A232, 114 – 135 (1955).
- 3. T. L. Gilbert. Optimum-Multiconfiguration Self-Consistent-Field Equations, *J. Chem. Phys.*, v. 43, S248 (1965).
- 4. E. J. Clementi. Study of Electronic Structure of Molecules. I. Molecular Wavefunctions and Their Analysis, *J. Chem. Phys.*, v. 46, 3842 3850 (1967).
- 5. B. O. Roos. The Multiconfigurational (MC) SCF Method In G. H. F. Dierksen and S. Wilson (eds) *Methods in Computational Molecular Physics*. Dordrecht: Reidel, 1983.
- 6. B. O. Roos, P. R. Taylor, P. E. M. Siegbahn. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach, *Chem. Phys.*, v. 48, 157 173 (1980).
- A. C. Hurley, J. E. Lennard-Jones, J. A. Pople. The Molecular Orbital Theory of Chemical Valency: XVI. A Theory of Paired-electrons in Polyatomic Molecules, *Proc. Roy. Soc. (London)*, v. A220, 446 (1953).
- 8. R. Ahlrichs, W. Kutzelnigg. Direct Calculation of Approximate Natural Orbitals and Natural Expansion Coefficients of Atomic and Molecular Electronic Wavefunctions. II. Decoupling of the Pair Equations and Calculation of the Pair Correlation Energies for the Be and LiH Ground States, *J. Chem. Phys.*, v. 48, 1819 (1968).
- 9. W. A. Goddard III, T. H. Dunning Jr., W. J. Hunt, P. J. Hay. The Generalized Valence Bond Description of the Bonding in the Low-Lying States of Molecules, *Acc. Chem. Res.*, v. 6, 368 376 (1973).
- V. A. Kuprievich, O. V. Shramko. The method of a single-electron Hamiltonian in the single-configuration theory of a self-consistent field, *Teor. Eksper. Khim.*, v. 7: 6, 729 – 737 (1971).
- 11. V. A. Kuprievich, O. V. Shramko. Application of the single-configuration theory of a self-consistent field to conjugated systems, *Teor. Eksper. Khim.*, v. 7: 6, 738 746 (1971).
- 12. V. A. Kuprievich, O. V. Shramko. The MC SCF theory: method of one-electron Hamiltonian, *Intern. J. Quantum Chem.*, v. 6, 327 336 (1972).
- 13. V. A. Kuprievich, O. V. Shramko. Improved convergence of self-consistent procedures in the MC SCF theory, *Intern. J. Quantum Chem.*, v. 9, 1009 1020 (1975).
- 14. R. McWeeny. Some Recent Advances in Density Matrix Theory, *Rev. Mod. Phys.*, v. 32, 335 369 (1960).
- 15. R. McWeeny. Multi-configuration SCF calculations, *Symp. Faraday Soc.*, v. 2, 7 14 (1968).
- 16. C. C. J. Roothaan. Self-Consistent Field Theory for Open Shells of Electronic Systems, *Rev. Mod. Phys.*, v. 32, 179 185 (1960).
- 17. R. K. Nesbet. Configuration interaction in orbital theories, *Proc. Roy. Soc. (London)*, v. A230, 312 (1955).
- 18. W. H. Adams. Orbital Self-Consistent-Field Theory. I. General Theory for Multiconfigurational Wave Functions, *Phys. Rev.*, v. 156, 109 (1967).
- 19. B. Levy. Best Choice for the Coupling Operators in the Open-Shell and Multiconfiguration SCF Methods, *J. Chem. Phys.*, v. 48, 1994 (1968).
- 20. J. DelBene. Molecular Orbital Study of NH₂, NO₂, and NF₂, *J. Chem. Phys.*, v. 54, 3487 (1971).
- 21. Д. Р. Хартри. Расчеты атомных структур. Москва: ИЛ, 1960.
- 22. S. Huzinaga. Applicability of Roothaan's Self-Consistent Field Theory, *Phys. Rev.*, v. 120, 866 (1960).

- 23. S. Huzinaga. Analytical Methods in Hartree Fock Self-Consistent Field Theory, *Phys. Rev.*, v. 122, 131 (1961).
- 24. F. W. Birss, S. Fraga. Self-Consistent-Field Theory. I. General Treatment, *J. Chem. Phys.*, v. 38, 2552 (1963).
- 25. F. W. Birss, S. Fraga. Self-Consistent-Field Theory. II. The LCAO Approximation, *J. Chem. Phys.*, v. 40, 3203 (1964).
- 26. G. Das, A. C. Wahl. Extended Hartree Fock Wavefunctions: General Theory of Optimized-Valence Configurations and Its Application to Diatomic Molecules, *J. Chem. Phys.*, v. 47, 2934 (1967).
- 27. A. Veillard, E. Clementi. Complete Multi-Configuration Self-Consistent Field Theory, *Theor. chim. Acta*, v. 7, 133 143 (1967).
- 28. G. Das, A. C. Wahl. Extended Hartree Fock Wavefunctions: Optimized Valence Configurations for H₂ and Li₂, Optimized Double Configurations for F₂, *J. Chem. Phys.*, v. 44, 87 (1966).
- 29. G. Das. Extended Hartree Fock Ground-State Wavefunctions for the Lithium Molecule, *J. Chem. Phys.*, v. 46, 1568 (1967).
- 30. Г. Г. Дядюша, В. А. Куприевич. Theory of the Self-Consistent Field for States with Open Shells, *Teop. экспер. хим.*, т. 1: 3, 406 408 (1965).
- 31. R. McWeeny. In *Molecular Orbitals in Chemistry, Physics, and Biology,* P.-O. Lowdin and B. Pullman, eds. New-York: Academic Press, 1964.
- 32. W. H. Adams. Orbital Self-Consistent-Field Theory. II. Natural Orbital Hamiltonian, *Phys. Rev.*, v. 183: 1, 31 (1969).
- 33. S. Huzinaga. A General SCF Formalism, Progr. Theor. Phys., v. 41: 2, 307 312 (1969).
- 34. T. H. Brown. Quadratically Convergent Iteration Procedure for Self-Consistent Calculations, *J. Chem. Phys.*, v. 49, 2291 (1968).
- 35. W. R. Wessel. Iterative Quadratically Convergent Algorithm for Solving the General Hartree Fock Roothaan Equations, *J. Chem. Phys.*, v. 47, 3253 (1967).
- 36. D. H. Sleeman. The determination of SCF LCAO solutions for open shell configurations, *Theor.* chim. Acta, v. 11, 135 142 (1968).
- 37. G. Das, A. C. Wahl. Extended Hartree Fock Wavefunctions: Optimized Valence Configurations for H₂ and Li₂, Optimized Double Configurations for F₂, *J. Chem. Phys.*, v. 44, 87 (1966).
- B. Levy. Molecular MC–SCF calculations, Intern. J. Quantum Chem., v. 4: 3, 297 – 313 (1970).
- 39. N. G. Mukherjee, R. McWeeny. Multi-configuration SCF calculations on LiH, *Intern. J. Quantum Chem.*, v. 4, 97 107 (1970).
- 40. T. A. Claxton, B. Weiner. MCSCF method in the calculation of spin density distributions, *Trans. Faraday Soc.*, v. 66, 2113 2119 (1970).
- 41. P.-O. Lowdin. Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction, *Phys. Rev.*, v. 97, 1474 1489 (1955).
- 42. О. В. Шрамко. Метод одноэлектронного гамильтониана в многоконфигурационной теории самосогласованного поля и его применение к расчету электронной структуры молекул, Канд. дисс.ИТФ АН УССР, Киев, 1972.
- 43. J. E. Bloor, P. N. Daykin, P. Boltwood. Theoretical studies on the electronic spectra of substituted aromatic molecules: Part II. Semiempirical self-consistent field calculations on aniline, *Can. J. Chem.*, v. 42: 1, 121 136 (1964).
- 44. Ю. А. Кругляк, Г. Г. Дядюша, В. А. Куприевич *et al. Методы расчета электронной структуры и спектров молекул.* Киев: Наукова думка, 1969.

- 45. Yu. Kruglyak. Configuration interaction in the second quantization representation: basics with applications up to full CI, *ScienceRise*, v. 4: 2(4), 98 115 (2014).
- 46. В. А. Куприевич, О. В. Шрамко, В. Е. Клименко. Study of the ground state of the lithium hydride molecule by the method of multiconfiguration self-consistent field theory, *Teop.* экспер. хим., т. 10: 6, 746 755 (1965).
- 47. V. A. Kuprievich. SCF-CI and SCF Open-Shell Studies of the Base Components of the Nucleic Acids, *Intern. J. Quantum Chem.*, v. 1, 561 575 (1967).
- 48. P. E. Cade, W. M. Huo. Electronic Structure of Diatomic Molecules. VI. Hartree Fock Wavefunctions and Energy Quantities for the Ground States of the First-Row Hydrides, AH, *J. Chem. Phys.*, v. 47, 614 (1967).
- 49. W. G. Richards, T. E. H. Walker, R. K. Hinkley. *A Bibliography of ab initio Molecular Wave Functions*. Oxford: Clarendon Press, 1971.
- 50. A. M. Karo. Configuration Interaction in the Lithium Hydride Molecule. II. An SCF LCAO-MO Approach, *J. Chem. Phys.*, v. 30, 1241 (1959).
- 51. I. G. Csizmadia, B. T. Sutcliffe, M. P. Barnett. A Group Orbital Study of Lithium Hydride, *Can. J. Chem.*, v. 42: 7, 1645 1663 (1964).
- 52. C. F. Bender, E. R. Davidson. Theoretical Study of the LiH Molecule, *J. Chem. Phys.*, v. 49, 4222 (1968).
- 53. R. E. Brown, H. Shull. A configuration interaction study of the four lowest ${}^{1}\Sigma^{+}$ states of the LiH molecule, *Intern. J. Quantum Chem.*, v. 2: 5, 663 685 (1968).
- 54. R. C. Sahni, B. C. Sawhney, M. J. Hanley. Quantum mechanical treatment of molecules. Part 5. –Calculations of the potential energy curve and molecular constants of LiH $(X^{1}\Sigma^{+})$, *Trans. Faraday Soc.*, v. 65, 3121 3128 (1969).
- 55. E. L. Mehler, R. Ruedenberg, D. M. Siver. Electron Correlation and Separated Pair Approximation in Diatomic Molecules. II. Lithium Hydride and Boron Hydride, *J. Chem. Phys.*, v. 52, 1181 (1970).
- 56. G. Das, A. C. Wahl. Theoretical Study of the Interaction Potential and the Hyperfine Pressure Shifts in HeH, *Phys. Rev. Lett.*, v. 24, 440 443 (1970).
- 57. R. J. Fallon, J. T. Vanderslice, E. A. Mason. Potential Energy Curves for Lithium Hydride, *J. Chem. Phys.*, v. 32, 1453 (1960).
- 58. М. З. Балявичус, А. Б. Болотин. *Лит. физ. сборник*, т. 7, 713 (1967).
- 59. V. A. Kuprievich, V. E. Klimenko. Set of programs realizing the SCF method in the one-configuration and many-configuration approximations, *Zh. Strukt. Khim.*, v. 19: 4, 729 730 (1978).

2.9. Фермионные редуцированные матрицы плотности в квантовой химии

2.9.1. Введение

В квантовой механике рассматриваются два вида состояний физических систем – чистые и смешанные. Первые реализуются в природе крайне редко и обычно являются физической абстракцией. Чистые состояния – это такие состояния, которые описываются волновой функцией. Для чистых состояний всегда существует такая полная система измерений, которые с достоверностью приводят к однозначно определенным результатам. Математически это эквивалентно следующему утверждению: существует такое полное множество операторов, что данная волновая функция является собственной функцией всех этих операторов.

Смешанные состояния – это состояния, описываемые матрицами плотности (МП), за исключением тех случаев, когда МП строятся из волновых функций. Для смешанных состояний не существует полной системы измерений, которые приводили бы к однозначно предсказуемым результатам.

Для математического описания произвольного состояния любой квантовомеханической системы фон Нейман [1] ввел статистический оператор или иначе, по тер Хаару [2], матрицу плотности. Физическому описанию квантовых состояний на языке МП положили начало Ландау [3] и Дирак [4]. Редуцированные матрицы плотности (PMП) для изучения свойств квантовомеханических систем были введены Хусими [5]. Однако, только после появления работ Левдина [6], МакВини [7] и Колмена [8] теория РМП стала широко применяться в квантовой механике многочастичных систем, в частности, в квантовой химии. Теории РМП и ее приложениям посвящены работы многих ученых, отметим лишь работы Местечкина [9].

Одним из наиболее важных преимуществ описания квантовых систем в формализме МП является то обстоятельство, что имеет место взаимно однозначное соответствие между физическими состояниями и множеством МП, тогда как в силу того, что состояние определяется не волновой функцией, а квадратом ее модуля и возникающей отсюда произвольностью фазового множителя, на языке волновых функций такой однозначности в общем случае нет. Другим существенным в прикладном отношении обстоятельством является тот факт, что вычисление средних значений операторов физических величин в формализме МП сводится для произвольных многочастичных систем к рассмотрению функций от гораздо меньшего и не зависящего от числа частиц системы количества переменных, что позволяет в принципе вести конкретные расчеты квантовомеханических систем с произвольным числом частиц. Действительно, если $\Psi = \Psi(x_1, x_2, ..., x_N),$ где $x = (\vec{r}, s)$ есть совокупность

225

пространственных и спиновых переменных, — волновая функция системы N частиц, то РМП p-го порядка ($1 \le p < N$), соответствующая N-частичной волновой функции Ψ , определяется как

$$D_{\Psi}^{p}(x_{1}, x_{2}, ..., x_{p}; x_{1}', x_{2}', ..., x_{p}') = \int \Psi(x_{1}, x_{2}, ..., x_{N}) \overline{\Psi}(x_{1}', x_{2}', ..., x_{p}', x_{p+1}, ..., x_{N}) dx_{p+1} \cdots dx_{N}.$$
(421)

Гамильтониан системы запишем в стандартном виде (гл. 1)

$$\hat{H}_N = \sum_{i=1}^N \hat{h}(i) + \sum_{i< j}^N \hat{g}(i, j)$$
.

Тогда энергия основного состояния системы определяется как минимум функционала

$$E[\Psi] = \frac{\int \bar{\Psi}(x_1, x_2, ..., x_N) \hat{H}_N \Psi(x_1, x_2, ..., x_N) dx_1 dx_2 \cdots dx_N}{\int |\Psi(x_1, x_2, ..., x_N)|^2 dx_1 dx_2 \cdots dx_N}$$

или на языке РМП

$$E[D^{2}] = \frac{N(N-1)}{2} Tr(\hat{H}_{red}D^{2}),$$

где приведенный гамильтониан

$$\hat{H}_{red} = \frac{1}{N-1} \left[\hat{h}(1) + \hat{h}(2) \right] + \hat{g}(1,2) \,.$$

Таким образом можно найти минимум функционала $E[D^2]$ на классе всех функций $D^2(x_1, x_2; x'_1, x'_2)$. Далее мы подробно покажем, что из определения РМП как ядер интегральных операторов вытекают их следующие важные свойства (здесь и далее шляпку над операторами опускаем):

(а) положительная определенность для любой функции $\varphi = \varphi(x_1, x_2, ..., x_p)$,

(б) нормируемость на единицу,

(в) антисимметричность,

(г) эрмитовость.

Итак, варьируя $E[D^2]$ на классе всех D^2 , удовлетворяющих условиям (а) – (г), можно вычислить энергию основного состояния системы. Именно эти прагматические цели ставились в программе, впервые сформулированной Коулсоном [10] по использованию в квантовой химии РМП преимущественно 2-го порядка и исключению волновой функции из квантовохимических расчетов из-за ее чрезмерной информативности. Впервые вариационные расчеты энергии основного состояния электронного газа были проведены Майером [11]. Позднее Тредголд [12, 13] обратил внимание на ошибки математического характера в [11] и указал, что для получения физически корректных результатов необходимо кроме условий (а) – (г) наложить на класс варьируемых МП еще и другие условия. Эти, так называемые условия *N*-представимости состоят в том, чтобы варьируемые МП получались взятием частичного шпура из *N*-частичной волновой функции или совокупности *N*-частичных волновых функций. К сожалению, и поныне приходится констатировать, что проблема *N*-представимости полностью не решена даже для РМП 2-го порядка.

Мы подробно рассмотрим свойства РМП. Прежде всего для них имеет место разложение

$$D^p = \sum_k \lambda_k^{(p)} \varphi_k^{(p)} \overline{\varphi}_k^{(p)} \,.$$

Если обозначить $\Lambda_m^N \equiv \max_k \{\lambda_k^{(m)}\}$, тогда для РМП имеют место также следующие неравенства: $\Lambda_1^N \leq \frac{1}{N}$, $\Lambda_2^N \leq \frac{1}{N-1}$ и т. д.

Показано [14], например, что ранг r_p как число собственных функций, соответствующих ненулевым собственным значениям РМП *p*-го порядка, соответствующей антисимметричной функции от *N* переменных, не меньше, чем биномиальный коэффициент $\binom{N}{p}$.

В заключение будут определены РМП перехода, необходимые для вычисления средних значений различных операторов перехода. Пусть, например, Ψ_1 и Ψ_2 – антисимметричные функции. Тогда, по определению, РМП перехода *p*-го порядка, соответствующая функциям Ψ_1 и Ψ_2 , есть интегральный оператор с ядром ($1 \le p \le N$)

$$D_{\Psi_{1}\Psi_{2}}^{p}(x_{1}, x_{2}, \dots, x_{p}; x_{1}', x_{2}', \dots, x_{p}') \equiv \int \Psi_{1}(x_{1}, x_{2}, \dots, x_{N}) \overline{\Psi}_{2}(x_{1}', x_{2}', \dots, x_{p}', x_{p+1}, \dots, x_{N}) dx_{p+1} \cdots dx_{N}.$$

В качестве базиса гильбертова пространства *H* выберем слэтеровские детерминанты *N*-го порядка (§ 1.2.3), построенные на упорядоченном полном базисе пространства *H*. Для нахождения РМП перехода, соответствующих произвольным элементам пространства *H*, достаточно будет рассмотреть РМП перехода для однодетерминантных функций.

Здесь и далее мы в своем изложении следуем работам [15, 16], а также частично диссертации [17].

227

2.9.2. Определения

В определении фермионных РМП будем следовать [8, 18]. Пусть $\otimes^{N} H = H \otimes H \otimes \cdots \otimes H$ есть тензорное произведение гильбертова пространства *H* само на себя *N* раз, *H* есть пространство квадратично интегрируемых функций от одной переменной над полем комплексных чисел *C*, и оператор антисимметризации (36/§ 1.2.3)

$$A_N = \frac{1}{\sqrt{N!}} \sum_{P \in S_N} (-1)^p P$$

или иначе оператор проектирования (Приложение П-2)

$$\mathbf{A}_N: \otimes^N H \to \Lambda^N H ,$$

где $\Lambda^{N}H$ есть грассманово произведение N гильбертовых пространств H или иначе гильбертово пространство квадратично интегрируемых антисимметричных функций от N независимых переменных.

В силу принципа суперпозиции нас будут интересовать лучи гильбертова пространства $\Lambda^{N}H$, т. е. множество элементов с нормой, равной единице:

$$\Psi \equiv \Psi(x_1, x_2, ..., x_N) \in \Lambda^N H, \ \|\Psi\|^2 = 1.$$

В дальнейшем все рассматриваемые элементы считаем лучами.

Пусть $f^p \in \Lambda^p H$ и $f^q \in \Lambda^q H$ при p + q = N. Тогда $f^p \Lambda f^q \equiv \hat{A}_N f^p \otimes \otimes f^q \hat{A}_N$ является грассмановым произведением f^p и f^q и $f^p \Lambda f^q \in \Lambda^N H$. Если $\Psi = f \Lambda g$, то будем говорить f и g являются грассмановыми факторами элемента Ψ или просто факторами Ψ и что *f* делит Ψ . Лучи пространства *H* называют орбиталями, а лучи пространства $\Lambda^2 H$ – геминалями. В частности, если φ_1 и φ_2 – орбитали, то $\varphi_1 \Lambda \varphi_2$ будет геминалью. В общем случае, если $\varphi_1, \varphi_2, ..., \varphi_N$ – орбитали, то элемент пространства $\Lambda^N H$ вида $\varphi_1 \Lambda \varphi_2 \Lambda \cdots \Lambda \varphi_N$ называется детерминантом Слэтера *N*-го порядка. Для любой данной геминали $g \in \Lambda^2 H$ и для N = 2m (*m* – положительное целое число) через g^N обозначим *m*-кратное грассманово произведение g на само себя: $g^N = g\Lambda g\Lambda \cdots \Lambda g$. Функции такого называются антисимметризованными геминальными вила степенями (АГС функции) [19]. Функции более общего вида $\Psi = g_1 \Lambda g_2 \Lambda \cdots \Lambda g_m$ (*N* = 2*m*) антисимметризованными называются геминальными произведениями (АГП функции).

Если *f* – орбиталь, то согласно [20] *f* делит Ψ тогда и только тогда, когда $f \Lambda \Psi = 0$. В общем случае, если $f \in \Lambda^{p}H$ и $\Psi \in \Lambda^{N}H$, то неизвестно, существует ли достаточно простой критерий делимости (в грассмановом смысле) Ψ на *f*.

Пусть $B(\Lambda^n H)$ есть множество всех линейных ограниченных операторов на $\Lambda^n H$. Задав норму на $B(\Lambda^n H)$ в виде

$$\|A\| = \sup_{\substack{\|\varphi\|=1\\\varphi \in \Lambda^n H}} \|A\varphi\|, \quad A \in B(\Lambda^n H)$$

В($\Lambda^{n}H$) можно считать банаховой алгеброй.

Пусть $\Psi \in \Lambda^{N}H$ и $\|\Psi\| = 1$. Тогда согласно (421) определяются ядра интегральных операторов $D^{1}(\Psi), D^{2}(\Psi), ..., D^{p}(\Psi), ..., D^{N}(\Psi) \equiv P_{\Psi}$, где P_{Ψ} есть оператор проектирования на одномерное подпространство $C\Psi$ пространства H. Очевидно, что $D^{p}(\Psi) \in B(\Lambda^{p}H)$.

По определению, оператор с ядром, найденным по формуле (421), называется фермионной РМП *p*-го порядка, соответствующей *N*-частичной функции $\Psi(x_1, x_2, ..., x_N)$. Следуя Кумеру [21], воспользуемся символом L_N^p для обозначения контракционного отображения $B(\Lambda^N H)$ на $B(\Lambda^P H)$. Например, если P_{Ψ} есть оператор проектирования на одномерное подпространство $\Lambda^N H$, то

$$L^p_N P_{\Psi} = D^p(\Psi) \,.$$

В общем случае

$$L^p_a: D^q(\Psi) \to D^p(\Psi), \quad (q > p).$$

$$(422)$$

что соответствует аналитической записи

$$D_{\Psi}^{p}(x_{1}, x_{2}, ..., x_{p}; x_{1}', x_{2}', ..., x_{p}') \equiv \int D_{\Psi}^{p}(x_{1}, x_{2}, ..., x_{p}, x_{p+1}, ..., x_{q}; x_{1}', x_{2}', ..., x_{p}', x_{p+1}, ..., x_{q}) dx_{p+1} \cdots dx_{q},$$

т. е. контракция L_q^p связывает РМП *p*-го и *q*-го порядков, соответствующие одному и тому же элементу Ψ гильбертова пространства $\Lambda^N H$.

Из определения РМП как операторов, ядра которых определяются по (421), вытекают следующие их свойства:

(а) положительная определенность, т. е. для любого элемента $\varphi(x_1, x_2, ..., x_p) \in \Lambda^p H$ справедливо соотношение

$$\langle \varphi | D_{\Psi}^{p} \varphi \rangle =$$

$$= \int \overline{\varphi}(x_{1}, x_{2}, ..., x_{p}) D_{\Psi}^{p}(x_{1}, x_{2}, ..., x_{p}; x_{1}', x_{2}', ..., x_{p}') \varphi(x_{1}', x_{2}', ..., x_{p}') dx_{1} dx_{2} \cdots dx_{p} dx_{1}' dx_{2}' \cdots dx_{p}' \geq 0;$$
(423a)
доказательство этого свойства можно найти в [15, 16].

(б) нормируемость на единицу

$$\int D_{\Psi}^{p}(x_{1}, x_{2}, ..., x_{p}; x_{1}, x_{2}, ..., x_{p}) dx_{1} dx_{2} \cdots dx_{p} = 1;$$
(4236)

(в) антисимметричность

$$\mathbf{A}_{p}D_{\Psi}^{p} = D_{\Psi}^{p}\mathbf{A}_{p} = D_{\Psi}^{p}; \tag{423B}$$

(г) эрмитовость

$$D_{\Psi}^{p}(x_{1}, x_{2}, ..., x_{p}; x_{1}', x_{2}', ..., x_{p}') = \overline{D}_{\Psi}^{p}(x_{1}', x_{2}', ..., x_{p}'; x_{1}, x_{2}, ..., x_{p}).$$
(423r)

2.9.3. Редуцированная матрица плотности как интегральный оператор

Фермионная РМП *p*-го порядка D_{Ψ}^{p} , соответствующая лучу Ψ гильбертова пространства $\Lambda^{N}H$, определена как интегральный оператор, действующий на пространстве $\Lambda^{N}H$, с ядром, имеющим вид (421). Из этого определения следует, что $D_{\Psi}^{p}(x_{1}, x_{2}, ..., x_{p}; x'_{1}, x'_{2}, ..., x'_{p})$ есть эрмитово-непрерывное ядро положительно определенного оператора Гильберта – Шмидта. В § 2.9.2 для данного луча из $\Lambda^{N}H$ была построена совокупность эрмитово-непрерывных ядер

$$D^{1}(x_{1};x_{1}'), D^{2}(x_{1},x_{2};x_{1}',x_{2}'), \dots, D^{p}(x_{1},x_{2},\dots,x_{p};x_{1}',x_{2}',\dots,x_{p}'), \dots, D^{N}(x_{1},x_{2},\dots,x_{N};x_{1}',x_{2}',\dots,x_{N}'), \quad (424)$$

связанных между собой контракцией (422).

Известно, что для эрмитово-непрерывного ядра $D^{p}(0 существует не пустое, не более чем счетное множество ортонормированных собственных функций <math>\{\varphi_{k}^{(p)}(x_{1}, x_{2}, ..., x_{p})\}_{k}$ и соответствующих им собственных значений $\{\lambda_{k}^{(p)}\}_{k}$. Тогда

$$D^{p}(x_{1}, x_{2}, ..., x_{p}; x_{1}', x_{2}', ..., x_{p}') = \sum_{i} \lambda_{i}^{(p)} \varphi_{i}^{(p)}(x_{1}, x_{2}, ..., x_{p}) \overline{\varphi}_{i}^{(p)}(x_{1}', x_{2}', ..., x_{p}'), \quad (425)$$

причем

$$\lambda_i^{(p)} \ge 0.$$
 $i = 1, 2, ...$

Согласно теореме Гильберта – Шмидта данная система функций $\{\varphi_k^{(p)}\}_k$ для каждого $p \ (0 полная. Справедлива следующая теорема, доказательство которой можно найти в [15, 16].$

Теорема 1. Собственные функции эрмитово-непрерывного положительно определенного интегрального оператора $D^m(x_1, x_2, ..., x_m; y_1, y_2, ..., y_m)$ из последовательности (424), соответствующие $\lambda_i^{(m)} \neq 0$, могут быть разложены в ряд только по тем собственным функциям $\{\varphi_j^{(l)}\}_j$ (1 делит $m: l \mid m$) оператора $D^l(x_1, x_2, ..., x_l; y_1, y_2, ..., y_l)$ из ряда (424), соответствующие собственные числа которых отличны от нуля. **Определение 1**. Ядро D^m интегрального оператора называется вырожденным, если число членов в разложении (425) с $\lambda_i^{(m)} \neq 0$ конечно.

Следствие. Из вырожденности $D^1_{\Psi}(x_1; y_1)$ следует вырожденность $D^m_{\Psi}(x_1, x_2, ..., x_m; y_1, y_2, ..., y_m)$ для любого m = 2, 3, Это следствие тривиально следует из теоремы 1 и того факта, что каждое собственное число имеет в данном случае конечную кратность [22].

Открытым остается вопрос, верно ли обратное утверждение. В частности, в [23] показано, что для нечетного N из вырожденности $D^2_{\Psi}(x_1, x_2; y_1, y_2)$ следует вырожденность $D^1_{\Psi}(x_1; y_1)$, если Ψ является АГП функцией.

В [15, 16] доказана следующая теорема.

Теорема 2 [24]. Отличные от нуля собственные значения РМП p-го порядка, соответствующей N-частичной функции Ψ , и собственные значения РМП q-го порядка (p + q = N), соответствующей той же функции, совпадают (при некотором упорядочении индексов) и имеют одинаковые кратности.

2.9.4. Собственные значения редуцированных матриц плотности

Как известно, некоторые свойства квантовомеханических систем характеризуются собственными числами РМП 1-го порядка. Например, собственные значения этой матрицы интерпретируются как числа заполнения соответствующих орбиталей (Приложение П-4) [25]. Можно ожидать, что собственные значения РМП более высоких порядков также определенным образом характеризуют квантовомеханическую систему. По крайней мере корреляция между собственными значениями дает возможность продвинуться в решении проблемы *N*-представимости [8].

Прежде всего получим ограничения на возможные собственные значения фермионных РМП [8, 26].

Пусть дано гильбертово пространство $\Lambda^{N}H$. Тогда для любого луча $\Psi \in \Lambda^{N}H$ по формуле (421) определяются ядра $\{D^{m}(\Psi)\}_{m=1}^{N}$ интегральных операторов. Будем считать, что в разложении (425) ядра интегрального оператора $D^{m}(\Psi)$ по собственным функциям собственные значения упорядочены следующим образом: $\lambda_{1}^{(m)} \ge \lambda_{2}^{(m)} \ge ... \ge \lambda_{n}^{(m)} \ge ...$. Тогда наибольшее собственное значение РМП *m*-го порядка, соответствующей антисимметричной функции от *N* переменных, определяется как функционал на $\Lambda^{N}H$:

$$\Lambda_m^N(\Psi) = \left(\lambda_1^{(m)}(\Psi)\right)^2, \quad \Psi \in \Lambda^N H, \quad \left\|\Psi\right\|^2 = 1.$$

Вводя оператор проектирования $P_{\Psi} = D^{N}(\Psi)$ на одномерное подпространство, натянутое на луч Ψ , из почти очевидных формул [15, 16]

$$\Psi(x_1, x_2, ..., x_N) = \sum_i c_i^{(p)} \varphi_i^{(p)}(x_1, x_2, ..., x_p) \varphi_i^{(q)}(x_{p+1}, x_{p+2}, ..., x_N),$$
(426)

$$D_{\Psi}^{p}(x_{1}, x_{2}, ..., x_{p}; x_{1}', x_{2}', ..., x_{p}') = \sum_{i} |c_{i}^{(p)}|^{2} \varphi_{i}^{(p)}(x_{1}, x_{2}, ..., x_{p}) \overline{\varphi}_{i}^{(p)}(x_{1}', x_{2}', ..., x_{p}')$$
(427)

получаем

$$\Lambda_m^N(\Psi) = |(\Psi, \varphi_1^{(m)}(\Psi)\varphi_1^{(n)}(\Psi))|^2 = (\varphi_1^{(m)}(\Psi)\varphi_1^{(n)}(\Psi), P_{\Psi}\varphi_1^{(m)}(\Psi)\varphi_1^{(n)}(\Psi)). \quad (n+m=N)$$

Для любого нормируемого на единицу элемента $\varepsilon \in \otimes^{N} H$ имеет место неравенство

$$(\omega, \mathbf{A}_N \omega) - (\omega, P_{\Psi} \omega) = (\omega, (1 - P_{\Psi}) \mathbf{A}_N (1 - P_{\Psi}) \omega) = ((1 - P_{\Psi}) \omega, \mathbf{A}_N (1 - P_{\Psi}) \omega) = (\mathbf{A}_N (1 - P_{\Psi}) \omega, \mathbf{A}_N (1 - P_{\Psi}) \omega) \ge 0,$$

т. е. $(\omega, A_N \omega) \ge (\omega, P_{\Psi} \omega)$. Отсюда следует, что

$$\Lambda_{m}^{N}(\Psi) \leq \left(\varphi_{1}^{(m)}(\Psi)\varphi_{1}^{(n)}(\Psi), \mathbf{A}_{N}\varphi_{1}^{(m)}(\Psi)\varphi_{1}^{(n)}(\Psi)\right) \leq \sup_{g^{m} \in \Lambda^{m}H} (g^{m}f^{n}, \mathbf{A}_{N}g^{m}f^{n}). \quad (n+m=N)$$

Последнее выражение не зависит от $\Psi \in \Lambda^N H$, поэтому

$$\Lambda_m^N \equiv \sup_{\substack{\Psi \in \Lambda^N H \\ \|\Psi\|^2 = 1}} \Lambda_m^N(\Psi) \leq \sup_{\substack{g^m \in \Lambda^m H \\ f^n \in \Lambda^n H}} (g^m f^n, A_N g^m f^n).$$
(428)

Для нахождения Λ_m^N рассмотрим симметрическую группу S_N (§ 2.1) и ее подгруппу $G = S_m \times S_n$ (n + m = N). Разлагая S_N по подгруппе G,

$$S_N = \bigcup_{j=0}^m \bigcup_{1=i_1 < \dots < i_j}^m \bigcup_{m+1=k_1 < \dots < k_j}^N g_j(i_1, i_2, \dots, i_j | k_1, k_2, \dots, k_j) G,$$
(429)

где $g_j(i_1, i_2, ..., i_j | k_1, k_2, ..., k_j) = (i_1, k_1)(i_2, k_2)...(i_j, k_j)$. Это разложение симметрической группы S_N на левые смежные классы по подгруппе $S_m \times S_{N-m}$, в частности, следует из известной формулы комбинаторики

$$\sum_{k=0}^{m} \frac{m!}{k!(m-k)!} \cdot \frac{(N-m)!}{k!(N-m-k)!} = \frac{N!}{m!(N-m)!},$$

откуда получаем выражение, связывающее антисимметризатор A_N с антисимметризаторами A_m и A_{N-m} ,

$$\binom{N}{m} \mathbf{A}_{N} = \left[\sum_{j=0}^{m} (-1)^{j} \sum_{\{i\},\{k\}} g_{j}(i_{1},i_{2},...,i_{j} | k_{1},k_{2},...,k_{j}) \right] \mathbf{A}_{m} \mathbf{A}_{N-m}.$$

Теорема 3 [8]. Пусть $g^m \in \Lambda^m H$, $f^n \in \Lambda^n H$ (m + n = N). Тогда

$$\binom{N}{m}(g^m f^n, \mathbf{A}_N g^m f^n) = \sum_{j=0}^m (-1)^j \binom{m}{j} \binom{n}{j} Tr \Big[D^j(g^m) D^j(f^n) \Big].$$
(430)

Доказательство этой теоремы можно найти в [15, 16].

Замечание. В [8] доказательство этой теоремы основывалось на формуле Сасаки [26]

$$\binom{N}{m}\mathbf{A}_{N} = \mathbf{A}_{m}\mathbf{A}_{N-m}\left[\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\binom{N-m}{j}t_{j}\right]\mathbf{A}_{m}\mathbf{A}_{N-m},$$

где $t_j = (1, m+1)(2, m+2) \cdots (j, m+j)$.

Формула Сасаки является тривиальным следствием разложения симметрической группы S_N по двойным смежным классам по подгруппе *G*. В этом случае для фиксированного j = 0, 1, 2, ..., m все g_j из (429) принадлежат одному и тому же двойному смежному классу Gt_jG , что вытекает из следующего выражения:

$$\binom{1,2,\ldots,j,\ldots,m+1,m+2,\ldots,N}{i_1,i_2,\ldots,m+1,m+2,\ldots,N}g_j\binom{1,2,\ldots,m+k_1,\ldots,m+k_2,\ldots,m+k_j}{1,2,\ldots,m+1,\ldots,m+2,\ldots,m+j} = t_j$$

Рассмотрим след

$$Tr\left[D^{j}(g^{m})D^{j}(f^{n})\right]. \quad (0 \le j \le m)$$

$$\tag{431}$$

Вследствие положительной определенности эрмитовых операторов в (431) это выражение неотрицательно. Как известно [27], спектральное представление любого эрмитового оператора имеет вид:

$$T = \sum_i \lambda_i P_i$$
,

где $\{P_i\}_i$ есть совокупность ортогональных проекторов, а именно:

$$P_i^{\dagger} = P_i, \quad P_i P_k = \delta_{ik} P_i, \quad T P_i = P_i T, \quad \sum_i P_i = I, \tag{432}$$

причем P_i есть оператор проектирования на собственное значение λ_i .

Для эрмитового оператора *Q* спектральное разложение представим в виде

$$Q = \sum_{j} \delta_{j} R_{j} \,.$$

Тогда

$$Tr(TQ) = \sum_{i,j} \lambda_i \delta_j Tr(P_i R_j).$$
(433)

Используя (432), можно написать

$$Tr(P_iR_j) = Tr(P_i^2R_j^2) = Tr(P_i^2R_j^2P_i^2) = Tr[(P_iR_j^2)(P_iR_j^2)^{\dagger}] \ge 0.$$

Преполагая операторы *T* и *Q* положительными и считая наборы собственных чисел $\{\lambda_i\}_i$ и $\{\delta_j\}_j$ упорядоченными следующим образом $\lambda_1 \ge \lambda_2 \ge ..., \delta_1 \ge \delta_2 \ge ...,$ получаем

$$Tr(TQ) \le \min[\lambda_1, \delta_1] \tag{434}$$

при условии, что Tr(T) = Tr(Q) = 1. В частности, из (434) следует, что

$$Tr\left[D^{j}(g^{m})D^{j}(f^{n})\right] \leq \min\left[\lambda_{1}^{j}(g^{m}),\lambda_{1}^{j}(f^{n})\right].$$
(435)

Опуская отрицательные члены в (430), получаем

$$\binom{N}{m}\Lambda_m^N \le 1 + \sum_{\substack{j=2\\(2|j)}}^m \binom{m}{j}\binom{n}{j}\Lambda_j^m. \quad (n+m=N)$$
(436)

Вне связи с (436) рассмотрим равенство

$$\binom{N}{m}G(m,N) = 1 + \sum_{k=1}^{\lfloor \frac{m}{2} \rfloor} \binom{m}{2k} \binom{N-m}{2k} G(2k,N-m),$$
(437)

где [x] обозначает целую часть x. Это разностное уравнение определяет G(m, N) для $m \le N$, если известно G(m, N) для $m \le N < 2m$.

Очевидно, что $\Lambda_N \leq G(m, N)$ для всех *m* и $N(m \leq N)$. Равенство возможно тогда, когда m = N. Из (437) получаем для четного *m*

$$\binom{N}{m}G(m,N) - \binom{N-m}{m}G(m,N-m) = 1 + \sum_{k=1}^{\frac{m}{2}+1}\binom{m}{2k}\binom{N-m}{2k}G(2k,N-m), \quad (438)$$

а для нечетного *m*

$$\binom{N}{m}G(m,N) = 1 + \binom{m}{2}\binom{N-m}{2}G(2,N-m) + \dots + \binom{m}{m-1}\binom{N-m}{m-1}G(m-1,N-m), \quad (438a)$$

откуда, в частности,

$$G(1,N) = \frac{1}{N},$$

$$\binom{N}{3}G(3,N) = 1 + \binom{3}{2}\binom{N-3}{2}G(2,N-3),$$

$$\binom{N}{5}G(5,N) = 1 + \binom{5}{2}\binom{N-5}{2}G(2,N-5) + \binom{5}{4}\binom{N-5}{4}G(4,N-5).$$
(4386)

Поскольку

$$\binom{N}{2}G(2,N) - \binom{N-2}{2}G(2,N-2) = 1,$$
$$\binom{N-2}{2}G(2,N-2) - \binom{N-4}{2}G(2,N-4) = 1,$$
If T. J.,

то

$$\binom{N}{2}G(2,N) = \left[\frac{N}{2}\right] + \text{const.}$$

Так как $\Lambda_2^2 = 1$, то const = 0. Таким образом,

$$\Lambda_{2}^{N} \leq {\binom{N}{2}}^{-1} \left[\frac{N}{2}\right] = \begin{cases} \frac{1}{N-1}, & 2 \mid N \\ \frac{1}{N}, & 2 \nmid N \end{cases}$$
(439)

откуда, в частности,

$$\Lambda_3^N \le {\binom{N}{3}}^{-1} \left[1 + 3 \left(\frac{N-3}{2} \right) \right], \tag{440}$$

$$\Lambda_{4}^{N} \leq \frac{1}{8} {\binom{N}{4}}^{-1} \left(3N^{2} - 10N + \alpha \right), \tag{441}$$

где

$$\alpha = \begin{cases} 0, & N \equiv 0 \pmod{4}; \\ 13, & N \equiv 1 \pmod{4}; \\ 8, & N \equiv 2 \pmod{4}; \\ 21, & N \equiv 3 \pmod{4}. \end{cases}$$

Асимптотика G(k, N) следующая:

$$G(k,N) \sim \frac{1}{N^{\alpha}}. \quad \alpha = \left[\frac{k+1}{2}\right]$$
 (442)

интерпретируются как В работе [28] собственные значения $\{\lambda_i^{(p)}\}_i$ вероятности заполнения соответствующих р-частичных состояний. В частности, ограничения на собственные значения РМП 1-го порядка вида (438) впервые были получены Лёвдиным [25] и рассматривались им как числа заполнения соответствующих одночастичных состояний (Приложение П-4). На наш взгляд, в отличие от [28], если известны вероятности заполнения одночастичных состояний, то в общем случае нельзя сказать что-нибудь достаточно определенное о вероятностях заполнения, скажем, двухчастичных состояний: следовательно, это не может дать какую-либо полезную информацию для решения проблемы N-представимости [8]. Это связано с тем, что если известны собственные одночастичные функции РМП D^{1}_{ψ} , то в общем случае двухчастичные собственные функции матрицы D_{Ψ}^2 не будут иметь вид однодетерминантных функций, построенных на одночастичных собственных функциях. В этом смысле неравенства, полученные в [28], имеют смысл только для матрицы плотности Фока – Дирака, т. е. тривиальны.

Заметим, полученные выше оценки достаточно грубы. Так, на основании теоремы 2 имеем $\Lambda_m^N = \Lambda_n^N$ (m + n = N). Согласно же полученным оценкам, в частности, при N = 5 и m = 2 $\Lambda_2^5 \le \frac{1}{5}$, а при m = 3 $\Lambda_3^5 \le \frac{2}{5}$, т. е. в два раза больше, чем Λ_2^5 .

Хотя темой этого раздела 2.9 являются именно фермионные РМП, в виде исключения получим здесь аналогичным образом ограничения на собственные значения бозонных РМП. Как и прежде, имеем гильбертово пространство H квадратично интегрируемых функций от одной переменной над полем комплексных чисел, $\otimes^{N} H$ есть тензорное произведение H самого на себя N раз, симметризатор

$$\mathbb{C}_N = \frac{1}{N!} \sum_{P \in S_N} P$$

симметрической группы S_N , удовлетворяющий условиям $\mathbb{C}_N = \mathbb{C}_N^{\dagger} = \mathbb{C}_N^2$, т. е. оператор проектирования

$$\mathbb{C}_N:\otimes^N H\to \vee^N H,$$

где $\vee^{N}H$ есть гильбертово пространство квадратично интегрируемых симметричных функций от *N* независимых переменных. Тогда бозонные РМП определяются по формуле (421), в которой

$$\Psi = \Psi(x_1, x_2, ..., x_N) \in \bigvee^N H, \ \|\Psi\|^2 = 1$$

как операторы с ядрами $\{D_{\Psi}^{p}\}_{p=1}^{N}$. Бозонные РМП также рассматриваются как интегральные операторы, являются положительно определенными и эрмитовыми.

Проделав вычисления, подобные сделанным выше, заменяя антисимметризатор A_N на симметризатор \mathbb{C}_N и определяя собственные значения

$$\Lambda_m^N \equiv \sup_{\substack{\Psi \in \bigvee^N H \\ \|\Psi\|^2 = 1}} \Lambda_m^N(\Psi),$$

получаем

$$\binom{N}{m}\Lambda_m^N \le 1 + \sum_{j=1}^m \binom{m}{j}\binom{N-m}{j}\Lambda_j^m.$$
(443)

В частности,

$$\Lambda_1^N \le 1; \quad \Lambda_2^N \le \frac{2}{N(N-1)} + \frac{(N-2)(N+1)}{N(N-1)}.$$

Легко показать, что

$$\lim_{N\to\infty}\Lambda_m^N=1.$$

 $\Lambda_1^N = 1$, cootbettctbyet, случай Предельный когда очевидно, бозе-эйнштейновской конденсации. Из хода доказательства видно, что значение Λ_m^N может реализоваться в отличие от полученных значений для фермионных РМП. Наконец, полезно сравнить Λ_m^N для фермионных и бозонных систем при стремлении $N \to \infty$. В случае фермионов $\lim_{N\to\infty} \Lambda_m^N = 0$, тогда как в случае бозонов $\lim_{N\to\infty} \Lambda_m^N = 1$, что достаточно интересно, если интерпретировать собственные значения как вероятности заполнения соответствующих состояний. Заметим, что оба эти выражения являются следствием статистики, т. е. выбора антисимметричной, либо симметричной *N*-частичной функции. Ограничения на собственные значения РМП любого порядка для бозе- и ферми-систем были впервые получены в [29].

2.9.5. Собственные функции редуцированных матриц плотности

Для более детального рассмотрения РМП как операторов, приведем нужные нам результаты из теории линейных операторов.

Пусть *L* есть линейный оператор с ядром L(x';x), действующем на гильбертовом пространства *S*, положительно определенный, причем собственные числа $\{\lambda_i\}_i$ записаны в виде невозрастающейся

последовательности. Тогда, согласно [30], для любой функции $\varphi(x) \in S$, нормированной на единицу,

$$\int \overline{\varphi}(x') L(x';x) \varphi(x) dx' dx \leq \lambda_1,$$

причем равенство справедливо тогда и только тогда, когда φ есть собственная функция оператора *L*, отвечающая собственному значению λ_1 .

Рассмотрим более общее утверждение.

Теорема 4 [31]. Пусть L есть положительно определенный интегральный оператор с ядром L(x';x), действующий на гильбертовом пространстве функций S. Тогда для любых ортонормированных функций $\varphi_1, \varphi_2, ..., \varphi_k \in S$

$$\sum_{j=1}^{k} \int \overline{\varphi}_{j}(x') L(x';x) \varphi_{j}(x) dx' dx \leq \sum_{j=1}^{k} \lambda_{j}$$

где $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_k$ есть собственные значения оператора L.

Доказательство этой теоремы можно найти в [15, 16].

Теорема 5 [3]. Пусть Ψ и Φ – нормированные (на единицу) функции. Тогда

$$\min_{\alpha} \int |\Psi(x) - \alpha \Phi(x)|^2 dx = 1 - |\int \overline{\Psi}(x) \Phi(x) dx|^2 \, . \quad \alpha \in C$$

Доказательство этой теоремы можно найти в [15, 16].

Перейдем к рассмотрению собственных функций фермионных РМП.

Теорема 6 [33]. Пусть p и k – фиксированные положительные целые числа и S = S(p,k) – множество функций $\Phi = \Phi(x_1, x_2, ..., x_N)$ вида

$$\Phi(x_1, x_2, ..., x_N) = \sum_{j=1}^k c_j \varphi_j(x_1, x_2, ..., x_p) \Phi_j(x_{p+1}, x_{p+2}, ..., x_N),$$

где $\varphi_i \in \Lambda^p H, \Phi_j \in \Lambda^q H \ (p+q=N)$. Пусть также $\Psi = \Psi(x_1, x_2, ..., x_N) \in \Lambda^N H$. Тогда

$$\min_{\Phi \in \mathcal{S}(p,k)} \int |\Psi(x) - \Phi(x)|^2 dx = 1 - \sum_{j=1}^k \lambda_j,$$

где $\lambda_1, \lambda_2, ..., \lambda_k - k$ наибольших собственных чисел РМП $D^p(\Psi)$. Минимум достигается тогда и только тогда, когда

$$D^{p}(\Psi)\varphi_{j} = \lambda_{j}\varphi_{j} \quad u \quad c_{j}\Phi_{j} = \Psi_{p}^{q}\overline{\varphi}_{j}, \quad \lambda_{j} = |c_{j}|^{2}. \quad (j = 1, 2, ..., k)$$

Доказательство этой теоремы можно найти в [15, 16]. Частный случай этой теоремы (*N* = 2) доказан в [34] и рассмотрен в [35].

Теорема 7 [32]. Пусть S' = S'(p,k) - множество нормированных функций из <math>S(p,k). Тогда

$$\min_{\Phi' \in S'(p,k)} \int |\Psi(x,y) - \Phi'(x,y)|^2 dx \, dy = 2 \left[1 - \left(\sum_{j=1}^k \lambda_j \right)^{1/2} \right].$$

Доказательство этой теоремы можно найти в [15, 16].

Поскольку слэтеровский детерминант Ф' может быть записан в виде разложения

$$\Phi'(x_1, x_2, ..., x_N) = \sum_{j=1}^N c_j \varphi_j(x_1) \Phi(x_2, x_3, ..., x_N),$$

то из теорем 6 и 7 непосредственно следует

Теорема 8 [32]. Для любого слэтеровского нормированного детерминанта Ф'имеем

$$\int |\Psi(x,y) - \Phi'(x,y)|^2 dx \, dy \ge 2 \left[1 - \left(\sum_{j=1}^k \lambda_j \right)^{1/2} \right].$$

Определим орбитали как гильбертова элементы пространства. Собственные функции одночастичной РМП называются естественными (натуральными) орбиталями [25]. Из теоремы 1 следует важность использования естественных орбиталей как наиболее подходящего базиса орбиталей для рассмотрения свойств молекулярных систем [36]. Роль естественных орбиталей и *р*-частичных собственных функций вообще следует также из теоремы 6, утверждающей, что этот базис является наилучшим для аппроксимации волновой функции.

2.9.6. Носитель и ранг редуцированных матриц плотности

Дадим следующие определения.

Определение 2. Пусть дана РМП *p*-го порядка $D^{p}(\Psi)$. Будем называть носителем supp $D^{p}(\Psi)$ множество собственных функций от *p* независимых переменных интегрального оператора $D^{p}(\Psi)$, соответствующих ненулевым собственным значениям.

Определение 3. Мощность носителя $supp D^{p}(\Psi)$ будем называть *p*-ым рангом r_{p} функции Ψ .

Определение 4. Носители $\operatorname{supp} D^{p}(\Psi_{1})$ и $\operatorname{supp} D^{p}(\Psi_{2})$ называются взаимно ортогональными, $\operatorname{supp} D^{p}(\Psi_{1}) \perp \operatorname{supp} D^{p}(\Psi_{2})$, тогда и только тогда, когда для любых $\varphi_{1} \in \operatorname{supp} D^{p}(\Psi_{1})$ и $\varphi_{2} \in \operatorname{supp} D^{p}(\Psi_{2}) \quad \langle \varphi_{1} | \varphi_{2} \rangle = 0.$

Справедлива следующая теорема.

Теорема 9 [20]. Ранг r_p РМП *p*-го порядка, соответствующей антисимметричной функции от N переменных, не меньше чем биномиальный коэффициент $\binom{N}{p}$.

Доказательство этой теоремы можно найти в [15, 16].

Теорема 10 [8]. Если $\Psi \in \Lambda^{N}H$, $2 \not\models p$ и $2p \le N$, то

$$\int \bar{\varphi}_{j}^{(p)}(x_{p+1},...,x_{2p}) \varphi_{j}^{(q)}(x_{p+1},...,x_{N}) dx_{p+1} \cdots dx_{2p} = 0.$$
(444)

Интеграл в (444) является функцией N - 2p переменных. Если справедливо равенство (444), то утверждается, что $\varphi_j^{(p)}$ сильно ортогональна к $\varphi_j^{(q)}$ (p+q=N).

Доказательство этой теоремы можно найти в [15, 16].

Теорема 11. Ненулевые собственные значения РМП *р*-го порядка (2/p), соответствующей функции от N независимых переменных, $\binom{N}{p}$ -кратно вырождены.

Доказательство этой теоремы можно найти в [15, 16]. Следствие. Если $2 \not\vdash p$, то $r_p \ge \binom{N}{p}$ (см. теорему 9).

Рассмотрим ограничения на собственные значения РМП [8]. Выше было показано, что для $\Psi \in \Lambda^N H$ поскольку оператор проектирования $A_N = A_N A_{q+1} = A_{q+1} A_N$ имеет место

$$\Lambda_{p}^{N}(\Psi) \leq \left(\varphi_{1}^{(p)}(\Psi) \varphi_{1}^{(q)}(\Psi), A_{N}\varphi_{1}^{(p)}(\Psi) \varphi_{1}^{(q)}(\Psi)\right) = \left(A_{N}\varphi_{1}^{(p)}(\Psi) \varphi_{1}^{(q)}(\Psi), A_{N}\varphi_{1}^{(p)}(\Psi) \varphi_{1}^{(q)}(\Psi)\right) = \left(A_{N}A_{q+1}\varphi_{1}^{(p)}(\Psi) \varphi_{1}^{(q)}(\Psi), A_{N}A_{q+1}\varphi_{1}^{(p)}(\Psi) \varphi_{1}^{(q)}(\Psi)\right) \leq \left(A_{q+1}\varphi_{1}^{(p)}(\Psi) \varphi_{1}^{(q)}(\Psi), A_{q+1}\varphi_{1}^{(p)}(\Psi) \varphi_{1}^{(q)}(\Psi)\right)$$

Используя антисимметричность $\varphi_1^{(q)}$, получаем

$$A_{q+1}\varphi_1^{(p)}\varphi_1^{(q)} = \frac{1}{q+1}[1-(p,p+1)-(p,p+2)-...-(p,N)]\varphi_1^{(p)}\varphi_1^{(q)}.$$

Тогда для любого *u* > *p*

$$\left(\varphi_{1}^{(p)}\varphi_{1}^{(q)},(p,u)\varphi_{1}^{(p)}\varphi_{1}^{(q)}\right) = \left(\varphi_{1}^{(p)}\varphi_{1}^{(q)},(p,p+1)\varphi_{1}^{(p)}\varphi_{1}^{(q)}\right) = a_{p}.$$

Таким образом,

$$\left(\mathbf{A}_{q+1}\varphi_{1}^{(p)}\varphi_{1}^{(q)},\mathbf{A}_{q+1}\varphi_{1}^{(p)}\varphi_{1}^{(q)}\right) = \frac{1}{q+1}(1-qa_{p}),$$

т. е.

$$\Lambda_p^N \leq \frac{1}{q+1} (1-qa_p) \dots$$

В частности, из доказанного следует, что при нечетном $p = a_p = 0$, т. е.

$$\Lambda_p^N \leq \frac{1}{q+1} (2 \not\mid p).$$

Поскольку для любого p $a_p \ge 0$, то непосредственно из (445) следует, что $\Psi \in \Lambda^N H$ имеет по крайней мере q+2 натуральных *p*-состояний, так как $\sum \lambda_i^{(p)} = 1$.

По теореме 2 функция $\Psi \in \Lambda^N H$ может быть представлена в виде

$$\Psi(x_1, x_2, ..., x_N) = \sum_{j=1}^{r_1} c_i^{(1)} \varphi_i^{(1)}(x_1) \, \varphi_i^{(N-1)}(x_2, x_3, ..., x_N), \tag{446}$$

где функция $\varphi_i^{(N-1)}$ называется коорбиталью, соответствующей орбитали $\varphi_i^{(1)}$. По теореме 1 коорбитали можно разложить по орбиталям из $supp(D_{\Psi}^1)$.

Таким образом, функция (446) является линейной комбинацией $\binom{r_1}{N}$ детерминантов, построенных из орбиталей носителя supp (D_{Ψ}^1) [37], т. е.

$$\Psi(x_1, x_2, ..., x_N) = \sum_{i_1, i_2, ..., i_N} c_{i_1, i_2, ..., i_N} \left(\varphi_{i_1}, \varphi_{i_2}, ..., \varphi_{i_N}\right) (x_1, x_2, ..., x_N).$$
(447)

Функция (447) обладает важным свойством [38]. Рассмотрим слэтеровский детерминант $\Phi_{\Psi(x_1,x_2,...,x_{r_1})}$, построенный на натуральных орбиталях функции $\Psi(x_1,x_2,...,x_N)$:

$$\Phi_{\Psi(x_1,x_2,...,x_{r_1})} = \left(\varphi_1,\varphi_2,...,\varphi_{r_1}\right)(x_1,x_2,...,x_{r_1}).$$

Тогда Ψ является собственной функцией РМП *N*-го порядка, соответствующей функции Φ_{Ψ} :

$$\int D_{\Phi_{\Psi}}^{N}(x_{1}, x_{2}, ..., x_{N}; x_{1}', x_{2}', ..., x_{N}') \Psi(x_{1}', x_{2}', ..., x_{N}') dx_{1}' dx_{2}' \cdots dx_{N}' = {\binom{r_{1}}{N}}^{-1} \Psi(x_{1}, x_{2}, ..., x_{N}),$$

отвечающей собственному значению $\binom{r_1}{N}^{-1}$.

Используя выражение (446), рассмотрим, каким должен быть ранг r_1 функции от N независимых переменных [37]. В работах [8, 32, 37, 38] показано, что для функции Ψ от N независимых переменных $r_1 \neq N+1$. В [32, 38] показано, что в случае, когда $r_1 = N+2$, минимальное число слэтеровских детерминантов в записи (447) функции от N переменных равно $\left[\frac{N}{2}\right]+1$. В общем случае эта задача не решена. Похожая проблема для произвольных рангов r_p ($1 \le p \le N$) является, очевидно, еще более трудной для разрешения.

2.9.7. Редуцированные матрицы плотности для однодетерминантных функций

Пусть $\{\varphi_i\}_i$ – полная ортонормированная система функций в гильбертовом пространстве *H*. Из определения гильбертова пространства $\Lambda^N H$ следует полная ортонормированная система в $\Lambda^N H$ – совокупность всех детерминантов Слэтера [39]

$$\left\{\left[\varphi_{i_1},\varphi_{i_2},\ldots,\varphi_{i_N}\right]\left(x_1,x_2,\ldots,x_N\right)\right\}_i,$$

где

$$\left[\varphi_{i_{1}},\varphi_{i_{2}},...,\varphi_{i_{N}}\right]\left(x_{1},x_{2},...,x_{N}\right)=(N!)^{-1/2}\sum_{P\in S_{N}}(-1)^{P}P\left(\varphi_{i_{1}}(x_{1}),\varphi_{i_{2}}(x_{2}),...,\varphi_{i_{N}}(x_{N})\right).$$

Тогда произвольную РМП *р*-го порядка можно представить в виде

$$D^{p}(x_{1}, x_{2}, ..., x_{p}; x_{1}', x_{2}', ..., x_{p}') = \sum_{\substack{l_{1} < l_{2} < \cdots < l_{p} \\ k_{1} < k_{2} < \cdots < k_{p}}} D^{p}(l_{1}, l_{2}, ..., l_{p}; k_{1}, k_{2}, ..., k_{p}) \times$$

$$\times \Big[\varphi_{l_{1}}, \varphi_{l_{2}}, ..., \varphi_{l_{p}} \Big] \Big(x_{1}, x_{2}, ..., x_{p} \Big) \Big[\overline{\varphi}_{k_{1}}, \overline{\varphi}_{k_{2}}, ..., \overline{\varphi}_{k_{p}} \Big] (x_{1}', x_{2}', ..., x_{p}'),$$
(448)

и при фиксированном базисе пространства *Н* рассмотрение свойств РМП эквивалентно рассмотрению обычных матриц. При этом возникает необходимость изучения РМП, соответствующих слэтеровскому детерминанту

 $\Psi = [\varphi_1, \varphi_2, ..., \varphi_N](x_1, x_2, ..., x_N).$ (449)

Редуцированная матрица плотности 1-го порядка D_{Ψ}^{1} , иначе матрица Фока – Дирака [40, 41], имеет вид:

$$D_{\Psi}^{1}(x_{1},x_{1}') = \frac{1}{N} \sum_{i=1}^{N} \varphi_{i}(x_{1}), \overline{\varphi}_{i}(x_{1}'), \qquad (450)$$

т. е. именно на слэтеровских функциях реализуются максимальные значения собственных чисел РМП 1-го порядка. Тогда для функций вида (449) матрицы более высоких порядков выражаются через матрицу Фока – Дирака, а именно:

$$D_{\Psi}^{p}(x_{1}, x_{2}, ..., x_{p}; x_{1}', x_{2}', ..., x_{p}') = \frac{1}{p!} \begin{vmatrix} D_{\Psi}^{1}(x_{1}, x_{1}') \cdots D_{\Psi}^{1}(x_{1}, x_{p}') \\ D_{\Psi}^{1}(x_{2}, x_{1}') \cdots D_{\Psi}^{1}(x_{2}, x_{p}') \\ D_{\Psi}^{1}(x_{3}, x_{1}') \cdots D_{\Psi}^{1}(x_{3}, x_{p}') \\ \dots \\ D_{\Psi}^{1}(x_{p}, x_{1}') \cdots D_{\Psi}^{1}(x_{p}, x_{p}') \end{vmatrix}$$
(451)

Матрица Фока – Дирака идемпотентна:

$$\int D_{\Psi}^{1}(x_{1},x_{1}'')D_{\Psi}^{1}(x'',x_{1}')dx_{1}''=D_{\Psi}^{1}(x_{1},x_{1}').$$

Справедливо следующее более общее утверждение, доказательство которого можно найти в [15, 16].

Теорема 12. *Редуцированные матрицы плотности любого порядка* p ($1 \le p \le N$), соответствующие функции Ψ вида (449), идемпотентны.

Определим на $\Lambda^{N}H$ множество мер, характеризующих отличие данной функции Ψ от слэтеровской функции. Пусть Ψ – произвольный луч гильбертова пространства $\Lambda^{N}H$. Тогда

$$D^{1}_{\Psi}(x_1, x_1') = \sum_{i} \alpha_i \varphi_i(x_1), \overline{\varphi}_i(x_1').$$

Пусть \tilde{D}_{Ψ}^{p} – элемент $B \in \Lambda^{N} H$, имеющий вид

$$\tilde{D}_{\Psi}^{p}(x_{1}, x_{2}, \dots, x_{p}; x_{1}', x_{2}', \dots, x_{p}') = \frac{1}{p!} \begin{vmatrix} D_{\Psi}^{1}(x_{1}, x_{1}') \cdots D_{\Psi}^{1}(x_{1}, x_{p}') \\ D_{\Psi}^{1}(x_{2}, x_{1}') \cdots D_{\Psi}^{1}(x_{2}, x_{p}') \\ D_{\Psi}^{1}(x_{3}, x_{1}') \cdots D_{\Psi}^{1}(x_{3}, x_{p}') \\ \dots \\ D_{\Psi}^{1}(x_{p}, x_{1}') \cdots D_{\Psi}^{1}(x_{p}, x_{p}') \end{vmatrix}$$

Тогда множество мер $\mu_p[\Psi]$ ($1 \le p \le N$) определяется на $\Lambda^N H$ следующим образом:

$$\mu_p[\Psi] \equiv \int D_{\Psi}^p(x_1, x_2, \dots, x_p; x_1', x_2', \dots, x_p') \tilde{D}_{\Psi}^p(x_1', x_2', \dots, x_p'; x_1, x_2, \dots, x_p) \prod_{i=1}^p dx_i \prod_{i=1}^p dx_i'$$

и, учитывая (448), получаем

$$\mu_{p}[\Psi] = \sum_{i_{1} < i_{2} < \cdots < i_{p}} D_{\Psi}^{p}(i_{1}, i_{2}, \dots, i_{p} | i_{1}, i_{2}, \dots, i_{p}) \prod_{j=1}^{p} \alpha_{i_{j}}.$$

Так как

$$0 \le D_{\Psi}^{p}(i_{1}, i_{2}, ..., i_{p}; i_{1}, i_{2}, ..., i_{p}), \alpha_{i} \le 1$$

И

$$1 = \sum_{i_1 < i_2 < \cdots < i_p} D_{\Psi}^p(i_1, i_2, \dots, i_p \mid i_1, i_2, \dots, i_p) \ge \sum_{i_1 < i_2 < \cdots < i_p} D_{\Psi}^p(i_1, i_2, \dots, i_p \mid i_1, i_2, \dots, i_p) \prod_{j=1}^p \alpha_{i_j},$$

то $0 \le \mu_p[\Psi] \le 1$, причем, если Ψ – однодетерминантная функция, то $\mu_p[\Psi] = 1$. Для произвольного луча $\Psi \in \Lambda^N H$ вида

$$\Psi(x_1, x_2, ..., x_N) = \sum_{k_1 < k_2 < \cdots < k_N} c_{k_1, k_2, \dots, k_N} \Big[\varphi_{k_1}, \varphi_{k_2}, ..., \varphi_{k_N} \Big] (x_1, x_2, \dots, x_N)$$

показано [25], что

$$D_{\Psi}^{p}(i_{1},i_{2},...,i_{p} | i_{1},i_{2},...,i_{p}) = \sum_{k_{1} < k_{2} < \cdots < k_{N}}^{(i_{1},i_{2},...,i_{p})} |c_{k_{1},k_{2},...,k_{N}}|^{2},$$

где сумма берется по всем конфигурациям $(k_1, k_2, ..., k_N)$, содержащим $(i_1, i_2, ..., i_p)$. Тогда

$$D_{\Psi}^{p}(i_{1},i_{2},...,i_{p} | i_{1},i_{2},...,i_{p}) \ge D_{\Psi}^{p+1}(i_{1},i_{2},...,i_{p},i_{p+1} | i_{1},i_{2},...,i_{p},i_{p+1}).$$

Таким образом, введенные меры на $\Lambda^{N}H$ упорядочены следующим образом:

$$1 \ge \mu_1[\Psi] \ge \mu_2[\Psi] \ge \cdots \ge \mu_p[\Psi] \ge \mu_{p+1}[\Psi] \ge \cdots \ge 0.$$

Пусть $\Psi_1, \Psi_2 \in \Lambda^N H$ и даны $D^p(\Psi_1)$ и $D^p(\Psi_2)$ ($1 \le p \le N$). Определим оператор на $\Lambda^p H$, соответствующий произведению $D^p(\Psi_1)$ и $D^p(\Psi_2)$:

$$D_{\Psi_{1}\Psi_{2}}^{p}(x_{1}, x_{2}, ..., x_{p}; x_{1}', x_{2}', ..., x_{p}') \equiv \int D_{\Psi_{1}}^{p}(x_{1}, x_{2}, ..., x_{p}; x_{1}'', x_{2}'', ..., x_{p}'') D_{\Psi_{2}}^{p}(x_{1}'', x_{2}'', ..., x_{p}''; x_{1}', x_{2}', ..., x_{p}') \prod_{i=1}^{p} dx_{i}''.$$

Тогда имеет место следующее утверждение, доказательство которого можно найти в [15, 16].

Теорема 13. Пусть $\Psi_1, \Psi_2 \in \Lambda^N H$ и даны $D^p(\Psi_1)$ и $D^p(\Psi_2) (1 \le p \le N)$. Для того, чтобы $Tr(D^p_{\Psi_1\Psi_2}) = 0$, необходимо и достаточно, чтобы $supp(D^p_{\Psi_1}) \perp supp(D^p_{\Psi_2})$.

Пусть $\Psi_1, \Psi_2 \in \Lambda^N H$. Существует ли функция $\chi = \chi(p) \in \Lambda^N H$ такая, что $D^p_{\Psi,\Psi_2} = D^p_{\chi}$?

В общем случае ответ отрицателен. Это следует из того, что если (от противного) такая функция $\chi \in \Lambda^N H$ существует, то $Tr(D_{\chi}^p) = 1$, но по теореме 12

можно выбрать Ψ_1 и Ψ_2 такими, что $Tr(D_{\Psi_1\Psi_2}^p) = 0$, т. е. приходим к противоречию. Сформулированная задача имеет решение, когда $\Psi_1 = \Psi_2 = \Psi$ и $D_{\Psi}^p D_{\Psi}^p = D_{\Psi}^p (\mu_p[\Psi] = 1)$, что возможно тогда, когда, во-первых, p = N, и, во-вторых, Ψ – однодетерминантная функция. Нам представляется, что это единственное решение данной задачи.

2.9.8. Редуцированные матрицы перехода

Пусть Ψ_1 и Ψ_2 лучи гильбертова пространства $\Lambda^N H$. Тогда РМП *p*-го порядка, соответствующая функциям Ψ_1 и Ψ_2 от *N* независимых переменных, есть интегральный оператор с ядром, определяемым по формуле ($1 \le p \le N$)

$$D_{\Psi_{1}\Psi_{2}}^{p}(x_{1},x_{2},...,x_{p};x_{1}',x_{2}',...,x_{p}') \equiv \int \Psi_{1}(x_{1},x_{2},...,x_{N})\overline{\Psi}_{2}(x_{1}',x_{2}',...,x_{p}',x_{p+1},...,x_{N})\prod_{i=p+1}^{N} dx_{i}.$$

N 7

Отметим, что при $\Psi_1 = \Psi_2$ это выражение сводится к стандартным РМП.

Как уже упоминалось, базисом гильбертова пространства $\Lambda^{N}H$ можно выбрать слэтеровские детерминанты *N*-го порядка, построенные на упорядоченном полном базисе пространства *H*. Вследствие этого, для нахождения РМП, соответствующих произвольным элементам пространства $\Lambda^{N}H$, достаточно рассмотреть редуцированные матрицы перехода для однодетерминантных функций.

Итак, пусть

$$\Psi_{1}(x_{1}, x_{2}, ..., x_{N}) = \left[\varphi_{i_{1}}, \varphi_{i_{2}}, ..., \varphi_{i_{N}}\right](x_{1}, x_{2}, ..., x_{N}),$$

$$\Psi_{2}(x_{1}, x_{2}, ..., x_{N}) = \left[\varphi_{j_{1}}, \varphi_{j_{2}}, ..., \varphi_{j_{N}}\right](x_{1}, x_{2}, ..., x_{N}).$$

Тогда

$$D_{\Psi_{1}\Psi_{2}}^{p}(x_{1}, x_{2}, ..., x_{p}; x_{1}', x_{2}', ..., x_{p}') = \int_{\substack{x_{p+1}=x_{p+1}'\\\vdots\\x_{N}=x_{N}'}} A_{N}^{1,2,...,N} \left(\varphi_{i_{1}}(x_{1}), \varphi_{i_{2}}(x_{2}), ..., \varphi_{i_{N}}(x_{N})\right) \times A_{N}^{1',2',...,N'} \left(\varphi_{j_{1}}(x_{1}'), \varphi_{j_{2}}(x_{2}'), ..., \varphi_{j_{N}}(x_{N}')\right) \prod_{i=p+1}^{N} dx_{i}'$$

Пользуясь формулой

$$\binom{N}{p}^{1/2} \mathbf{A}_{N} = \left[\sum_{j=0}^{p} (-1)^{j} \sum_{\{i\},\{k\}} g_{j}(i_{1},i_{2},...,i_{j} | k_{1},k_{2},...,k_{j})\right] \mathbf{A}_{p} \mathbf{A}_{N-p},$$

получаем

$$D_{\Psi_{1}\Psi_{2}}^{p}(x_{1}, x_{2}, ..., x_{p}; x_{1}', x_{2}', ..., x_{p}') = {\binom{N}{p}}^{-1} (N-p)! \sum_{i=0}^{p} (-1)^{i} \sum_{j=0}^{p} (-1)^{j} \sum_{\{k\},\{l\}} g_{i}(k_{1}, k_{2}, ..., k_{i} \mid l_{1}, l_{2}, ..., l_{i}) \times \\ \times \sum_{\{m\},\{n\}} g_{j}(m_{1}, m_{2}, ..., m_{j} \mid n_{1}, n_{2}, ..., n_{j}) \sum_{P \in S_{N-p}^{(p+1,...,N)}} (-1)^{p} \delta_{i_{p+1}, j_{P(p+1)}} \delta_{i_{p+2}, j_{P(p+2)}} \cdots \delta_{i_{N}, j_{P(N)}} \times (452) \\ \times A_{P(i)}^{(1,2,...,p)} \left(\varphi_{i_{1}}(x_{1}) \varphi_{i_{2}}(x_{2}) \cdots \varphi_{i_{p}}(x_{p}) \right) A_{P(j)}^{(1,2,...,p)} \left(\varphi_{j_{1}}(x_{1}') \varphi_{j_{2}}(x_{2}') \cdots \varphi_{j_{p}}(x_{p}') \right).$$

Пусть $I = \{i_1, i_2, ..., i_N\}$ и $J = \{j_1, j_2, ..., j_N\}$. Из (452) следует, что, если $card(I \cap J) = p$, то

$$D_{\Psi_1,\Psi_2}^{(N-p)-1} \equiv D_{\Psi_1,\Psi_2}^{(N-p)-2} \equiv \dots \equiv 0, \quad D_{\Psi_1,\Psi_2}^{N-p} \neq 0.$$

Частным случаем выражения (452) являются формулы, полученные в [35]:

1) при I = J

$$D^{1}_{\Psi_{1},\Psi_{2}}(x_{1};x_{1}') = \frac{1}{N} \sum_{i \in I} \varphi_{i}(x_{1}) \overline{\varphi}_{i}(x_{1}'),$$

$$D^{2}_{\Psi_{1},\Psi_{2}}(x_{1},x_{2};x_{1}',x_{2}') = \frac{1}{2} \begin{vmatrix} D^{1}_{\Psi_{1},\Psi_{2}}(x_{1};x_{1}') & D^{1}_{\Psi_{1},\Psi_{2}}(x_{1};x_{2}') \\ D^{1}_{\Psi_{1},\Psi_{2}}(x_{2};x_{1}') & D^{1}_{\Psi_{1},\Psi_{2}}(x_{2};x_{2}') \end{vmatrix};$$

2) при $I \setminus (I \cap J) = \{i_k\}, J \setminus (I \cap J) = \{j_m\}$

$$D^{1}_{\Psi_{1},\Psi_{2}}(x_{1};x_{1}') = \varphi_{i_{k}}(x_{1})\overline{\varphi}_{j_{m}}(x_{1}'),$$

$$D^{2}_{\Psi_{1},\Psi_{2}}(x_{1},x_{2};x_{1}',x_{2}') = \sqrt{2}A_{2}\sum_{l\in I\cap J} \left[\varphi_{i_{k}}(x_{1})\varphi_{l}(x_{2})\overline{\varphi}_{j_{m}}(x_{1}')\overline{\varphi}_{l}(x_{2}') + \varphi_{l}(x_{1})\varphi_{i_{k}}(x_{2})\overline{\varphi}_{l}(x_{1}')\overline{\varphi}_{j_{m}}(x_{2}')\right];$$

3) при $I \setminus (I \cap J) = \{i_{k_1}, i_{k_2}\}, J \setminus (I \cap J) = \{j_{m_1}, j_{m_2}\}$

 $D^{1}_{\Psi_{1},\Psi_{2}}(x_{1};x_{1}') \equiv 0,$ $D^{2}_{\Psi_{1},\Psi_{2}}(x_{1},x_{2};x_{1}',x_{2}') = \sqrt{2}A_{2} \Big[\varphi_{i_{k_{1}}}(x_{1})\varphi_{i_{k_{2}}}(x_{2})\overline{\varphi}_{j_{m_{1}}}(x_{1}')\overline{\varphi}_{j_{m_{2}}}(x_{2}') + \varphi_{i_{k_{2}}}(x_{1})\varphi_{i_{k_{1}}}(x_{2})\overline{\varphi}_{j_{m_{2}}}(x_{1}')\overline{\varphi}_{j_{m_{1}}}(x_{2}') \Big],$ где $A_{2} = \frac{1}{\sqrt{2}}(1-P_{12}), P_{12}$ – оператор перестановки переменных x_{1} и x_{2} .

Итак, рассмотрена общая теория РМП. Интерес представляет также проблема *N*-представимости [20, 21, 23], связанная с непосредственным применением РМП в квантовомеханических расчетах, проблема *N*-полноты [42,43], построение антисимметризованного произведения двухчастичных функций [44]. Связь матриц плотности со сверхпроводимостью [29] и физикой, с теорией фазовых переходов статистической И С бозеэйнштейневской конденсацией, с функциями Грина, учет точечной [45] и спиновой [21, 25, 34, 46 - 49] симметрии - это по сути математические и физические аспекты теории РМП. Многие вопросы теории редуцированных матриц плотности еще ждут своего решения.

Литература

- 1. J. von Neumann. Mathematische Grundlagen der Quantenmechanik. Berlin: Springer, 1932.
- 2. D. ter Haar. Theory and Applications of the Density Matrix, *Rep. Prog. Phys.*, v. 24, 304 (1961).
- 3. L. D. Landau. The damping problem in wave mechanics, Z. Phys., v. 45, 430 (1927).
- 4. P. A. M. Dirac. Note on the Interpretation of the Density Matrix in the Many Electron Problem, *Proc. Cambr. Phyl. Soc.*, v. 27, 240 (1931).
- 5. K. Husimi. Some Formal Properties of the Density Matrix, *Proc. Phys. Math. Soc. Japan*, v. 22, 264 314 (1940).
- 6. P.-O. Lowdin. Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction, *Phys. Rev.*, v. 97, 1474 1489 (1955).
- 7. R. McWeeny. Some Recent Advances in Density Matrix Theory, *Rev. Mod. Phys.*, v. 32, 335 (1960).
- 8. A. J. Coleman. Structure of Fermion Density Matrices, *Rev. Mod. Phys.*, v. 35, 668 (1963).
- 9. М. М. Местечкин. *Метод матрицы плотности в квантовой химии*. Киев: Наукова думка, 1977.
- 10. C. A. Coulson. Present state of molecular structure calculations, *Rev. Mod. Phys.*, v. 32, 175 (1960).
- 11. J. E. Mayer. Electron correlation, Phys. Rev., v. 100, 1579 1586 (1955).
- 12. R. H. Tredgold. Density matrix and the many-body problem, *Phys. Rev.*, v. 105, 1421 (1957).
- 13. Y. Mizuno, T. Isuyama. Remarks on Mayer's Reduced Density Matrix Method, *Prog. Theor. Phys.*, v. 18, 33 38 (1957).
- 14. A. J. Coleman. Density Matrix Method in Quantum Physics, Sanibel Lectures, 1965.
- 15. E. S. Kryachko, Yu. A. Kruglyak. Theory of the Fermion Reduced Density Matrices of Arbitrary Rank, *Preprint Inst. Theor. Phys.*, n. 162E, Kiev: AS UkrSSR, 1974.
- 16. Е. С. Крячко, Ю. А. Кругляк. Теория фермионных редуцированных матриц плотности произвольного порядка, *Физика молекул*, № 1, 3 26 (1975).
- 17. Е. С. Крячко. Строение фермионных редуцированных матриц плотности и их приложения в теории многоэлектронных систем, Канд. дисс., Ин-т теор. физики АН УССР, Киев, 1977.
- 18. P. A. M. Dirac. *The Principles of Quantum Mechanics*. Oxford: Oxford Univ. Press, 1958.
- 19. A. J. Coleman. Structure of Fermion Density Matrices. II. Antisymmetrized Geminal Powers, *J. Math. Phys.*, v. 6, 1425 (1965).
- 20. A. J. Coleman. Necessary Conditions for *N*-Representability of Reduced Density Matrices, *J. Math. Phys.*, v. 13, 214 (1972).
- 21. H. Kummer. *N*-Representability Problem for Reduced Density Matrices, *J. Math. Phys.*, v. 8, 2063 (1967).
- 22. В. С. Владимиров. Уравнения математической физики. Москва: Наука, 1967.
- 23. M. B. Ruskai. *N*-Representability Problem: Conditions on Geminals, *Phys. Rev.*, v. 183, 129 (1969).
- 24. B. C. Carlson, J. M. Keller. Eigenvalues of Density Matrices, Phys. Rev., v. 121, 659 (1961).
- 25. P.-O. Lowdin, Correlation problem in many-electron quantum mechanics.I. Review of different approaches and discussion of some current ideas, In I. Prigogine (ed.), *Advances in Chemical Physics*, vol. 2. New York: Interscience, 1959.
- 26. F. Sasaki. Eigenvalues of Fermion Density Matrices, *Phys. Rev.*, v. 138 B, 1338 (1965).
- 27. T. Kato. Perturbation Theory for Linear Operators. Berlin: Springer, 1966.

- 28. F. Weinhold, E. Wilson. Reduced Density Matrices of Atoms and Molecules, *J. Chem. Phys.*, v. 47, 2298 (1967).
- 29. C. N. Yang. Concept of Off-diagonal Long-range and the Quantum Phases of Liquid He and of Superconductors, *Rev. Mod. Phys.*, v. 34, 694 (1962).
- 30. S. H. Gould. *Variational Methods for Eigenvalue Problems*. Oxford: Oxford University Press, 1966.
- 31. F. Ky. Maximum Properties and Inequalities for the Eigenvalues of Completely Continuous Operators, *Proc. Nat. Acad. Sci. U. S.*, v. 37, 760 (1951).
- 32. T. Ando. Properties of Fermion Density Matrices, Rev. Mod. Phys., v. 35, 690 (1963).
- 33. E. Schmidt. Zur Theory der linearen und nichtlinearen Integralgleichunglen, *Math. Ann.*, v. 63, 433 (1907).
- 34. P.-O. Lowdin, H. Shull. Natural Orbitals in the Quantum Theory of Two-electron Systems, *Phys. Rev.*, v. 101, 1730 (1956).
- 35. R. McWeeny, B. T. Sutcliffe. *Methods of Molecular Quantum Mechanics*. New York: Academic Press, 1969.
- 36. István Mayer. Bond Orders and Energy Components: Extracting Chemical Information from Molecular Wave Functions. New York: CRC Press, 2016.
- L. L. Foldy. Antisymmetric Functions and Slater Determinants, J. Math. Phys., v. 3, 531 (1962).
- 38. М. М. Местечкин. Об условиях представимости матрицы плотности, *Teop. мат. физ.*, т. 1, 287 (1969).
- 39. J. C. Slater. Theory of Complex Spectra, Phys. Rev., v. 34, 1293 (1929).
- 40. P. A. M. Dirac. Exchange Phenomena in the Thomas Atom, *Proc. Camb. Phil. Soc.*, v. 26, 376 (1930).
- 41. V. A. Fock. Naherungsmethode zur Losung des quantenmechanischen Mehrkorperproblems, *Z. Phys.*, v. 61, 126 (1930).
- 42. E. S. Kryachko, Yu. A. Kruglyak. On the theory of Fermion Reduced Density Matrices. The *N*-Completeness Problem, *Preprint Inst. Theor. Phys.*, n. 135E. Kiev: AS UkrSSR, 1974.
- 43. E. S. Kryachko, Yu. A. Kruglyak. On the the Solution of the *N*-Completeness Problem, *Intern. J. Quantum Chem.*, v. 10, 937 940 (1976).
- 44. Е. С. Крячко, Ю. А. Кругляк. К построению антисимметризованного произведения двухчастичных функций, *Доклады АН УССР*, сер. А, № 11, 1029 1031 (1975).
- 45. E. S. Kryachko, Yu. A. Kruglyak. Point Symmetry Properties of Fermion Reduced Density Matrices, *Preprint Inst. Theor. Phys.*, n. 134E. Kiev: AS UkrSSR, 1974.
- 46. J. E. Harriman. Natural Expansion of the First-order Density Matrix for a Spin-projected Single Determinant, *J. Chem. Phys.*, v. 40, 2827 (1964).
- 47. A. Hardisson, J. E. Harriman. Second-order Density Matrix for a Spin-projected Single Determinant, *J. Chem. Phys.*, v. 46, 3639 (1967).
- 48. M. M. Mestechkin. Two-particle Density Functions for a Spin-projected Single Slater Determinant, *Int. J. Quantum Chem.*, v. 1, 421 (1967).
- 49. M. M. Mestechkin. The Density Matrix of the Two-particle Function Methods, *Intern. J. Quantum Chem.*, v. 1, 675 (1967).

II. Расчет молекул *ab initio* на гауссовых функциях

Глава 3. Вычисление молекулярных интегралов

3.1. О вычислении интегралов на экспоненциальных функциях

Базисные орбитали для молекулярных расчетов должны экспоненциально убывать на больших расстояниях (Приложение П-6). Поэтому наиболее подходящими базисными функциями являются слэтеровские орбитали (393/гл. 2):

$$\chi_A = N r_A^{n-1} e^{-\zeta r_A} Y_l^m(\theta_A, \varphi_A), \qquad (1)$$

где $\vec{r}_A = \vec{r} - \vec{R}_A$ – радиус-вектор электрона относительно атома A, r_A , θ_A и φ_A – сферические координаты относительно атома A, $Y_l^m(\theta_A, \varphi_A)$ – сферические гармоники, N – нормировочный множитель. Слэтеровские орбитали рассматривают как адекватное упрощение водородоподобных волновых функций, которые сами по себе могут быть представлены в виде линейной комбинации слэтеровских орбиталей.

В ходе расчетов электронной структуры молекул приходится вычислять следующие молекулярные интегралы на базисных функциях:

одноэлектронные интегралы перекрывания, кинетической энергии и энергии притяжения к ядрам

$$\int \chi_A \chi_B dv,$$

$$\int \chi_A \left(-\frac{1}{2} \Delta \right) \chi_B dv,$$

$$\int \chi_A \frac{1}{r_C} \chi_B dv$$
(2)

и двухэлектронные интегралы

$$\int \chi_A(1)\chi_B(1)r_{12}^{-1}\chi_C(2)\chi_D(2)dv_1dv_2.$$
(3)

Индексы *А*,*B*,*C*,*D* служат для обозначения атомных центров базисных функций. Таким образом, одноэлектронные интегралы могут быть максимум трехцентровыми, а двухэлектронные интегралы – четырехцентровыми.

Вычисление одноэлектронных интегралов (2) на экспоненциальных базисных функциях не представляет особых трудностей, чего нельзя сказать о двухэлектронных интегралах (3), вычисление которых всегда являлось узким

местом в квантовомеханических расчетах молекул. Рассмотрим кратко встречающиеся здесь трудности.

Интеграл (3) представляет собой электростатическое взаимодействие двух распределений зарядов ρ_{AB} и ρ_{CD} :

$$\int \rho_{AB}(1) r_{12}^{-1} \rho_{CD}(2) dv_1 dv_2.$$
(4)

Самыми простыми из этих интегралов являются двухцентровые интегралы. Это могут быть кулоновский

$$\int \rho_{AA}(1) r_{12}^{-1} \rho_{BB}(2) dv_1 dv_2, \qquad (5)$$

гибридный

$$\int \rho_{AA}(1) r_{12}^{-1} \rho_{AB}(2) dv_1 dv_2 \tag{6}$$

или обменный

$$\int \rho_{AB}(1) r_{12}^{-1} \rho_{AB}(2) dv_1 dv_2 \tag{7}$$

интегралы. Только эти интегралы и нужны в расчетах двухатомных молекул.

Общая схема вычисления интегралов такого рода состоит из двух шагов. Первый шаг – интегрирование по координатам 1-го электрона, например,

$$\int \rho_{AA}(1) r_{12}^{-1} dv_1 = V_{AA}(2), \qquad (8)$$

где $V_{AA}(2)$ – электростатический потенциал, в поле которого находится 2-ой электрон. Второй шаг – интегрирование по координатам 2-го электрона, например,

$$\int V_{AA}(2) \rho_{BB}(2) dv_2.$$
(9)

Для кулоновского (5) и гибридного (6) интегралов интегрирование на первом шаге проводят в сферических координатах. Для r_{12}^{-1} используется известное из теории атомов разложение

$$\frac{1}{r_{12}} = \sum_{l=0}^{\infty} \sum_{m=-l}^{+l} \frac{(l-|m|)!}{(l+|m|)!} \left(\frac{r_{<}^{l}}{r_{>}^{l+1}}\right) P_{l}^{m}(\cos\theta_{1}) P_{l}^{m}(\cos\theta_{2}) e^{-im(\phi_{1}-\phi_{2})}.$$
(10)

На втором шаге при вычислении (9) нужно ввести естественные для двухцентровых интегралов эллиптические координаты μ, ν, φ и тогда кулоновский (5) и гибридный (6) интегралы могут быть вычислены в замкнутом виде.

Обменный же интеграл (7) в замкнутом виде не вычисляется. В этом случае приходится вводить эллиптические координаты уже на первом шаге и использовать разложение Неймана

$$\frac{1}{r_{12}} = \frac{2}{R} \sum_{l=0}^{\infty} \sum_{m=-l}^{+l} (-1)^m (2l+1) \left[\frac{(l-|m|)!}{(l+|m|)!} \right]^2 P_l^m(\mu_{<}) Q_l^m(\mu_{>}) P_l^m(\nu_{1}) P_l^m(\nu_{2}) e^{-im(\varphi_1 - \varphi_2)}, \quad (11)$$

в котором используется присоединенная функция Лежандра второго рода. Проблема в том, что в этом случае нет правил, которые позволяли бы обрывать бесконечный ряд при интегрировании. Возникает вопрос о сходимости искусственно обрываемого ряда для получения желаемой точности. Значительные трудности представляет и само интегрирование при вычислении вспомогательной функции

$$W_{\tau}^{\nu}(m,n;\alpha,\beta) = \int_{1}^{\infty} \int_{1}^{\infty} P_{\tau}^{\nu}(\mu_{<}) Q_{\tau}^{\nu}(\mu_{>}) e^{-\alpha\mu_{1}-\beta\mu_{2}} \mu_{1}^{m} \mu_{2}^{n}(\mu_{1}^{2}-1)^{\nu/2}(\mu_{2}^{2}-1)^{\nu/2} d\mu_{1} d\mu_{2} \quad (12)$$

Котани [1] для вычисления вспомогательной функции (12) использовал рекуррентные соотношения, Рюденберг [2] предложил прибегнуть к численным квадратурам. Полный анализ этой вычислительной схемы проведен, вспомогательные функции затабулированы и созданы алгоритмы, которые позволяют рассчитать любой двухцентровый интеграл [1 – 6], что обеспечило высокоточные расчеты двухатомных молекул.

Намного сложнее ситуация с многоцентровыми интегралами (3). Метод Коулсона и Барнетта [7, 8] заключается в том, что плотности $\rho(1)$ и $\rho(2)$ разлагаются согласно (10) около соответственно выбранного центра. Центральное место в их подходе занимают следующие две формулы, в которых новые переменные показаны на рис. 1:

$$r_b^n P_n^m(\cos\theta_b) e^{im\varphi} = \sum_{l=m}^n (-1)^{l+m} \frac{(m+n)!}{(m+l)!(n-l)!} R^{n-l} r_a^l P_l^m(\cos\theta_a) e^{im\varphi}, \qquad (13)$$

$$r_{b}^{m-1}e^{-\beta r_{b}} = \sum_{n=0}^{\infty} \frac{2n+1}{\sqrt{r_{a}R}} P_{n}(\cos\theta_{a})\xi_{m,n}(\beta, r_{a}; R), \qquad (14)$$
где $\xi_{m,n}(\beta, r_a; R)$ – дзета-функция, выражаемая через функцию Бесселя мнимого аргумента.

Рис. 1. Система координат и новые переменные в разложениях (13) и (14).

Таким образом, чтобы выразить слэтеровскую орбиталь, центрированную на ядре *B*, в полярных координатах с центром на ядре *A*, нужно угловую часть заменить по (13), а оставшуюся радиальную часть по формуле (14). Когда все функции сведены к одному центру, нет проблемы вычислить интеграл (3). Отметим, что сходимость ряда (14) довольно медленная. Вместо (13) и (14) можно пользоваться объединенной формулой [9]. Рекомендуем неплохой обзор Хузинаги по вычислению молекулярных интегралов на слэтеровских функциях [10]. Вынуждены констатировать, что и до сих пор не получены выражения для трех- и четырехцентровых молекулярных интегралов на экспоненциальных функциях, пригодные для их вычисления с нужной точностью на современных суперкомпьютерах за приемлемое время.

Хотя попытки разработать практически пригодные методы расчета молекулярных интегралов на орбиталях слэтеровского типа (ОСТ) все еще продолжаются (обратим внимание на работы И. И. Гусейнова [11]), все реальные квантовохимические программы *ab initio* в качестве базисных функций используют орбитали гауссова типа (ОГТ), впервые предложенные Бойсом [12],

$$\chi_A = N x_A^l y_A^m z_A^n e^{-ar_A^2}, \qquad (15)$$

где *l,m,n* – целые положительные числа, *a* – положительное число,

$$x_A = x - A_x, \quad y_A = y - A_y, \quad z_A = z - A_z, \quad r_A^2 = x_A^2 + y_A^2 + z_A^2,$$
 (16)

A_x, *A_y*, *A_z* – координаты центра гауссовой функции (15). Бойс показал, что все молекулярные интегралы с функциями (15) легко вычисляются, что и послужило единственной, но достаточно веской причиной использования гауссовых функций в прикладной квантовой химии.

3.2. Вычисление молекулярных интегралов с гауссовыми функциями

Сферически симметричную, нормированную гауссовую функцию будем записывать в виде

$$G_A \equiv G(a, r_A) = N_a e^{-ar_A^2}, \qquad (17)$$

где нормировочный множитель

$$N_a = \left(\frac{2a}{\pi}\right)^{3/4}.$$
 (18)

Большими буквами *A*, *B*, *C*, *D* будем обозначать центры гауссовых функций, не обязательно совпадающие с атомами в молекуле. В работе [12] Бойс привел окончательные формулы для молекулярных интегралов именно с функциями (17) и показал, что интегралы с более общими декартовыми гауссовыми функциями (15) могут быть получены из этих формул дифференцированием по параметрам.

Рассмотрим сначала некоторые математические свойства гауссовых функций (17), которые важны с точки зрения вычисления молекулярных интегралов, а затем покажем, как вычисляются все необходимые молекулярные интегралы с этими функциями [12, 13].

Запишем функцию (17) в декартовых координатах:

$$G_A = N_a \exp\left\{-a\left[(x - A_x)^2 + (y - A_y)^2 + (z - A_z)^2\right]\right\}.$$
 (19)

Функция (19) распадается на произведение трех одномерных гауссовых функций, зависящих каждая только от одной переменной. Еще одним важным с точки зрения вычисления молекулярных интегралов свойством гауссовых функций (17) является следующее: произведение двух гауссовых функций с центрами A и B есть снова гауссова функция с центром C, расположенным на линии AB, соединяющей центры A и B:

$$G(a, r_A) \cdot G(b, r_B) = kG(a+b, r_C), \qquad (20)$$

где

$$k = \exp\left(-\frac{ab}{a+b}R_{AB}^2\right),\tag{21}$$

 R_{AB}^{2} – расстояние между центрами *A* и *B*,

$$C_{x} = \frac{aA_{x} + bB_{x}}{a+b}, \quad C_{y} = \frac{aA_{y} + bB_{y}}{a+b}, \quad C_{z} = \frac{aA_{z} + bB_{z}}{a+b}.$$
 (22)

Для доказательства равенства (20) рассмотрим *х*-компоненту левой части этого уравнения:

$$e^{-a(x-A_x)^2}e^{-b(x-B_x)^2} = e^{-(a+b)x^2 + 2(aA_x + bB_x)x - aA_x^2 - bB_x^2}$$
(23)

и преобразуем показатель степени экспоненты следующим образом:

$$-(a+b)\left[x^{2} - \frac{2(aA_{x} + bB_{x})}{a+b}x + \frac{aA_{x}^{2} + bB_{x}^{2}}{a+b}\right] = -(a+b)\left\{\left[x - \frac{aA_{x} + bB_{x}}{a+b}\right]^{2} + \frac{ab}{(a+b)^{2}}\left(A_{x} - B_{x}\right)^{2}\right\} (24)$$

Вводя обозначение С, из (22), окончательно вместо (23) получаем

$$e^{-a(x-A_x)^2}e^{-b(x-B_x)^2} = e^{-\frac{ab}{a+b}(A_x-B_x)^2}e^{-(a+b)(x-C_x)^2}.$$
(25)

Аналогичные выкладки для *у*- и *z*-компонент левой части уравнения (20) подтверждают его справедливость. Графическое представление произведения двух гауссовых функций показано на рис. 2.

Рис. 2. Произведение двух гауссовых функций $G_A \cdot G_B$ порождает новую гауссову функцию kG_c согласно уравнению (20).

Итак, произведение любого числа гауссовых функций с произвольно расположенными центрами выражается через одну гауссову функцию с определенным коэффициентом и определенным положением ее центра. Именно это свойство гауссовых функций позволяет легко вычислять многоцентровые молекулярные интегралы.

Перепишем четыре типа молекулярных интегралов (2) и (3) теперь уже с гауссовыми функциями (17):

(I)
$$\int G_A G_B dv,$$

(II)
$$\int G_A \left(-\frac{1}{2} \Delta \right) G_B dv,$$

(III)
$$\int G_A \frac{1}{r_c} G_B dv,$$

(IV)
$$\int G_A (1) G_B (1) r_{12}^{-1} G_C (2) G_D (2) dv_1 dv_2.$$
(26)

При вычислении интегралов с гауссовыми функциями используются следующие формулы:

$$\int_{0}^{\infty} e^{-ax^{2}} = \frac{1}{2}\sqrt{\frac{\pi}{a}},$$
(27)

$$\int_{0}^{\infty} x^{n} e^{-ax^{2}} = \frac{1}{2} \frac{\Gamma\left(\frac{n+1}{2}\right)}{a^{\frac{n+1}{2}}}, \quad (n - \text{целое число})$$
(28)

$$\frac{1}{r} = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \alpha^{-1/2} e^{-\alpha r^{2}} d\alpha, \quad (r > 0)$$
(29)

а также класс функций

$$F_m(z) = \int_0^1 u^{2m} e^{-zu^2} du = e^{-z} \sum_{i=0}^\infty \frac{(2z)^i}{(2m+1)(2m+3)\cdots(2m+2i+1)}, \quad (z > 0, m = 0, 1, 2, ...) \quad (30)$$

тесно связанных с функцией ошибок $\Phi(x)$ и ее производными. Например, выполнив замену $zu^2 = x^2$ в функции $F_0(z)$, получим

$$F_0(z) = \frac{1}{\sqrt{z}} \int_0^{\sqrt{z}} e^{-x^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{z}} \Phi\left(\sqrt{z}\right).$$
(31)

Вычислим интегралы (26).

I. Интеграл перекрывания вычисляется непосредственно с помощью формул (20) и (27):

$$\int e^{-ar_A^2} e^{-br_B^2} dv = e^{-\frac{ab}{a+b}R_{AB}^2} \int e^{-(a+b)r_C^2} dv = \left(\frac{\pi}{a+b}\right)^{3/2} e^{-\frac{ab}{a+b}R_{AB}^2},$$
(32)

а если учесть нормировку, то окончательно:

$$S_{AB} = \left(\frac{2\sqrt{ab}}{a+b}\right)^{3/2} e^{-\frac{ab}{a+b}R_{AB}^2}.$$
(33)

II. Вычисление интеграла кинетической энергии удобно сразу вести в декартовых координатах, а именно:

$$-\frac{1}{2}\int_{-\infty}^{+\infty}e^{-a(x-A_x)^2}\frac{\partial^2}{\partial x^2}e^{-b(x-B_x)^2}dx = \left[\frac{ab}{a+b} - \frac{2a^2b^2}{(a+b)^2}(A_x - B_x)^2\right](S_{AB})_x, \quad (34)$$

причем интегрирования по у и z дадут полную величину S_{AB} . Сложив эти три члена, соответствующие трем компонентам оператора Δ , окончательно получим

$$\int G_{A}\left(-\frac{1}{2}\Delta\right)G_{B}\,dv = \left[\frac{3ab}{a+b} - \frac{2a^{2}b^{2}}{(a+b)^{2}}R_{AB}^{2}\right]S_{AB}.$$
(35)

III. Трехцентровый интеграл притяжения к ядру легко вычислить, используя формулу (29). Имеем

$$\int e^{-ar_A^2} \frac{1}{r_C} e^{-br_B^2} dv = e^{-\frac{ab}{a+b}R_{AB}^2} \int \frac{1}{r_C} e^{-(a+b)r_P^2} dv, \qquad (36)$$

где координаты точки Р определяются по (22). Далее

$$\int \frac{1}{r_C} e^{-(a+b)r_P^2} dv = \frac{1}{\sqrt{\pi}} \int_0^\infty \int e^{-(a+b)r_P^2} e^{-sr_C^2} s^{-1/2} dv ds = \pi \int_0^\infty s^{-1} (a+b+s)^{-3/2} e^{-\frac{(a+b)s}{a+b+s}R_{CP}^2} ds.$$
(37)

Заменой переменных $s/(a+b+s) = t^2$ для этого последнего интеграла получаем выражение

$$\pi \frac{2}{a+b} \int_{0}^{1} e^{-[(a+b)R_{CP}^2]t^2} dt \,.$$
(38)

Весь интеграл III при этом равен

$$\int G_A \frac{1}{r_C} G_B dv = 2\sqrt{\frac{a+b}{\pi}} S_{AB} F_0([a+b]R_{CP}^2), \qquad (39)$$

где

$$F_0([a+b]R_{CP}^2) = \int_0^1 e^{-[(a+b)R_{CP}^2]t^2} dt.$$
(40)

IV. Наконец, при вычислении интеграла двухэлектронного, который сразу же можно записать в виде

$$\int G_A(1)G_B(1)r_{12}^{-1}G_C(2)G_D(2)dv_1dv_2 = e^{-\frac{ab}{a+b}R_{AB}^2}e^{-\frac{cd}{c+d}R_{CD}^2}\int r_{12}^{-1}e^{-(a+b)r_{1P}^2}e^{-(c+d)r_{2Q}^2}dv_1dv_2, \quad (41)$$

где координаты точек *P* и *Q* определяются в соответствии с формулой (22), нужно воспользоваться формулой (29) и представить искомый интеграл в виде

$$\frac{1}{\sqrt{\pi}} e^{-\frac{ab}{a+b}R_{AB}^2} e^{-\frac{cd}{c+d}R_{CD}^2} \int_0^\infty J_x J_y J_z s^{-1/2} ds , \qquad (42)$$

где, например,

$$J_{x} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-(a+b)(x_{1}-P_{x})^{2} - (c+d)(x_{2}-Q_{x})^{2} - s(x_{1}-x_{2})^{2}} dx_{1} dx_{2}.$$
 (43)

Последний интеграл равен [13]

$$J_{x} = \frac{\pi}{\sqrt{pq}} \left(1 + \frac{p+q}{pq} s \right)^{-1/2} \exp\left[-\frac{s(P_{x} - Q_{x})^{2}}{1 + \frac{p+q}{pq} s} \right],$$
(44)

где p = a + b, q = c + d. Замена переменных

$$1 + \frac{p+q}{pq}s = \frac{1}{1-t^2}$$

позволяет получить следующее выражение для четырехцентрового интеграла (41):

$$\frac{2\pi^{5/2}}{pq\sqrt{p+q}}e^{-\frac{ab}{a+b}R_{AB}^2}e^{-\frac{cd}{c+d}R_{CD}^2}\int_{0}^{1}e^{-\frac{pq}{p+q}R_{PQ}^2t^2}dt$$
(45)

или окончательно

$$\int G_A(1)G_B(1)r_{12}^{-1}G_C(2)G_D(2)dv_1dv_2 = \frac{2}{\sqrt{\pi}}\sqrt{\frac{(a+b)(c+d)}{a+b+c+d}}S_{AB}S_{CD}F_0\left(\frac{(a+b)(c+d)}{a+b+c+d}R_{PQ}^2\right).$$
 (46)

Для обозримости и дальнейших ссылок сведем воедино все формулы для молекулярных интегралов на гауссовых функциях:

$$\begin{cases}
G_{A} = \left(\frac{2a}{\pi}\right)^{3/4} e^{-ar_{A}^{2}}, \\
\int G_{A}G_{B}dv \equiv S_{AB} = \left(\frac{2\sqrt{ab}}{a+b}\right)^{3/2} e^{-\frac{ab}{a+b}R_{AB}^{2}}, \\
\int G_{A}\left(-\frac{1}{2}\Delta\right)G_{B}dv = \left[\frac{3ab}{a+b} - 2\left(\frac{ab}{a+b}\right)^{2}R_{AB}^{2}\right]S_{AB}, \\
\int G_{A}\frac{1}{r_{C}}G_{B}dv = 2\sqrt{\frac{a+b}{\pi}}S_{AB}F_{0}([a+b]R_{CP}^{2}), \\
\int G_{A}(1)G_{B}(1)r_{12}^{-1}G_{C}(2)G_{D}(2)dv_{1}dv_{2} = \frac{2}{\sqrt{\pi}}\sqrt{\frac{(a+b)(c+d)}{a+b+c+d}}S_{AB}S_{CD}F_{0}\left(\frac{(a+b)(c+d)}{a+b+c+d}R_{PQ}^{2}\right).
\end{cases}$$
(47)

Вспомогательная функция $F_0(z)$ является единственной неявно выраженной функцией в сводке (47). Способы ее аппроксимации обсудим позже. Конечно, такие простые формулы для молекулярных интегралов как (47) получаются только с функциями (17). Вычисления с декартовыми гауссовыми функциями (15) приводят к значительно более сложным выражениям, которые, как уже говорилось, могут быть получены из основных формул (47) дифференцированием по параметрам. Например, пусть нужно вычислить интеграл

$$\int x_A e^{-ar_A^2} \frac{1}{r_C} e^{-br_B^2} dv.$$
(48)

Отметим, прежде всего, что

$$x_A e^{-ar_A^2} = \frac{1}{2a} \frac{\partial}{\partial A_x} e^{-ar_A^2}, \qquad (49)$$

поэтому искомый интеграл (48) равен

$$\frac{1}{2a}\frac{\partial}{\partial A_{x}}\int e^{-ar_{A}^{2}}\frac{1}{r_{C}}e^{-br_{B}^{2}}dv = \frac{\pi}{2(a+b)}\frac{\partial}{\partial A_{x}}\left\{F_{0}([a+b]R_{CP}^{2})e^{-\frac{ab}{a+b}R_{AB}^{2}}\right\} = \frac{2\pi}{a+b}\left\{(C_{x}-P_{x})F_{1}([a+b]R_{CP}^{2})-\frac{b}{a+b}(A_{x}-B_{x})F_{0}([a+b]R_{CP}^{2})\right\}e^{-\frac{ab}{a+b}R_{AB}^{2}}.$$
(50)

Как видим, этот интеграл выражается уже при помощи двух вспомогательных функций. В двухэлектронных интегралах с функциями (15), соответствующими *p*-функциям, появятся вспомогательные функции F_m вплоть до m = 4 включительно. С ростом квантовых чисел l,m,n в (15) вычисления становятся все более громоздкими.

Общие формулы для молекулярных интегралов с функциями (15) известны [14]. Получены формулы для интегралов с гауссовыми функциями других типов, например, для произведения гауссовых функций и сферических гармоник [15]

$$\chi = Nr^{2n+l}e^{-ar^2}Y_l^m(\theta,\varphi).$$
(51)

Предложено использовать эллипсоидальные гауссовы орбитали вида

$$\chi \sim \exp(-\alpha x^2 - \beta y^2 - \gamma z^2), \qquad (52)$$

в которых бо́льшая ось эллипсоида соединяет два химически связанных атома и которые могут быть удобны для описания локализованных связей [16]. В [17, 18] приведены формулы для гауссовых функций, которые позволяют явным образом учесть зависимость волновой функции от межэлектронных расстояний

$$\chi \sim \exp(-\alpha r_{ij}^2). \tag{53}$$

Уникальная простота формул, к которым приводит использование гауссовых функций при вычислении молекулярных интегралов, обязана тому, что гауссова функция зависит от квадрата аргумента *r*, расстояния между частицами. Благодаря этому удается избежать появления квадратных корней в выражениях, связывающих функции разных аргументов. Но именно в квадратичной зависимости гауссовой экспоненты от расстояния кроется главный недостаток этих функций.

3.3. Сравнение слэтеровских и гауссовых функций в качестве базисных

Слэтеровские экспоненциальные функции, в принципе, наилучшим образом подходят для поиска аналитических разложений хартри-фоковских решений. Требуется относительно мало ОСТ для того, чтобы удовлетворительно аппроксимировать ХФ атомные функции. В [19] показано, что уже двух слэтеровских функций на каждую АО достаточно для получения количественно верных результатов, а шести *s* и четырех *p* функций Слэтера

достаточно, чтобы получить значение ХФ энергии с точностью семи значащих цифр для основного состояния атомов второго периода [20].

Гауссовы функции по сравнению со слэтеровскими неправильно описывают поведение АО как на больших расстояниях от ядра, так и на малых для функций *s*-симметрии (рис. 3).

Рис. 3. Зависимость от расстояния для ОСТ и ОГТ *s*-симметрии.

Конечно, взяв линейную комбинацию нескольких гауссовых функций, можно достаточно точно аппроксимировать ими экспоненциальную или хартри-фоковскую функцию. Отметим, однако, что условие излома на ядре не может быть в точности удовлетворено никакой конечной линейной комбинацией гауссовых функций.

Ясно, что если мы выберем гауссовы функции в качестве базисных, то нам придется вычислять гораздо больше интегралов с исходными гауссовыми функциями по сравнению с числом интегралов со слэтеровскими функциями, но простота вычисления интегралов с гауссовыми функциями может компенсировать этот недостаток имея в виду общее время машинного счета. Именно в этом смысле и нужно сравнивать гауссовы базисные функции со слэтеровскими базисными функциями. С одной стороны, быстрая сходимость в расчетах волновых функций и небольшая длина базисных наборов, но большие трудности в счете интегралов. С другой стороны, медленная сходимость и большие наборы базисных функций, но простота счета интегралов. В конечном итоге, все определяется эффективностью соответствующей компьютерной программы – какая из них быстрее ведет к цели.

В течение первых лет десяти после предложения Бойсом гауссовых функций в качестве базисных использование их приводило к довольно разочаровывающим результатам потому, что сравнивались они со слэтеровскими, так сказать, один к одному [21]. Затем последовали расчеты с более широкими базисами гауссовых функций [22, 23], что позволило высказать уверенность [24], что гауссовы функции в качестве базисных вполне могут приводить к результатам таким же, как и со слэтеровскими функциями. Окончательно стало понятно, что нужно сравнивать лишь общее время работы компьютера. Использование гауссовых функций стало повсеместным.

Можно отметить три подхода к использованию гауссовых функций в атомных и молекулярных расчетах.

1. Разложение исходных экспоненциальных функций решаемой задачи по гауссовым, минимизируя среднеквадратичное отклонение или используя другую подобную технику, с последующим интегрированием уже по гауссовым функциям [25 – 27].

2. Применение аналитического интегрального преобразования [13]

$$e^{-\alpha r} = \frac{\alpha}{2\sqrt{\pi}} \int_{0}^{\infty} x^{-3/2} e^{-\alpha^{2}/4x} e^{-xr^{2}} dx, \qquad (54)$$

которое превращает исходные экспоненциальные функции в гауссовы. При этом добавляется еще одно, нетривиальное, интегрирование (54) к интегрированию по гауссовым.

3. Формулировка задачи с самого начала в базисе гауссовых функций – вариационные расчеты в квантовой механике атомов и молекул с использованием гауссовых функций в качестве базисных функций разложения [12].

Только этот подход Бойса, особенно после публикации важной работы Хузинаги [28], в которой на примере атомов второго периода показано, что гауссовы функции практически пригодны для вычисления ХФ волновых функций, как нам сейчас представляется, является кардинальным и прямым подходом к построению программы для расчета произвольных молекулярных структур и только этот подход может явно показать преимущество гауссовых базисных функций по сравнению со слэтеровскими базисными функциями. Позже мы воспользуемся первым подходом как вспомогательным, и вообще не будем касаться второго подхода, который, по нашему мнению, не может привести к выйгрышу во времени счета.

В заключение этой главы, посвященной вычислению молекулярных интегралов, отметим, что сводка окончательных формул (47) для вычисления молекулярных интегралов на безузловых гауссовых функциях в несколько иной сокращенной записи содержится в нашей первой публикации результатов расчета *ab initio* бензильного радикала неограниченным методом Хартри – Фока [29, 30].

Глава 4. Расчет атомов методом разложения и выбор гауссовых базисных функций. Конфигурации 1s²2s²2pⁿ

Введение

С самого начала использования гауссовых функций в молекулярных расчетах было одно серьезное затруднение. В то время как для слэтеровских функций известны правила Слэтера, которые позволяют выписать эти функции для любого электрона любого атома, подобных правил для гауссовых функций не существует. Поскольку для описания одной АО нужно несколько гауссовых функций, причем каждой точности аппроксимации соответствует свой набор гауссовых функций со своими, неповторяющимися, значениями показателей экспонент, то проблема выбора этих нелинейных параметров является довольно сложной. Механически добавлять или выбрасывать функции из какого-либо известного набора нельзя – при этом нужно менять значения показателей экспонент и у остальных функций. С другой стороны, можно было бы совсем не заботиться о предварительном выборе базисных гауссовых функций, а рассматривать показатели экспонент как вариационные параметры и каждый раз искать минимум энергии молекулярной системы по этим параметрам. Именно так мы поступим далее. Ясно, однако, заранее, какой большой труд представляет собой минимизация энергетического функционала по многочисленным нелинейным параметрам, входящим в расчет, поэтому этот путь в общем случае не может быть практически приемлем.

Единственно верная постановка задачи должна быть следующей: так же, как из множества экспоненциальных функций правила Слэтера позволяют выбрать нужную функцию, не прибегая к вариационному поиску, так же желательно иметь правила для выбора необходимого базиса и среди множества гауссовых функций.

4.1. О выборе оптимальных параметров в разложении атомных функций по гауссовым

Аппробация всякой новой вариационной функции обычно начинается с волновой функции атома водорода. Если вычислить среднее значение энергии атома водорода с функцией (17) $N_a e^{-ar^2}$, то получим

$$E = \frac{3}{2}a - 2\sqrt{\frac{2}{\pi}}\sqrt{a} \; .$$

Минимизируя по a, найдем E = -0.424413 при a = 0.282937. Не так уж плохо, как могло показаться на первый взгляд: значение энергии составляет примерно 85%

от точного значения. Сколько же нужно взять гауссовых функций, чтобы получить правильное значение? Ответ содержится в табл. 1.

Таблица 1

Энергия атома водорода Е в зависимости
от числа гауссовых функций <i>n</i> , аппроксимирующих
его волновую функцию 1s, am. ed. [28]

п	1	2	3	4	5
Ε	-0.424413	-0.485813	-0.496979	-0.499277	-0.499809

Видим, что уже четырех или пяти гауссовых функций достаточно, чтобы вычислить энергию атома водорода с точностью до 0.1%. Посмотрим, однако, каковы же эти разложения. В табл. 2 приведено несколько разложений для n = 4,

$$\frac{1}{\sqrt{\pi}}e^{-r} = \sum_{i=1}^{4}c_i e^{-a_i r^2},$$

полученных разными авторами.

Таблица 2

Аппроксимация волновой функции атома Н четырьмя гауссовыми функциями

a_1	c_1	a_2	<i>c</i> ₂	a_3	<i>C</i> ₃	a_4	<i>C</i> ₄	Е, ат. ед.	Лит.
0.121	0.080	0.437	0.203	1.914	0.181	12.712	0.107	- 0.49928	[32]
0.123	0.076	0.455	0.187	2.026	0.162	13.710	0.095	-0.49927_{6}	[33]
0.139	0.097	0.579	0.206	2.840	0.138	17.499	0.084	- 0.49901	[34]
0.123	0.076	0.454	0.187	2.013	0.162	13.362	0.095	-0.49927_{7}	[28]

Видим, что разложения довольно разные у разных авторов. Это естественно, поскольку поиск *a_i*, минимизирующих энергию, является поиском минимума функции по многим нелинейным параметрам, что обычно ведет к неоднозначным результатам из-за многочисленных локальных минимумов [28].

Отметим, прежде всего, что значения энергии, полученные тремя авторами из четырех, совпадают, а разложения могут существенно отличаться друг от друга. Отбрасывая данные [34] как неоптимальные, можно спросить – являются ли три остальных разложения оптимальными, ведь раз разложения неоднозначны, то нет уверенности в том, что базис нельзя еще улучшить, не расширяя его. Иначе говоря, вопрос состоит в следующем: можно ли путем тщательного поиска оптимальных значений параметров *a_i*, при заданном числе *n* базисных функций, улучшить результат по энергии, приведенный, например, в [28], сколь-нибудь существенным образом, или же значение *n* жестко связано с определенным значением энергии, несмотря на неоднозначность разложений и независимо от способа их получения. Этот вопрос обсуждался нами в [35] на примере 1*s*-функции атома водорода. Рассмотрим кратко полученные там результаты.

Искомое разложение запишем в виде

$$f(r) \equiv \frac{1}{\sqrt{\pi}} e^{-r} = \sum_{i=1}^{n} c_i e^{-a_i r^2} \equiv \sum_{i=1}^{n} c_i G_i(a_i, r).$$
(1)

Разложения, приведенные в табл. 2, соответствуют вариационному поиску параметров *a_i* и *c_i*, минимизирующих выражение для энергии. С другой стороны, разложение (1) можно рассматривать с чисто математической точки зрения и выбирать a_i и c_i так, чтобы минимизировать среднеквадратичное аппроксимирующей функции отклонение ОТ аппроксимируемой. Мы комбинацию этих двух методов нахождения новых использовали ДЛЯ разложений (1). Процедура выглядит следующим образом. При заданных значениях нелинейных параметров a_i лучший набор коэффициентов c_i определяется из требования минимума среднеквадратичного отклонения

$$D = \int \left[f(r) - \sum_{i=1}^{n} c_i G_i(a_i, r) \right]^2 r^2 dr, \qquad (2)$$

т. е. определяется решением следующей системы уравнений:

$$\sum_{j=1}^{n} c_j \int G_i(a_i, r) G_j(a_j, r) r^2 dr = \int f(r) G_i(a_i, r) r^2 dr. \quad (i = 1, 2, ..., n)$$
(3)

Интегралы в (3) являются функциями только a_i , и система уравнений (3) определяет коэффициенты c_i при каждом заданном наборе a_i .

Значения параметров a_i выбирались так, чтобы минимизировать энергию атома Н. Задача нахождения нелинейных параметров не имеет стандартных методов решения. Мы воспользовались алгоритмом прямого поиска Хука – Дживса [36]. Он состоит в следующем. Выбираем начальные шаги изменения параметров a_i . Затем в пространстве параметров a_i совершаются одномерные движения. При каждом изменении a_i находим значения c_i и вычисляем величину, управляющую направлением изменений. В нашем случае это энергия атома водорода. Одномерные движения определяют направление движения в многомерном пространстве параметров a_i в сторону минимума энергии атома Н. Это движение выполняется с удвоенным шагом и продолжается до тех пор, пока управляющая процессом величина изменяется в нужную сторону. Возвратившись в полученную таким образом точку минимума энергии атома H, опять выполняем одномерные движения из этой точки, и если они не позволяют выйти из нее, то шаги уменьшаются в два раза и одномерный поиск продолжается. В результате движение либо опять продолжается в многомерном пространстве параметров *a_i*, либо поиск прекращается при заданном числе делений шага. Таким образом достигается локальный минимум величины энергии атома водорода. Наше более подробное описание алгоритма оптимизации Хука – Дживса, правда, применительно к другой, но похожей задаче можно найти в [37].

В табл. 3 приведены полученные нами значения энергии [35] в сравнении с данными Хузинаги [28], как принимаемыми нами за наиболее точные.

Таблица 3 Энергия *E* атома водорода в зависимости от размерности *n* базиса гауссовых функций, *ат. ед*.

п	E [28]	E [35]
3	-0.496979	-0.496945
4	-0.499277	-0.499275
5	-0.499809	-0.499809
6	-0.499940	-0.499945
7	-0.499976	-0.499983
8	-0.499991	-0.499993
9	-0.499997	-0.499998
10	-0.499999	-0.499999

Для значений $n \le 5$ наши результаты приближаются к значениям Хузинаги. При бо́льших значениях n мы получили несколько лучшие результаты. Очевидно, это связано с тем, что с ростом n число локальных минимумов энергии в пространстве параметров a_i растет. Для $n \le 5$ Хузинага получил оптимальные результаты, для больших значений n нами найдены более глубокие минимумы. Нужно сказать, что различия в значениях энергии имеют место в шестом знаке после запятой, так что минимальное значение энергии довольно жестко связано со значением n. Вместе с тем, полученные нами разложения (табл. 4) довольно сильно отличаются от разложений Хузинаги. Для сравнения с данными [28] значения c_i в табл. 4 приведены с учетом нормировки гауссовых функций.

Таблица 4

Значения параметров *a_i* и коэффициентов разложения *c_i* 1s-функции атома водорода по гауссовым функциям

	а водород	ta no raye		упкцил
п	6	li	6	² i
п	[28]	[35]	[28]	[35]
	0.151374	0.150915	0.64767	0.64864
3	0.681277	0.687684	0.40789	0.40619
	4.50038	4.47546	0.07048	0.07252
	0.123317	0.121773	0.50907	0.50197
Λ	0.453757	0.445333	0.47449	0.47741
+	2.01330	1.96851	0.13424	0.13831
	13.3615	12.96630	0.01906	0.01996
	0.101309	0.102866	0.37602	0.38558
	0.321144	0.327245	0.50822	0.50275
5	1.14680	1.16387	0.20572	0.20222
	5.05796	5.12904	0.04575	0.04508
	33.6444	33.8540	0.00612	0.00612
	0.082217	0.090174	0.24260	0.29877
	0.224660	0.259844	0.49221	0.49764
6	0.673320	0.805548	0.29430	0.25518
0	2.34648	2.85403	0.09280	0.07470
	10.2465	12.6052	0.01938	0.01511
	68.1600	83.1738	0.00255	0.00201
	0.060738	0.080242	0.11220	0.22967
	0.155858	0.214243	0.44842	0.47437
	0.436661	0.599639	0.38487	0.29906
7	1.370498	1.852672	0.15161	0.10724
	4.970178	6.559073	0.03939	0.02783
	22.17427	29.14722	0.00753	0.00535
	148.2732	193.3593	0.00097	0.00070
	0.052542	0.065656	0.06412	0.13322
	0.123655	0.158136	0.35846	0.40755
	0.315278	0.392763	0.42121	0.35778
8	0.886632	1.044616	0.21210	0.16875
0	2.765179	3.010490	0.06848	0.05799
	9.891184	10.09815	0.01694	0.01582
	43.93024	42.64837	0.00322	0.00332
	293.5708	284.9953	0.00041	0.00042
	0.044161	0.067943	0.03645	0.14614
Q	0.106151	0.163913	0.29898	0.41040
)	0.250988	0.403434	0.40433	0.34626
	0.618330	1.051999	0.25781	0.16378

	1.714744	2.943709	0.10769	0.05703
	5.478296	9.026677	0.03108	0.01629
	19.72537	31.41968	0.00720	0.00396
	87.39897	134.0823	0.00138	0.00078
	594.3123	862.1726	0.00017	0.00011
	0.028565	0.051167	0.00775	0.05260
	0.081241	0.108197	0.20267	0.27052
	0.190537	0.235107	0.41300	0.37382
	0.463925	0.533551	0.31252	0.26202
10	1.202518	1.306930	0.14249	0.12272
10	3.379649	3.441262	0.04899	0.04543
	10.60720	10.27671	0.01380	0.01359
	38.65163	34.85906	0.00318	0.00351
	173.5822	154.7905	0.00058	0.00066
	1170.498	1045.754	0.00007	0.00009

Таким образом, мы приходим к выводу, что понятие «оптимальный набор нелинейных параметров *a_i*» предполагает лишь оптимальность значения энергии при данном числе гауссовых базисных функций. Сами наборы коэффициентов разложения по гауссовым функциям могут существенно отличаться друг от друга.

Возвращаясь к табл. 2, мы можем добавить в ней еще одну строку, взяв из табл. 4 полученное нами разложение для n = 4. Эта строка будет отличаться от всех четырех предыдущих строк в табл. 2, но если мы впишем в столбце, где указаны значения энергии, наше значение для n = 4, то получим все то же число -0.49928. Можно утверждать следующее: для атома водорода при n = 4невозможно получить значение энергии, скажем, -0.4995, а только лишь -0.49928, и все разложения с n = 4, которые дают для энергии атома водорода значение -0.49928 являются оптимальными. Отсюда следует важный практический вывод. Если разные авторы, пользуясь разными базисами фиксированной длины, получают сравнимые результаты, то эти результаты близки к оптимальным для данной длины базиса, а все эти базисы имеют оптимальные нелинейные параметры. Этот вывод пригодится нам всякий раз, когда мы будем сравнивать свои результаты с литературными данными, желая убедиться в качестве используемого нами базиса.

4.2. Расчет атомов в базисе гауссовых функций

Метод поиска гауссовых базисных функций, описанный в предыдущем разделе, как и всякий метод, включающий минимизацию энергии по множеству

нелинейных параметров, не годится в общем случае – он слишком трудоемкий для практического использования. Оказывается, тщательные разложения атомных орбиталей по гауссовым функциям нужно иметь только для атома водорода, а такие разложения можно найти в литературных источниках [28, 32 – 35]. Позже мы покажем, как имея разложения атомных орбиталей для атома водорода по гауссовым функциям можно легко получить наборы гауссовых базисных функций для любого атома. Для демонстрации этого факта нам потребуется программа для расчета электронных оболочек атомов в базисе гауссовых функций. Такая программа для самосогласованного расчета атомных конфигураций $1s^22s^22p^n$ методом разложения по гауссовым функциям была разработана М. Д. Долгушиным опираясь на работу Рутана и Багуса [43]. Далее дается математический формализм, лежащий в основе этой программы.

Итак, заполненные орбитали φ_i разлагаются по базисным функциям χ_p :

$$\varphi_{i\lambda\alpha} = \sum_{p} C_{i\lambda p} \chi_{p\lambda\alpha} \,. \tag{4}$$

Тип симметрии орбитали обозначается индексом λ , который соответствует в атоме квантовому числу l; индекс α соответствует квантовому числу m. Индекс i нумерует заполненные орбитали одинакового типа симметрии, а индекс p используется с той же целью для базисных функций. Как видим из (4), все функции данной симметрии $\varphi_{i\lambda}$ строятся в одном и том же базисе.

Базисные функции

$$\chi_{p\lambda\alpha}(r,\theta,\varphi) = R_{\lambda p}(r)Y_{\lambda\alpha}(\theta,\varphi)$$
(5)

в качестве радиальных частей имеют нормированные на единицу гауссовы функции

$$R_{\lambda p}(r) = N_{\lambda p} r^{n_{\lambda p} - 1} e^{-a_{\lambda p} r^2}, \qquad (6)$$

причем $n_{\lambda p}$ четно, когда λ нечетно, и наоборот. Функции *s*-типа соответствуют $\lambda = 0$, функции *p*-типа соответствуют $\lambda = 1$. Нормировочный множитель равен

$$N_{\lambda p} = \sqrt{\frac{2^{n_{\lambda p}+1} (2a_{\lambda p})^{n_{\lambda p}+\frac{1}{2}}}{\sqrt{\pi} (2n_{\lambda p}-1)!!}}.$$
(7)

Разложение (4) ведет к необходимости вычисления следующих матричных элементов, определенных на радиальных функциях $R_{\lambda p}(r)$:

$$S_{\lambda pq} = \int_{0}^{\infty} du \cdot u^{2} \cdot R_{\lambda p}(u) R_{\lambda q}(u),$$

$$U_{\lambda pq} = \int_{0}^{\infty} du \cdot u \cdot R_{\lambda p}(u) R_{\lambda q}(u),$$

$$T_{\lambda pq} = \frac{1}{2} \int_{0}^{\infty} du \left[u^{2} \frac{dR_{\lambda p}(u)}{du} \frac{dR_{\lambda q}(u)}{du} + \lambda(\lambda + 1)R_{\lambda p}(u)R_{\lambda q}(u) \right],$$

$$I_{\lambda pq,\mu rs}^{\nu} = \int_{0}^{\infty} du \cdot u^{-\nu+1} \int_{0}^{u} dv \cdot v^{\nu+2} \left[R_{\lambda p}(u)R_{\lambda q}(u)R_{\mu r}(v)R_{\mu s}(v) + R_{\lambda p}(v)R_{\lambda q}(v)R_{\mu r}(u)R_{\mu s}(u) \right],$$

$$K_{\lambda pq,\mu rs}^{\nu} = \frac{1}{2} \int_{0}^{\infty} du \cdot u^{-\nu+1} \int_{0}^{u} dv \cdot v^{\nu+2} \left[R_{\lambda p}(u)R_{\mu r}(u)R_{\lambda q}(v)R_{\mu s}(v) + R_{\lambda q}(u)R_{\mu r}(u)R_{\lambda p}(v)R_{\mu r}(v) + R_{\lambda p}(u)R_{\mu r}(u)R_{\lambda p}(v)R_{\mu r}(v) \right]$$
(8)

Первые три формулы (8) определяют матричные элементы матриц интегралов перекрывания $S_{\lambda}(S_{\lambda pp} = 1)$ и одноэлектронного гамильтониана без учета взаимодействия между электронами

$$\boldsymbol{H} = \boldsymbol{T} - \boldsymbol{z}\boldsymbol{U}.\tag{9}$$

Квадратные матрицы, где собраны элементы, соответствующие определенной симметрии, обозначаются соответствующими индексами S_{λ} , U_{λ} , T_{λ} , а полное собрание всех матричных элементов обозначается без индексов, как в (9). Все эти матрицы симметричны. В памяти компьютера хранятся только элементы, например, $S_{\lambda pq}$ с $p \ge q$ в определенном порядке по индексу λ . Например, для базисного набора из трех *s*- и двух *p*-функций матричные элементы хранятся в следующем порядке:

$$011, 021, 022, 031, 032, 033, 111, 121, 122,$$
(10)

так что соответствующая матрица имеет следующую индексную структуру

Записанные в виде (10) матричные элементы могут рассматриваться как элементы супервектора. В виде же (11) они образуют обычные матрицы.

Две последние формулы (8) образуют элементы суперматриц:

$$\tilde{P}_{\lambda pq,\mu rs} = \tilde{J}^{0}_{\lambda pq,\mu rs} - \frac{1}{2} \sum_{\nu=|\lambda-\mu|}^{\lambda+\mu} A_{\lambda\mu\nu} \tilde{K}^{\nu}_{\lambda pq,\mu rs}, \qquad (12)$$

$$\tilde{Q}_{\lambda pq,\mu rs} = \sum_{\nu=0}^{2(\lambda,\mu)_{<}} J_{\lambda\mu\nu} \tilde{J}_{\lambda pq,\mu rs}^{\nu} - \frac{1}{2} \sum_{\nu=|\lambda-\mu|}^{\lambda+\mu} K_{\lambda\mu\nu} \tilde{K}_{\lambda pq,\mu rs}^{\nu} \,. \tag{13}$$

Эти элементы хранятся в следующем порядке:

$\lambda pq \mu rs$	011	021	022	031	032	033	111	121	122		
011	X										
021	X	X									
022	X	X	X								
031	X	X	X	X						(1	4)
032	X	X	X	X	X					(1	4)
033	X	X	X	X	X	X					
111	X	X	X	X	X	X	X				
121	X	X	X	X	X	X	X	X			
122	X	X	X	X	X	X	X	X	X		

В формулах (12) и (13) *A*, *J* и *K* – численные коэффициенты. Коэффициенты *A*_{λµν} определяются формулой для произведения двух полиномов Лежандра:

$$P_{\lambda}(x)P_{\mu}(x) = \sum_{\nu=|\lambda-\mu|}^{\lambda+\mu} (2\nu+1)A_{\lambda\mu\nu}P_{\nu}(x).$$
(15)

Коэффициенты $J_{\lambda\mu\nu}$ и $K_{\lambda\mu\nu}$ – свои для каждого состояния и конфигурации атома. В случае одной открытой оболочки ($\lambda = \mu$), они неоднозначны, поскольку имеют смысл только комбинации $J_{\lambda\lambda\nu} - \frac{1}{2}K_{\lambda\lambda\nu}$. Это позволяет вообще избавиться от коэффициентов *J* в этом случае. Значения коэффициентов $K_{\lambda\mu\nu}$ приведены в [31] для конфигураций *s*, p^n и sp^n . Составлены и более общирные таблицы этих коэффициентов.

В случае закрытой оболочки нужна только суперматрица \tilde{P} , а суперматрица \tilde{Q} позволяет учесть наличие открытой оболочки.

Если не считать зависимость \tilde{Q} от коэффициентов $J_{\lambda\mu\nu}$ и $K_{\lambda\mu\nu}$, то мы до сих пор нигде не использовали зависимости от чисел заполнения оболочек. Эта

зависимость включена в определение различных матриц плотности D_{λ} , которые используются в итерационном процессе самосогласования. Эти матрицы строятся из ортонормированной системы векторов

$$\boldsymbol{C}_{i\lambda}^{\dagger}\boldsymbol{S}_{\lambda}\boldsymbol{C}_{j\lambda} = \delta_{ij} \tag{16}$$

согласно формуле

$$\boldsymbol{D}_{i\lambda} = N_{i\lambda} \boldsymbol{C}_{i\lambda} \boldsymbol{C}_{i\lambda}^{\dagger}, \qquad (17)$$

где $N_{i\lambda}$ – число заполнения оболочки $i\lambda$. Путем суммирования по *i* затем определяются матрицы плотности закрытых **D**^{*c*} и открытых **D**^{*o*} оболочек, а также полная матрица плотности

$$\boldsymbol{D}^{t} = \boldsymbol{D}^{c} + \boldsymbol{D}^{o}, \qquad (18)$$

которая имеет ту же самую индексную структуру (1), что и матрицы S и H.

Теперь можно записать формулу для полной энергии, которая применима для большого класса состояний, когда существует одна открытая оболочка для данного типа симметрии:

$$E = \boldsymbol{H}^{\dagger} \boldsymbol{D}^{t} + \frac{1}{2} \boldsymbol{D}^{t\dagger} \tilde{\boldsymbol{P}} \boldsymbol{D}^{t} - \frac{1}{2} \boldsymbol{D}^{o\dagger} \tilde{\boldsymbol{Q}} \boldsymbol{D}^{o} \,.$$
(19)

Скалярные произведения в (19) определяются обычным путем между суперматрицами \tilde{P} или \tilde{Q} и между супервекторами вида (10). Конечно, предполагается полное суммирование по всем индексам. Недиагональные элементы матриц плотности должны быть умножены на двойку с тем, чтобы формула (19) давала правильный результат.

Уравнения ССП для векторов получаются применением вариационного принципа к энергии (19). Эти уравнения различны для векторов закрытой и открытой оболочек. Гамильтонианы ССП для закрытой и открытой оболочек в том случае когда не встречается закрытых и открытых оболочек одного типа симметрии имеют вид:

$$\boldsymbol{F}^{c} = \boldsymbol{H} + \boldsymbol{P} \,, \tag{20}$$

$$\boldsymbol{F}^{o} = \boldsymbol{H} + \boldsymbol{P} - \boldsymbol{Q}, \qquad (21)$$

где

$$\boldsymbol{P} = \tilde{\boldsymbol{P}} \boldsymbol{D}^t, \qquad (22)$$

$$\boldsymbol{Q} = \tilde{\boldsymbol{Q}} \boldsymbol{D}^{\boldsymbol{o}} \,. \tag{23}$$

В расчетах атомов с конфигурацией $1s^2 2s^2 2p^n$ матрицы F^c и F^o имеют следующий вид (24)

где индексы 0 и 1 соответствуют *s*- и *p*-симметрии.

Соответствующие уравнения ССП

$$F^{c}C = \varepsilon SC, \qquad (25)$$

$$F^{o}C = \varepsilon SC \tag{26}$$

для закрытых и открытых оболочек являются задачами на псевдособственные значения и определяют вектора $\vec{c}_{i\lambda}$.

Для решения уравнений (25) и (26) был использован итерационный метод [31]. В этом методе каждый собственный вектор \vec{c} и соответствующее ему собственное значение ε находятся последовательно исходя из приближенного исходного вектора \vec{c}_0 , который так или иначе необходимо задавать чтобы посчитать матрицу гамильтониана в первый раз. Этот метод весьма эффективный, и трех – четырех итераций обычно достаточно доя сходимости. Метод совершенно общий и может быть применен всегда, когда нет необходимости искать все собственные векторы матрицы гамильтониана, а нужны только некоторые из них.

Запишем задачу на псевдособственные значения в виде

$$F\vec{c} = \varepsilon \, S\vec{c} \,, \tag{27}$$

где *F* и *S* – данные симметричные матрицы, а \vec{c} и ε нужно определить. Пусть \vec{c}_0 представляет приближенный собственный вектор, а $\delta \vec{c}$ есть поправка, которая делает из него действительный собственный вектор

$$\vec{c} = \vec{c}_0 + \delta \vec{c} \ . \tag{28}$$

Без потери общности можно считать, что вектор \vec{c}_0 нормирован и ортогонален к $\delta \vec{c}$, а именно:

$$\vec{c}_0^{\dagger} S \vec{c}_0 = 1, \qquad (29)$$

$$\vec{c}_0^{\dagger} S \delta \vec{c} = 0. \tag{30}$$

Определим приближенное собственное значение

$$\varepsilon_0 = \vec{c}_0^{\dagger} F \vec{c}_0, \qquad (31)$$

и пусть точное собственное значение ε отличается от приближенного ε_0 на $\delta\varepsilon$:

$$\varepsilon = \varepsilon_0 + \delta \varepsilon \,. \tag{32}$$

Подставляя \vec{c} (28) и ε (32) в (27), умножая далее получившееся уравнение слева на \vec{c}_0^{\dagger} и используя (29) – (31), получаем

$$\delta \varepsilon = \vec{c}_0^{\dagger} F \, \delta \vec{c} = \vec{c}_0^{\dagger} (F - \varepsilon_0 S) \, \delta \vec{c} \,. \tag{33}$$

Введем обозначения

$$\vec{p}_0 = S\vec{c}_0, \tag{34}$$

$$\vec{q}_0 = (F - \varepsilon_0 S)\vec{c}_0 \tag{35}$$

и вновь подставим \vec{c} и ε в (27), заменив значение $\delta \varepsilon$ согласно (33). При этом получим

$$(\boldsymbol{F} - \varepsilon_0 \boldsymbol{S})\delta \boldsymbol{\vec{c}} = -\boldsymbol{\vec{q}}_0 + (\boldsymbol{\vec{q}}_0^{\dagger} \delta \boldsymbol{\vec{c}}) \boldsymbol{\vec{p}}_0 + O_2(\delta \boldsymbol{\vec{c}}), \qquad (36)$$

где последний член – второго порядка по $\delta \vec{c}$. Опуская последний член в (36) и добавляя $(\vec{p}_0^{\dagger}\delta \vec{c})\vec{q}_0$ – член, тождественно равный нулю в силу (30), получаем уравнение для $\delta \vec{c}$, верное в первом порядке, а именно:

$$\boldsymbol{G}_0 \delta \boldsymbol{\vec{c}} = -\boldsymbol{\vec{q}}_0, \qquad (37)$$

где симметричная матрица

$$\boldsymbol{G}_{0} = \boldsymbol{F} - \boldsymbol{\varepsilon}_{0} \boldsymbol{S} - \boldsymbol{\vec{p}}_{0} \boldsymbol{\vec{q}}_{0}^{\dagger} - \boldsymbol{\vec{q}}_{0} \boldsymbol{\vec{p}}_{0}^{\dagger}.$$
(38)

Уравнение (37) подлежит дальнейшему анализу. Матрица *G*₀ – особенная, поскольку, как легко установить,

$$\boldsymbol{G}_{0}\boldsymbol{\vec{c}}_{0}=\boldsymbol{0}.$$

Предполагается, что G_0 не имеет других собственных векторов, соответствующих нулевому собственному значению. При этом уравнение (37)

имеет решения для $\delta \vec{c}$ тогда и только тогда, когда правая часть ортогональна к решению соответствующего однородного уравнения

$$\vec{\boldsymbol{q}}_0^{\dagger} \vec{\boldsymbol{c}}_0 = 0, \qquad (40)$$

что справедливо в нашем случае, поскольку (40) эквивалентно (31), причем решение для $\delta \vec{c}$ определяется с точностью до произвольного аддитивного вклада $\lambda \vec{c}_0$. Среди множества этих решений выбирается то, которое удовлетворяет условию (30). Практически сначала находим частное решение (37), а затем делаем его ортогональным к \vec{c}_0 , используя указанное свойство.

Уравнение (37) решается методом исключения Гаусса, причем существенно используется симметричность матрицы G_0 . Фактически, от матрицы G (в дальнейшем будем опускать индекс 0), так же как от матрицы F хранится в памяти компьютера, так что формально триангуляция матрицы G может быть описана заменой каждого элемента G элементом действительно треугольной матрицы T. Элементы T последовательно вычисляются по следующей формуле:

$$T_{pq} = G_{pq} - \sum_{r=0}^{n-p-1} T_{n-r,p} T_{n-r,q} / T_{n-r,n-r} , \qquad (41)$$

которая применяется для $q \le p$, $1 \le p \le n$, если только считать сумму в (41) равной нулю для последнего ряда (p = n, n - порядок матрицы). Мы таким образом превращаем (37) в

$$T\delta\vec{c} = -\vec{t} , \qquad (42)$$

причем формула, подобная (41), превращает \vec{q} в \vec{t} , так что нет нужды рассматривать этот процесс отдельно – он может быть сделан как часть триангуляции.

Если бы *T* была неособенной матрицей, мы бы непосредственно решали (42). Первое уравнение давало бы δc_1 , второе – δc_2 и т. д. Но мы знаем, что задача имеет бесконечно много решений. Если мы ищем собственный вектор, у которого $c_1 \neq 0$, то ясно, что мы можем позволить произвольное значение для δc_1 . Это может быть только если $T_{11} = t_1 = 0$. Фиксируем этот произвол, положив $\delta c_1 = 0$. Тогда можно посчитать δc_2 из второго уравнения, δc_3 из третьего и т. д. Ясно, что в таким случае нам вообще не нужен первый столбец матрицы *T*. Поэтому удобно заменить с самого начала столбец матрицы *G* вектором \vec{q} .

После триангуляции мы будем иметь нужную часть T и вектор \vec{t} в качестве первого столбца этой матрицы.

Определив таким образом поправку $\delta \vec{c}'$, которая удовлетворяет (42) и для которой $\delta \vec{c}'_1 = 0$, мы получим затем искомый поправочный вектор $\delta \vec{c}$, ортогональный к \vec{c}_0 , из уравнения

$$\delta \vec{c} = \delta \vec{c}' - (\vec{c}_0^{\dagger} S \delta \vec{c}') \vec{c}_0.$$
(43)

В итоге мы получили лучшую аппроксимацию к собственному вектору. Процесс этот приближенный, ибо мы отбросили член второго порядка малости в (36). Так что, вообще, получим новый вектор $\vec{c} = \vec{c}_0 + \delta \vec{c}$, мы ренормируем этот вектор и используем его как новый пробный вектор в этой итерационной процедуре. Уже отмечалось, что для сходимости требуется очень мало подобных итераций. Подчеркнем, что описанного процесса триангуляции важно, чтобы искомый собственный вектор имел ненулевую первую компоненту. Это ограничение практически не создает никаких дополнительных трудностей.

Полученные таким образом собственные векторы включаются в обычный итерационный процесс самосогласования, т. e. собственные векторы, полученные из решения уравнений (25) и (26), сравниваются с теми, которые использовались перед этим для построения фокианов (20) и (21). Процесс самосогласования в наших расчетах заканчивался тогда, когда компоненты каждого из вновь полученных векторов не отличались от компонентов соответствующего предыдущего вектора более, чем на 10⁻⁴. Опыт расчетов показал, что число итерационных циклов, ведущих от произвольных начальных векторов к самосогласованным, колеблется в пределах 7 – 10 циклов. Особенностью нашей атомной программы является то, что для всех интегралов были получены и запрограммированы конкретные формулы, в которые входят константы и показатели экспонент базисных функций. Такие формулы были получены не только для элементов матриц S и H, но и для элементов суперматриц \tilde{P} и \tilde{Q} . Суперматрицы на хранятся в памяти компьютера, а каждая их строка сворачивается с соответствующей матрицей плотности, так что фактически сразу по поределенным формулам строятся матрицы *P* и *Q*. Запрограммированы были также конкретные варианты построения матрицы Q, необходимой для данного состояния и конфигурации системы. Подобная специализация программы привела к ее большой эффективности в смысле скорости счета.

Описанную выше программу для расчета атомов с конфигурацией $1s^2 2s^2 2p^n$ в базисе гауссовых функций на языке АЛГОЛ можно найти в [39]. Программа может быть легко расширена для расчета более сложных атомов. Особенно просто это сделать, если открытая оболочка по симметрии не совпадает с закрытыми оболочками. В общем же случае потребуются еще дополнительные вычисления при построении матриц фокианов.

4.3. Систематический способ получения гауссовых базисных функций для атомных и молекулярных расчетов

Атомная программа, описанная в предыдущем разделе, использовалась для расчета основного состояния атомов В, С, N, O, F на примере которых изучалось как конкретно должны выбираться гауссовы базисные функции [38]. Корректность работы программы была проверена расчетом атома С в базисе 10s6p, взятом из работы Хузинаги [28]. Также проводился расчет для проверки возможности работы с округленными значениями показателей экспонент базисных функций: значения показателей экспонент, приведенные в [28] с 6-ю значащими цифрами, округлялись до 3 – 4 значащих цифр. Результаты этого и контрольного расчета приведены в табл. 5.

Таблица 5

Пока	затели з	экспо	нент	Собственные векторы						
Базис	: I [28]	Баз	ис II]	ls		2s	2p		
(s)	(p)	(s)	(p)	Базис І	Базис II	Базис І	Базис II	Базис І	Базис II	
9.40900	0.24805	9.41	0.248	0.42695	0.42695	-0.12134	-0.12134	0.43276	0.43315	
84.5419	0.65771	84.5	0.658	0.07736	0.07736	-0.01701	-0.01701	0.35869	0.35859	
307.539	1.78730	308	1.79	0.01934	0.01934	-0.00418	-0.00418	0.18262	0.18255	
1397.56	5.77636	1400	5.78	0.00358	0.00358	-0.00076	-0.00076	0.05479	0.05481	
3.50002	25.3655	3.5	25.4	0.35790	0.35790	-0.17554	-0.17554	0.00875	0.00875	
1.06803	0.091064	1.07	0.0911	0.04877	0.04876	0.08502	0.08506	0.20351	0.20328	
0.40017		0.4		-0.00756	-0.00756	0.60695	0.60739			
26.9117		26.9		0.22679	0.22678	-0.05399	-0.05399			
9470.52		9470		0.00045	0.00045	-0.00010	-0.00010			
0.13512		0.135		0.00213	0.00213	0.43804	0.43759			
Орбитальные энергии, ат. ед. –11.3252 –11.3252 –0.70554 –0.70560 –0.43304 –0.432							-0.43291			
Полная энергия, <i>ат. ед.</i> : -37.687324 [28]; -37.687324 (Базис I); -37.687323 (Базис II)										

Контрольный расчет основного состояния атома С (базис I) и влияние округления значений показателей экспонент базисных функций (базис II)

Из табл. 5 видно, что округление показателей экспонент базисных функций не вносит существенных изменений в результаты, повышая значение полной энергии всего лишь на единицу шестого знака после запятой.

Поскольку критерием оптимальности базисного набора является значение энергии (§ 4.1), можно утверждать, что нет необходимости использовать более 3 – 4 значащих цифр в показателе экспонент гауссовых функций. Это упрощает пользование базисами гауссовых функций, хотя бы в чисто техническом отношении.

Перейдем теперь к вопросу о выборе базисных функций. Для краткости в дальнейшем под базисом будем подразумевать сам набор значений показателей экспонент и вместо термина «показатель экспоненты» будем говорить просто об экспонентах. В работе Хузинаги [28] приведены оптимальные базисы гауссовых функций размерности 9s5p и 10s6p для атомов от водорода до неона. Предложенный Хузинагой базис 10s6p достаточно гибок, чтобы получать хартри-фоковские решения для атомов, и широко используется в расчетах электронной структуры небольших молекул. Однако, часто мы хотим иметь качественные. чем количественные результаты, а скорее еше чаше интересующие нас молекулы слишком велики, так что, практически, точный расчет недоступен. В таких случаях желательно иметь более короткий атомный базис. Базис 7s3p для атомов второго периода представляет интерес для практического использования, поскольку он характеризуется оптимальной размерностью в смысле компромисса между точностью результатов И возможностью неэмпирического расчета достаточно больших молекул с разумными затратами времени счета [31, 40, 41]. Получить хороший базис 7s3p, механически выбрасывая некоторые экспоненты из более гибкого базиса, нельзя – результат будет неутешителен. Это утверждение подтверждается данными табл. 6.

Таблица 6

Неоптимальные расчеты энергии атомов (*am. ed.*) в базисе 7s3p

Атом	Терм	Базис 7s3p*	Базис 7s3p [31, 40]
С	³ P	-36.922099	-37.6192
Ν	^{4}S	-53.312558	-54.2846
0	³ P	-73.308438	-74.6326
F	^{2}P	-97.447428	-99.1486

* Базис получен из базиса 10s Хузинаги [28] выбрасыванием экспонент с номерами 6, 8, 9 в том порядке как они приведены в его статье и из его базиса 5р выбрасыванием экспоненты с номером 4 и заменой 2-ой и 3-ей экспонент одной экспонентой.

Для получения базисов различной длины и точности желательно иметь определенные правила, позволяющие формировать базисные наборы для любого атома без предварительного использования компьютерной программы.

На возможность существования таких правил обратил внимание Ривс [33], но ни он сам, ни кто-либо другой не изучали эту возможность систематически. Лишь в [31] такая попытка была сделана, однако основная идея была искусственно усложнена, и как мы увидим ниже результаты этих авторов не оказались оптимальными.

Воспользовавшись этой идеей Ривса [33], покажем, как можно систематическим путем получать базисные наборы гауссовых функций для любого атома, исходя из разложений по гауссовым функциям собственных функций атома водорода [38].

При переходе от атома водорода к атому гелия в волновой функции основного состояния атома происходит изменение «эффективного заряда»:

$$e^{-r}(H) \Rightarrow e^{-1.6875r}(He).$$
 (44)

Это изменение можно представить как масштабное преобразование

$$r \Longrightarrow 1.6875r. \tag{45}$$

Сравним, как изменяются соответствующие гауссовы функции. Оптимальное значение показателя экспоненты единственной гауссовой функции, описывающей основное состояние атома H, равно 0.28294 (§ 4.1), атома He – 0.76700 [33]. Переход

$$e^{-0.28294r^2}(\mathrm{H}) \Rightarrow e^{-0.76700r^2}(\mathrm{He})$$

соответствует преобразованию

$$\sqrt{0.28294} r \Longrightarrow \sqrt{0.76700} r$$

или

$$r \Longrightarrow 1.6462r,\tag{46}$$

что незначительно отличается от преобразования (45). Использование этого факта и составляет суть предлагаемого подхода.

Правила Слэтера дают эффективное значение показателя экспоненты слэтеровской функции для данного атома по сравнению с атомом водорода. Например, чтобы получить волновые функции атома углерода нужно выполнить следующие замены в волновых функциях атома водорода:

$$\psi_{1s}(\mathbf{H}) \sim e^{-r} \Longrightarrow \psi_{1s}(\mathbf{C}) \sim e^{-5.7r},$$

$$\psi_{2s,2p}(\mathbf{H}) \sim e^{-\frac{1}{2}r} \Longrightarrow \psi_{2s,2p}(\mathbf{C}) \sim e^{-\frac{3.25}{2}r}.$$

Предположим теперь, что для атома водорода разложения собственных функций по гауссовым известны. Ясно, что для перехода от набора гауссовых

функций, аппроксимирующего функцию 1s, 2s или 2p атома водорода, к набору, аппроксимирующему соответствующую функцию атома углерода, нужно в соответствующей аппроксимации произвести замену

 $r \Rightarrow 5.7 r$, (для функции 1s) $r \Rightarrow 3.25 r$. (для функций 2s и 2p)

Таким образом, коэффициентами, переводящими набор показателей экспонент гауссовых функций, аппроксимирующих собственную функцию набор H. В показателей экспонент гауссовых функций. атома аппроксимирующих аналогичную собственную функцию атома C, будут 5.7² = 32.49 для функции 1s и $3.25^2 = 10.5625$ для функций 2s и 2p. В работе [38] таким образом был получен базис 7s3p гауссовых функций для атомов B, C, N, О, F. Было взято четырехчленное разложение по гауссовым функциям для функции 1s и трехчленные разложения для функций 2s и 2p атома H [28] и перемножением чисел на соответствующие коэффициенты получены предварительные наборы экспонент. Базис 7*s* должен быть общим как для функции 1s, так и для функции 2s. Серия предварительных поисковых расчетов с одним из наборов атома С привела к следующим выводам. Четыре экспоненты, полученные из четырехчленного разложения функции 1s атома Н должны быть объединены с двумя меньшими экспонентами, полученными из трехчленного разложения функции 2s атома H, причем следует добавить седьмую, максимальную по величине экспоненту, примерно в три раза превосходящую ближайшую к ней. Для ясности, процесс получения показателей экспонент иллюстрируется в табл. 7.

Дальнейшие расчеты с набором гауссовых функций для атома С показали, что полученный набор 7*s* следует несколько «сжать» к центру, т. е. меньшие значения экспонент увеличить, а бо́льшие – уменьшить примерно в 1.1 раза, и наоборот – экспоненты базиса 3*p* должны быть «раздвинуты», т. е. меньшая – уменьшена, а бо́льшая – увеличена примерно в 1.3 раза. Все значения были округлены до 2 – 3 значащих цифр. Окончательные значения полученных таким образом показателей экспонент приведены в табл. 8.

Подчеркнем, что правила получения этих значений показателей экспонент установлены для одного атома и затем в готовом виде перенесены на все остальные. Таким образом, значения экспонент для последовательности атомов систематически получаются из значений экспонент для атома водорода. Качество построенного таким образом базиса демонстрируется данными таблиц 9 и 10. В табл. 9 приведены орбитальные энергии и собственные векторы, полученные при расчете в базисе гауссовых функций 7*s*3*p* (табл. 8).

В табл. 10 приведены вычисленные значения полной энергии вместе с литературными данными. В третьем столбце этой таблицы приведены уже упоминавшиеся данные [40] по расчетам в базисе 7s3p из работы [31]. Хотя мы не занимались оптимизацией базиса, полученные нами значения, которые даны в четвертом столбце таблицы, лежат по энергии ниже. В следующем пятом столбце приведены лучшие из известных результатов по расчетам в базисе 7s3p [41].

Таблица 7

Трехчленная					
аппроксимация	В	С	Ν	0	F
функции 2 <i>s</i> атома Н					
0.01466	0.099	0.155	0.223	0.304	0.396
0.03763	0.254	0.398	0.572	0.779	1.018
0.98413	6.65**	10.40**	14.97**	20.37**	26.61**
Четырехчленная					
аппроксимация					
функции 1s атома Н					
0.12332	2.724	4.007	5.536	7.312	9.334
0.45376	10.02	14.74	20.37	26.90	34.3
2.0133	44.5	65.4	90.4	119	152
13.3615	295	434	600	792	1011
	800***	1200***	1700***	2200***	2800***
Трехчленная					
аппроксимация					
функции 2 <i>р</i> атома Н					
0.02468	0.167	0.261	0.375	0.511	0.667
0.07983	0.540	0.843	1.21	1.65	2.16
0.33707	2.28	3.56	5.13	6.98	9.11

Получение наборов показателей экспонент гауссовых базисных функций для атомов второго периода*

* Значения показателей экспонент в левом столбце взяты из [28].

Первые три и последние три числа каждого следующего столбца таблицы получаются умножением соответствующих чисел левого столбца на квадрат слэтеровского показателя экспоненты для функций 2s и 2p данного атома. Средние четыре числа каждого столбца получаются умножением на квадрат слэтеровского показателя экспоненты для функции 1s данного атома.

** Эти показатели экспонент выбрасываются из набора 7s.

*** Эти показатели экспонент включаются в набор 7s.

Базис 7s3p в этой работе был получен, как и базис Хузинаги [28] путем тщательной оптимизации значений экспонент. По утверждению авторов работы [41], понизить полученные ими значения энергии в базисе 7s3p более, чем на 0.01 ат. ед., невозможно. Сравнение этих значений с результатами, полученными В базисе Долгушина показывает, насколько оптимален последний. Как видим, предложенный выше алгоритм построения гауссова базиса приводит к получению близких к оптимальным базисных наборов, которые по желанию либо могут использоваться непосредственно, либо могут стать хорошей отправной точкой для тщательной оптимизации значений экспонент, минимизирующих полную энергию.

Таблица 8

Базис	В	С	Ν	0	F
	0.10	0.16	0.23	0.31	0.41
	0.29	0.45	0.65	0.88	1.15
	2.9	4.3	5.9	7.8	9.9
7 <i>s</i>	10	14.8	20.4	27	34.2
	40	60	80	110	140
	270	400	550	720	900
	800	1200	1700	2200	2800
3р	0.13	0.20	0.28	0.39	0.51
	0.54	0.85	1.2	1.7	2.2
	3.0	4.6	6.7	9.0	11.8

Показатели экспонент базиса гауссовых функций 7*s*3*p* для атомов второго периода

В этой же таблице 10 в последнем столбце для сравнения приведены хартри-фоковские значения энергии [28]. Ошибка в полной энергии атомов, рассчитанных в базисе 7s3p составляет примерно 0.2% от ХФ значения энергии.

Если брать разное число гауссовых функций, описывающих собственные функции атома водорода, то можно установить соответствующие правила для получения базисов различной размерности для расчета атомов и молекул с заранее заданной точностью. Таким образом, использование аналога правил Слэтера в расчетах атомов методом разложения может стать вполне стандартной процедурой. Такая процедура имеет большие преимущества по сравнению с трудоемкими методами прямого поиска оптимальных значений экспонент гауссовых базисных функций.

Глава 5. Расчет электронной структуры молекул в ограниченных базисах безузловых гауссовых функций

5.1. Аппроксимация функций, обладающих выделенными осями симметрии, посредством сферических гауссовых функций

В предыдущей главе обсуждался расчет атомов в базисе сферически симметричных гауссовых функций вида

$$G_{A} = \left(\frac{2a}{\pi}\right)^{3/4} e^{-ar_{A}^{2}},$$
 (1)

определенных в любой точке пространства А.

Таблица 9

Орбитальные энергии и коэффициенты разложения
для атомов второго периода, вычисленные
в базисе гауссовых функций 7 <i>s</i> 3p (табл. 8)*

$B(^{2}P)$	$C(^{3}P)$	$N(^{4}S)$	$O(^{3}P)$	$F(^{2}P)$				
1s								
-7.67771	-11.30770	-15.61642	-20.62778	-26.31757				
-0.02150	-0.02254	-0.02045	-0.02064	-0.02032				
0.05274	0.05574	0.05321	0.05459	0.05449				
0.52861	0.52703	0.52710	0.52259	0.51797				
0.41589	0.41929	0.41650	0.42566	0.42987				
0.15401	0.15030	0.15278	0.14751	0.14743				
0.02044	0.01964	0.02041	0.01930	0.01934				
0.00243	0.00244	0.00221	0.00251	0.00263				
2s								
-0.49123	-0.69989	-0.93807	-1.21696	-1.52192				
0.50974	0.51450	0.52019	0.51674	0.52358				
0.58487	0.57950	0.57673	0.58164	0.57488				
-0.19577	-0.19785	-0.20040	-0.20052	-0.19991				
-0.10478	-0.11066	-0.11577	-0.12237	-0.12714				
-0.03210	-0.03271	-0.03426	-0.03379	-0.03433				
-0.00417	-0.00425	-0.00458	-0.00446	-0.00457				
-0.00049	-0.00050	-0.00046	-0.00053	-0.00057				
2 <i>p</i>								
-0.30304	-0.41950	-0.54638	-0.58855	-0.65620				
0.64103	0.61758	0.59450	0.61462	0.61002				
0.45437	0.47676	0.49960	0.47862	0.48054				
0.09423	0.10552	0.11217	0.11513	0.11872				

^{*} Первое число каждого столбца – орбитальная энергия (*am. ed.*), следующие числа – коэффициенты разложения, соответствующие гауссовому базису (табл. 8).

Поскольку, вообще говоря, единственное достоинство гауссовых функций (1) заключается в простоте счета с ними молекулярных интегралов, то логично использовать это свойство с максимальной полнотой. В сводке формул для молекулярных интегралов (47/§3.1) с функциями (1) используется единственная неявно выраженная функция $F_0(z)$ (31/§3.2) из семейства функций $F_m(z)$, связанного с функцией ошибок (m = 0) и ее производными (m > 0). Формулы для интегралов с декартовыми гауссовыми функциями общего вида (15/§3.1) намного более сложные. Достаточно сказать, например, что общая формула для двухэлектронного интеграла с декартовыми гауссовыми функциями p-типа есть сумма шестнадцати слагаемых, содержащих вспомогательные функции F_m вплоть до F_4 включительно [14].

Таблица 10

Полная энергия (ат. ед.) атомов второго периода,
рассчитанная в различных гауссовых базисах 7 <i>s</i> 3 <i>p</i>
вместе с хартри-фоковскими значениями

Атом	Терм	[31]	[38]*	[41]	[28]**
В	^{2}P		-24.4906	-24.514	-24.5291
C	³ P	-37.6192	-37.6235	-37.656	-37.6886
N	⁴ S	-54.2846	-542866	-54.339	-54.4009
0	³ P	-74.6326	-74.6425	-74.700	-74.8094
F	$^{2}\mathbf{P}$	-99.1486	-99.1526	-99.234	-99.4093

* Базис Долгушина (табл. 8).

** Хартри-фоковское значение.

Благоприятная возможность использовать в качестве базисных функций только функции (1), которые для этого должны быть специально расположены в пространстве и таким образом вычислять все встречающиеся интегралы (47/§3.1), только с помощью простых формул обусловлена тем обстоятельством, что количество центров расположения гауссовых функций (1) в пространстве не увеличивает объем вычисления с ними. Именно поэтому возникла идея о том, чтобы пользоваться только сферически симметричными функциями (1), а атомные функции, обладающие выделенной осью симметрии, строить из линейных комбинаций функций (1), расположенных вдоль этой оси симметрии. Эта идея была впервые высказана Прёйсом [42], а затем была подробно разработана Уиттеном [34, Ha рис. 4 представлена 44]. аппроксимация *p*₂-функции двумя гауссовыми функциями (1). Для того, чтобы определить *p*-функцию подобным образом, нужно знать показатель экспоненты функции (1), участвующей в образовании *p*-функции, и расстояние δ , на которое должны быть разнесены две одинаковые гауссовы функции.

Рис. 4. Аппроксимация функции p_z двумя одинаковыми функциями (1): $N(G_A - G_{-A}) = G_{(p)}$.

Для ответа на эти вопросы важным является следующее наблюдение [44]: при $\delta \to 0$ (рис. 4) комбинация $G_A - G_{-A}$ переходит в истинную *p*-функцию с тем же показателем экспоненты. Следующая цепочка равенств убеждает нас в этом:

$$G_{(p)} = N(G_A - G_{-A}) = N\left(e^{-a(r-\delta)^2} - e^{-a(r+\delta)^2}\right),$$
(2)

$$N(G_{A} - G_{-A})|_{\delta \to 0} = \frac{1}{2\delta\sqrt{a}} \left(\frac{2a}{\pi}\right)^{3/4} 4a\delta r e^{-ar^{2}} =$$
(3)

$$= \left(\frac{2a}{\pi}\right)^{3/4} 2\sqrt{a} r e^{-ar^2} \equiv G_{(p)}^{true}.$$
(4)

Итак, чтобы получить хорошую аппроксимацию *р*-функции, в выражении (2) нужно брать достаточно малое значение δ и тот же показатель экспоненты, что и у истинной *p*-функции. Очевидно, что подобное утверждение остается в силе и при аппроксимации функций d- и f-симметрии, поскольку в соответствии с излагаемым подходом эти функции могут рассматриваться как построенные из линейных комбинаций *р*-функций. Таким образом, можно аппроксимации атомных функций, утверждать, что при обладающих выделенными осями симметрии, посредством сферически симметричных гауссовых функций (1) новой проблемы выбора показателей экспонент не возникает, но появляется проблема выбора сдвигов δ . Фактически параметром малости в (3) является не δ , а $\delta\sqrt{a} \equiv \gamma$, так что, строго говоря, мы должны говорить о малом параметре γ . При этом формула для вычисления сдвигов δ принимает вид

$$\delta = \gamma / \sqrt{a}. \quad (am. ed.) \tag{5}$$

Вопросы конкретного выбора константы γ в (5) обсуждаются ниже в § 5.2.

Результаты работ [44 – 47] подтверждают практическую эквивалентность функций (2) и (4) – при достаточно малых δ как радиальное [44 – 46], так и угловое [47] поведение функции (2) близко к поведению истинной *p*-функции, хотя, конечно, полностью эти функции совпадать не могут. Использование аппроксимации (2) должно приводить к зависимости результатов расчета от вращения координатных осей. Как будет показано далее, эта зависимость практически неощутима, если сдвиги δ выбраны правильно.

5.2. О программе ФУГА, о точности вычисления интегралов, выборе значений сдвигов и об инвариантности расчетов при поворотах осей координат

Молекулярная программа ФУГА М. Д. Долгушина [48] предназначена для расчета молекул с замкнутой оболочкой в синглетных состояниях. Текст этой программы на языке АЛГОЛ можно найти в [49].

В программе с самого начала предусмотрено, что базисной функцией может быть не только функция (1) сама по себе, но и любая фиксированная комбинация этих функций. Такую линейную комбинацию гауссовых функций (1) будем называть группой. Конечно, группа может содержать всего один элемент – одну гауссову функцию. Размерность базиса определяется числом групп гауссовых функций. Обычно группы вводятся для сокращения размерности базиса, и линейные коэффициенты, с которыми функции (1) объединяются в группу, берутся из соответствующих атомных расчетов. В программе ФУГА введение групп необходимо еще по соображениям симметрии – ясно, что линейная комбинация (2) должна всегда рассматриваться как группа, которую нельзя декомпозировать.

Вернемся к вопросу о выборе сдвигов δ . Численное значение сдвига должно выбираться по формуле (5), причем, в принципе, чем меньше γ , тем лучше аппроксимация (2). Однако, здесь необходимо обсудить одну тонкость [50], которая легко может остаться незамеченной и, таким образом, привести к ошибкам, а именно: минимальное значение γ связано с точностью вычисления функции $F_0(z)$ (31/§3.2). Для вычисления этой функции обычно используют полиномиальные разложения [4, 51], которые, естественно, характеризуются определенной точностью. Например, разложение, приведенное в [4], имеет точность $4 \cdot 10^{-6}$ во всей области изменения аргумента. Гораздо более точная формула приведена в работе [51]. Она дает максимальную ошибку $2.5 \cdot 10^{-9}$. Если для вычисления F_0 пользоваться полиномиальным разложением из [4], то при выборе $\gamma < 0.1$ возникают проблемы, связанные с недостаточной точностью счета интегралов вида

$$J = \int G_{(p)}^2(1) r_{12}^{-1} G_{(p)}^2(2) dv_1 dv_2,$$
(6)

результат вычисления которых можно представить в виде

$$N \Big[1 + 2e^{-4a\delta^2} + F_0(4a\delta^2) - 4e^{-2a\delta^2}F_0(a\delta^2) \Big].$$
(7)

Когда $a\delta^2$ мало, N – большое положительное число и, разлагая экспоненту и функцию F_0 в ряд до первого порядка по $a\delta^2$, в квадратных скобках (7) получим минус бесконечно малую величину второго порядка по $a\delta^2$. Положительный результат для существенно положительного интеграла (6) получается только при разложении до второго порядка по $a\delta^2$ включительно. Отсюда ясно, что при малых значениях $a\delta^2$ интеграл (6) нужно вычислять очень точно. В свою очередь, при данной точности вычисления функции F_0 , нужно брать относительно большие значения $a\delta^2$ для того, чтобы быть уверенным в необходимой точности счета интегралов. Предварительные расчеты интеграла (6) позволили установить те минимальные значения $a\delta^2 = \gamma^2$, при которых вычисление интеграла (6) дает наверняка устойчивый результат. Результаты этих предварительных вычислений показаны на рис. 5.

Рис. 5. Вычисление интеграла *J* (6) для разных значений $\gamma = \delta \sqrt{a}$ и разных значений *a*. Для наглядности точки, соответствующие определенному значению интеграла, соединены линиями. Линии I, II, III соответствуют вычислениям с функцией *F*₀, точной до ~10⁻⁶, а линия IV – с функцией *F*₀, точной до ~10⁻⁹.
Из рис. 5 видно, что при вычислениях F_0 с точностью ~10⁻⁶ значение интеграла неустойчиво (начинает уменьшаться) при $\gamma < 0.1$; например, при $\gamma = 0.02$ значение интеграла при a = 1 оказывается отрицательным). Безопасным значением интеграла при вычислении F_0 с точностью ~10⁻⁶ оказывается значение $\gamma = 0.13$. При вычислениях F_0 с точностью ~10⁻⁹ значение интеграла неустойчиво только при $\gamma < 0.01$; например, при $\gamma = 0.001$ интеграл занулился. Безопасным значением интеграла при вычислении F_0 с точностью ~10⁻⁹ оказывается значением интеграла при вычисления леи оказывается отрицательным с точностью ~10⁻⁹ значение интеграла неустойчиво только при $\gamma < 0.01$; например, при $\gamma = 0.001$ интеграл занулился. Безопасным значением интеграла при вычислении F_0 с точностью ~10⁻⁹ оказывается значение $\gamma = 0.03$.

Итак, если F_0 вычисляется с точностью ~10⁻⁶, то формула для выбора δ должна быть

$$\delta = \frac{0.13}{\sqrt{a}},\tag{8}$$

а если F_0 вычисляется с точностью ~10⁻⁹, то для δ можно взять значение

$$\delta = \frac{0.03}{\sqrt{a}},\tag{9}$$

где в числителях этих формул значатся лишь нижние границы, и ничто не мешает использовать, например, формулу (8) при более точном вычислении F_0 .

Значительный произвол в выборе константы γ в формуле для δ (5) можно понять и объяснить следующим образом [50]. Зададимся вопросом: до какого максимального значения δ соответствие в деталях между (2) и (4) сохраняется и не зависит от δ ? Например, максимум функции (2) имеет место при $r_{\text{max}} = 1/\sqrt{2a}$. Вычисление положения максимума функции (4) ведет к уравнению для r_{max} , а именно:

$$th(2ar_{\max}\delta) = \frac{\delta}{r_{\max}}.$$
 (10)

Во-первых, при достаточно малых δ имеем $2ar_{\max}\delta \approx \delta/r_{\max}$ или $r_{\max} \approx 1/\sqrt{2a}$, т. е. при достаточно малых δ положение максимума функции (4) совпадает с положением максимума функции (2).

Во-вторых, подставив $r_{\text{max}} \approx 1/\sqrt{2a}$ в (10), получим уравнение для δ , а именно:

$$\operatorname{th}(\delta\sqrt{2a}) \approx \delta\sqrt{2a},$$
(11)

которое, как известно, выполняется для довольно широкого интервала значений $\delta\sqrt{a} = \gamma$. Какое бы свойство функций (2) и (4) ни взять для сравнения, всегда при попытке определить δ мы прийдем к уравнению типа (11), которое утверждает, что при достаточно малых γ ничто от δ не зависит – функции совпадают и что это наблюдается в пределах изменения γ от нуля до таких значений, когда еще верно (11) с заданной точностью. Если потребовать, например, чтобы точность совпадения функций (2) и (4) или точность выполнения равенства (11) соответствовала 0.002, то получим условие $\delta\sqrt{2a} \approx 0.18$ или $\gamma \approx 0.13$, что соответствует формуле (8) для выбора δ .

Практика наших расчетов показывает, что результаты несущественно меняются в зависимости от выбора γ , причем меньшее значение γ не обязательно соответствует более низкому значению полной энергии. Так, например, рассчитывая молекулу H_2O с высокоточной формулой для F_0 (~10⁻⁹), было получено несколько более низкое значение полной энергии (E = -75.7965 am. ed.)выборе $\gamma = 0.13$, при чем при выборе $\gamma = 0.05$ (E = -75.7957 am.ed.). Более полная информация об этих двух расчетах приведена в табл. 11.

Таблица 11

γ	0.	05	0.	13
Ориентация молекулы H ₂ O относительно осей <i>x</i> , <i>y</i> *	А	В	А	В
Полная энергия, ат. ед.	-75.79574	-75.79583	-75.79651	-75.79702
	-20.50347	-20.50345	-20.50456	-20.50450
	-1.35314	-1.35319	-1.35334	-1.35335
Орбитальные энергии, ат. ед.	-0.68440	-0.68440	-0.68496	-0.68474
	-0.53690	-0.53699	-0.53713	-0.53753
	-0.47903	-0.47902	-0.47887	-0.47878
Заряд на атоме О	8.7872	8.7878	8.7884	8.7904
Заряд на атоме Н	0.6064	0.6061	0.6058	0.6048

Сравнение четырех расчетов молекулы H_2O с разным выбором сдвигов и с разной ориентацией относительно осей координат ($R_{OH} = 1.8 \text{ am. ed.}, \angle HOH = 105^\circ$)

* А – положительная полуось у делит внутренний / HOH пополам;

В – биссектрисы углов \angle НОН и $\angle x0y$ совпадают.

Неизбежным недостатком аппроксимации *p*-, *d*-, *f*-функций посредством функций (1) является зависимость результатов расчетов от вращения системы координат. Однако, нужно отметить, что эта зависимость носит, так сказать, чисто умозрительный характер. В табл. 11 приведены результаты расчетов,

выполненных при двух различных ориентациях молекулы H_2O , отличающихся поворотом на 45°. Расчеты проводились в базисе 7*s*3*p* для атома O из табл. 8, контрактированном (о собирании гауссовых функций в группы – в следующем параграфе) до 4(*s*)2(*p*),и в базисе 4*s* для атома H, контрактированном до 2(*s*).

Как и следовало ожидать, из табл. 11 видно, что чем больше δ , тем в большей степени результаты расчета приобретают нефизическую зависимость от поворота осей координат. Для меньших значений δ эта зависимость сказывается лишь В ПЯТОМ знаке после запятой В энергетических характеристиках, и лишь в четвертом знаке – в распределении зарядов. Но даже в расчетах с $\gamma = 0.13$ изменения, хотя и переходят на один знак влево, все еще настолько малы, что ими можно пренебречь с точки зрения любых физических или химических последствий. Но конечно, бо́льшие значения у брать не рекомендуется, чтобы не сделать зависимость результатов расчета от вращения системы координат слишком заметной. Аналогичные результаты получаются и при расчете молекулы HF в разно ориентированных системах координат [50].

Окончательный вывод состоит в следующем. Значения константы γ в формуле (5) для выбора сдвигов δ ограничены снизу той точностью, с которой выполняется вычисление интегралов, а сверху – требованием инвариантности вычисляемых наблюдаемых величин по отношению к поворотам системы координат. При точности вычисления интегралов, соответствующей $2 \cdot 10^{-9}$, дозволенные границы для γ определяются неравенствами $0.03 \le \gamma \le 0.13$. Минимальное значение γ не всегда соответствует минимальному значению полной энергии системы, но инвариантность результатов расчетов по отношению к вращению системы координат всегда лучше соблюдается при минимально возможном значении γ . Практически в формуле (5) можно использовать любое значение γ в указанных выше пределах.

5.3. Базис 7*s*3*p* для атомов второго периода, способы его контрактации и расчет молекул в таких ограниченных базисах

В этом параграфе мы обсудим качество базиса 7s3p (табл. 8) в применении к расчету молекул. Базис 7s3p по своему размеру является ограниченным базисом, однако, он вполне пригоден для количественных расчетов. Ошибка в полной энергии атомов от В до F (табл. 10), вычисленной в этом базисе, по сравнению с точной хартри-фоковской энергией составляет всего ~ 0.2%.

Исходные атомные базисные наборы гауссовых базисных функций принято контрактировать перед тем, как использовать их в молекулярных расчетах. Под контрактацией базиса подразумевается объединение некоторых базисных функций в фиксированную линейную комбинацию, называемую группой, которая в процессе расчетов рассматривается как одна базисная функция. Эти объединения делаются в базисном наборе функций одной симметрии с тем, чтобы зафиксировать компоненты, описывающие в основном определенные атомные функции данной симметрии, например, 1s, 2s, 2p и т. д. В отдельные группы объединяются и гауссовы функции, необходимые для описания экстремальных пространственных областей АО, – например, функции с максимальными или с минимальными показателями экспонент. Линейные коэффициенты, с которыми гауссовы функции объединяются в группу, берутся из соответствующих атомных расчетов.

В результате контрактации достигается понижение порядка матриц, с которыми потом приходится оперировать, без существенного ухудшения качества расчетов. Это замечание безусловно верно, когда расчеты проводятся в широком базисе гауссовых функций. Однако, не все так просто при расчетах в ограниченных базисах. Главной особенностью расчетов в ограниченных обстоятельство. что малейшее изменение базиса базисах является то сказывается существенным образом на результатах. Это же обстоятельство касается и различных способов контрактации ограниченного базиса. Таков, к сожалению, неизбежный недостаток расчетов вдали от хартри-фоковского Именно поэтому расчеты в ограниченных базисах требуют предела. тщательных предварительных исследований качества самих базисов. Мы изложим свой опыт в этом отношении, не исключая и неудачных попыток с тем, чтобы можно было сформулировать некоторые выводы общего характера.

В качестве объектов были выбраны молекулы HF и H₂O. Эти молекулы хорошо изучены как со слэтеровскими базисами, так и с гауссовыми. Молекула H₂O интересовала нас также и с точки зрения дальнейших расчетов ее комплексообразования с ионом Li⁺ и с молекулой H₂O [52]. Мы стремились получить наименьшие контрактированные наборы гауссовых функций, подходящие для получения количественных результатов. Вначале были испробованы следующие базисные наборы [50]. Базис 7*s*3*p* для атомов F и O (табл. 9) и базис для атома H (табл. 4) контрактировались разными способами, которые схематически представлены в табл. 12.

В этой таблице базисные функции обозначены порядковыми номерами так, как они расположены в таблицах 4 и 8 – в порядке возрастания значений показателей экспонент, а фигурными скобками обозначены функции, объединяемые в одну группу.

Молекула НF рассчитывалась с базисными наборами A (E = -99.50224) и A' (E = -99.49643 am. ed.). Полученные нами значения полной энергии располагаются между значениями, полученными в работе [53] в неконтрактированных базисах 9s5p (E = -100.01785) и 5s3p (E = -99.40371 am. ed.). Наш базис 7s3p промежуточный между этими базисами, хотя формально длина базисов A и A' соответствует базису 5s2p. Этим еще раз подтверждается хорошее качество нашего базиса 7s3p. Базис A приводит к более низкому значению энергии, чем базис A'.

Были проведены расчеты с максимально контрактированными базисами С и С', не выбрасывая ни одной функции из исходного базиса 7s3p + 5s: эти функции были объединены в контрактированные базисы 3(s)1(p) для атома F и 1(s) для атома H. Энергия получилась ниже в базисе C (E = -97.65648 am. ed.), чем в базисе C'. Эти базисы оказались непригодными не только потому, что они приводят к слишком высоким значениям энергии, но и потому, что они дали неверное распределение зарядов – избыток на H и недостаток на F. Это не означает, что в контрактированном базисе 3(s)1(p) + 1(s) нельзя получить удовлетворительного описания молекулы: мы увидим в дальнейшем на примере молекулы H₂O, что это вполне возможно, но это еще раз подчеркивает, насколько важен тщательный выбор ограниченных базисов. Неудача расчетов в базисах C и C' объясняется тем, что эти базисы не сбалансированы в том смысле, что атом F описывается слишком плохо по сравнению с атомом H.

Для выяснения того, годится ли базис А для предсказания равновесного расстояния в молекуле HF, расчеты были проведены для пяти межатомных расстояний. Равновесное расстояние, предсказываемое этими расчетами, $R_e^{\text{cal}} = 1.80 \text{ am. ed.}$ довольно близко соответствует экспериментальному значению $R_e^{\text{cap}} = 1.73 \text{ am. ed.}$ [53].

Молекула воды рассчитывалась в базисах А и В. Энергия в контрактированном базисе А E = -75.6051 *ат. ед.* оказалась ниже значения энергии в неконтрактированном базисе 5s3p E = -75.5493 *ат. ед.* [54], а в базисе В значение энергии оказалось E = -75.1113 *ат. ед.*, что существенно выше, чем в базисе А. Это означает, что набор 3p базисных функций играет существенную роль. Что касается геометрии молекулы воды, то базис А и даже базис В оказалась вполне удовлетворительными – и в том и в другом базисе энергия оказалась минимальной при значении \angle HOH = 106°, что ненамного отличается от экспериментального значения \angle HOH = 104.5°.

Таблица 12

Δποι	Борио	Контрактированные базисные наборы					
ATOM	Базис	Базис А	Базис А'	Базис В	Базис С	Базис С'	
	1	1	1	1	[1	1	
	2	2	2	2	2	$\int 2$	
	3	3	3	3	3	[3	
A(s)	4	4	4	4	4	[4	
	5	5	5	5	5	5	
	6	{6	6	{6	6	6	
	7	7	1 7	2	7	7	
	1	1	1	1	[1	[1	
A(n)	2	2	(2	2	$\left \right _{2}$	$\left \right _{2}$	
(P)	3	3	3		3	$\begin{bmatrix} 2\\3 \end{bmatrix}$	
	1	1	1	1	[1	[1	
	2	2	2	2	2	2	
H(s)	3	3	3	3	$\left\{ \begin{array}{c} \\ 3 \end{array} \right\}$	$\left\{ \begin{array}{c} 3 \end{array} \right\}$	
		4	{4		4	4	
	5	5	5		5	5	

Различные варианты контрактации исходного базисного набора для атомов второго периода и атома водорода*

* Базис В отличается от исходного базиса тем, что вместо неконтрактированного набора 3*p* взят набор 2*p*, а вместо 5*s* на атоме водорода взят базис 3*s* [28].

Расчеты, которые мы только что обсудили, не были оптимальными в смысле полученных значений энергии. Дело в том, что в этих расчетах все компоненты *p*-функций сдвигались от центра атома на одинаковое расстояние δ , независимо от значения показателя экспоненты данной функции. Меняя это расстояние, мы изучали зависимость расчетов от выбора сдвигов. Это был наглядный подход к изучению такой зависимости, но он не был оптимален в энергетическом отношении, – изменять значения сдвигов нужно, изменяя константу γ в уравнении (5).

Если пользоваться формулой (5) для сдвигов каждой из компонент *p*-функции в соответствии со значением ее показателя экспоненты, то полная энергия системы существенно понижается. Кроме того, расчеты в [50] проводились при точности вычисления функции F_0 порядка 10^{-6} . Все дальнейшие исследования проводились при точности вычисления функции F_0 порядка 10^{-9} и сдвиги δ выбирались в соответствии с формулой (5) для каждой из компонент *p*-функции. Из анализа данных, полученных при расчетах в базисах А, В и С и в их различных комбинациях, приходим к следующим выводам относительно способов оптимальной контрактации:

- В базисе 7*s* нужно нужно контрактировать две функции с минимальными значениями показателей экспоненты и три (или четыре) – с максимальными показателями экспоненты;
- 2) Базис 3*p* уменьшать нельзя, но его можно контрактировать до 2(*p*) или 1(*p*) наборов;
- 3) Базис для атома Н нет смысла брать бо́льшим, чем 4s или 3s и его можно контрактировать до 2(s) или 1(s). В связи с этим были исследованы следующие три варианта базисных наборов (табл. 13).

Расчеты молекулы H_2O были проведены в базисах I, II, III. Остановимся более подробно на этих расчетах. Для того, чтобы сделать яснее процедуру контрактации, в табл. 14 приведены подробные сведения о базисах I и II для молекулы воды. Базис III отличается от базиса II только способом контрактации набора 7*s*.

В табл. 15 приведены некоторые результаты расчета молекулы воды в базисах I, II, III вместе с литературными данными [55 – 57]. Для сравнения взяты расчеты, проведенные в широких базисах гауссовых функций. Авторы этих расчетов считают свои результаты близкими к хартри-фоковским.

Ошибка в полной энергии по отношению к предполагаемому значению ХФ полной энергии составляет у нас соответственно 0.36, 0.40 и 0.42% при расчетах в базисах I, II и III. Орбитальные энергии воспроизводятся вполне удовлетворительно. Согласно теореме Купманса (§ 2.3.1), первый потенциал ионизации молекулы H₂O в лучших расчетах с расширенными базисами составляет величину, бо́льшую чем 0.5 *ат. ед.* (см. ε (1*b*₁) в правой колонке табл. 15), в то время как экспериментальное значение равно 0.46 *ат. ед.* [57]. В базисах I, II и III расчетное значение первого потенциала ионизации молекулы H₂O меньше 0.5 *ат. ед.* тотенциала ионизации молекулы Н₂O меньше 0.5 *ат. ед.* Таким образом, в ограниченных базисах их недостатки обращаются в достоинство, если, конечно, вообще есть смысл обращать на это внимание – ведь такой результат, хотя и является систематическим, но, тем не менее, есть следствием взаимного погашения ошибок. Что касается зарядов на атомах, то изменение заряда Q(H) на 0.1, например, при переходе от базиса I к базисау II, является особенностью не только расчетов в ограниченных базисах, но характерно и для расчетов в широких базисах гауссовых функций.

Так, в работе [56] было показано, что такое же по величине изменение заряда Q(H) в молекуле H₂O имеет место при переходе от широкого базиса 12s7p (атом O) + 7s (атом H) без поляризационных функций (Q(H) = 0.6185) к

расширенному базису 12s7p1d (атом O) + 7s1p (атом H) с поляризационными функциями (Q(H) = 0.7066). Похожая картина имеет место и в расчетах дипольного момента молекулы H₂O в этих базисах – скачок от значения 1.06 до 0.87 *ат. ед.* [56].

Таблица 13 Три варианта контрактированных базисных наборов для расчета молекул с участием атомов второго периода и атомов водорода

A	Горио	Контрактир	ованные бази	исные наборы
Атом	Базис	Базис I	Базис II	Базис III
	1	∫1	∫1	∫1
	2	2	2	2
	3	3	3	3
A(s)	4	4	4	4
	5	5	5	5
	6	$\left\{ 6\right.$	{6	6
	7	7	7	7
	1	1	[1	[1
A(p)	2	2	$\frac{1}{2}$	$\left\{ 2\right\}$
¥,	3	3	3	3
	1	∫1	[1	[1
	2	<u></u> 2	$\frac{1}{2}$	2
п(5)	3	∫3	3	3
	4	4		

Аналогичные данные относительно дипольного момента можно найти и в работе [55]. По поводу расчета дипольного момента молекул в работе [56] сделан следующий вывод: совпадение с экспериментальными данными лучшее, чем с погрешностью в 0.15 - 0.2 D, следует рассматривать как артефакт, связанный со специальным подбором базиса. Поэтому, если относительно точное XФ значение энергии молекулы воды может быть предсказано из современных расчетов [55 – 57], то такого предсказания относительно точного XФ значения дипольного момента молекулы H₂O сделать сейчас нельзя. То же самое, конечно, относится и к распределению зарядов. Как видим, это распределение меняется в одинаковой степени при расчетах в разных базисах, независимо от того, велики эти базисы или малы. Ясно, что все эти выводы относятся не только в расчетам молекулы воды.

Таблица 14

		Ба	азис I		Базис II			
Атом	Экспо-	Лин	ейные	Номер	Экспо-	Лине	ейные	Номер
	нента	коэф	. групп	группы	нента	коэф.	. групп	группы
	0.31	0	.52)	1	0.31	0.:	52)	1
	0.88	0	.58∫	1	0.88	0.:	58∫	1
	7.8		1	2	7.8		1	2
O(s)	27		1	3	27		1	3
	110	0.	15		110	0.1	15	
	720	0.	02 }	4	720	0.0)2 }	4
	2200	0.	003		2200	0.0	003	
	0.39	1	-1	5, 6, 7	0.39	0.62	-0.62	
O(p)	1.7	0.48	-0.48]	0 0 10	1.7	0.48	-0.48	5, 6, 7
× '	9	0.12	-0.12	8, 9, 10	9	0.12	-0.12	
	0.123	0.	509]	11 10	0.15	0.	15]	
	0.454	0.	474∫	11, 12	0.68	0.4	41	8, 9
H(<i>s</i>)					4.5	0.0	07]	
	2.01	0.	134)	12 14				
	13.4	0.	019∫	15, 14				

Базисные наборы гауссовых функций для расчета молекулы H₂O*

* Показатели экспонент и коэффициенты, с которыми функции складываются в группы, для атома О взяты из табл. 8 и 9. Базисы для атома Н 4s и 3s взяты из табл. 4. Примеры построения групп в качестве объяснений приведены в пояснениях к этой таблице в [49]. Таблица 15

Результаты расчета молекулы H_2O в базисах I, II, III, *ат. ед.*

Свойство	Базис I	Базис II	Базис III	Лит. данные*
ε (1 a_1)	-20.50558	-20.33592	-20.34680	-20.55805
$\varepsilon(2a_1)$	-1.35048	-1.28024	-1.27765	-1.35224
$\varepsilon (1b_2)$	-0.68214	-0.63482	-0.63587	-0.71897
ε (3 a_1)	-0.53641	-0.48481	-0.48550	-0.58222
$\varepsilon (1b_1)$	-0.48758	-0.42639	-0.42776	-0.50685
E	-75.79678	-75.76298	-75.75429	-76.06587
Q(H)	0.6084	0.7140	0.7120	0.7066

* Все расчеты относятся к экспериментальной равновесной геометрии. Значения орбитальных энергий ε в последнем столбце взяты из [55], полной энергии E и зарядов Q(H) – из [56]. Значение E = -76.06587 по данным [56] отличается от XΦ значения не более чем на 0.002 и получено в широком базисе 13s8p3d1f (атом О) + 6s2p1d (атом H).

Перейдем теперь к конформационных расчетам молекулы воды в базисах I, II и III. В этом отношении все три базиса оказались вполне подходящими. В следующей таблице приведены результаты расчетов молекулы воды в этих разных базисах в зависимости от длины связи $R_{\rm oH}$ (обе связи имеют одинаковую длину) при фиксированном значении угла \angle HOH = 105°. Напомним, что экспериментальная геометрия молекулы воды характеризуется длиной связи $R_{\rm oH} = 1.8089 \ am. \ ed.$ и углом \angle HOH = 104.52° [57].

В табл. 17 приведены рассчитанные значения энергии молекулы H_2O в зависимости от значения угла \angle НОН при фиксированном значении длины связи $R_{\text{он}}$.

Таблица 16 Значения энергии *Е* молекулы воды в зависимости от расстояния *R*_{он} при фиксированном угле ∠ HOH = 105°, *am. ed.*

R	E						
Λ _{OH}	Базис І	Базис II	Базис III				
1.6	-75.762742						
1.7		-75.752130	-75.743420				
1.8	-75.796507	-75.762857	-75.754163				
1.81	-75.796779	- <u>75.762981</u>	- <u>75.754288</u>				
1.84	- <u>75.797001</u>	-75.762468	-75.753776				
1.85	-75.796884						
1.9		-75.757763	-75.749068				
2	-75.786043						

Таблица 17

Значения энергии $E(H_2O)$ в зависимости от значения угла \angle НОН

/ HOH	Е, ат. ед.					
211011	Базис I, $R_{\rm OH} = 1.84$	Базис II, $R_{\rm OH} = 1.81$	Базис III, $R_{OH} = 1.81$			
100°	-75.785558	-75.733456	-75.743225			
105°	- <u>75.797001</u>	- <u>75.762981</u>	- <u>75.754288</u>			
110°	-75.796787	-75.762141	-75.753523			
120°	-75.792282	-75.757079	-75.748589			

Как видим из табл. 16, равновесное расстояние в молекуле воды предсказывается равным $R_{\text{oh}} = 1.84$ в базисе I и $R_{\text{oh}} = 1.81$ *ат. ед.* в базисах II и III, а угол \angle НОН получается равным около 106° во всех трех базисах. В целом

равновесная геометрия молекулы воды неплохо предсказывается в базисах I, II и III. В базисе I равновесное расстояние предсказывается с ошибкой в 0.03 *ат. ед.* Этот факт напоминает нам о том, что при расчетах в ограниченных базисах лучший базис в одном отношении (полная энергия ниже) может оказаться худшим в другом отношении (неверная равновесная геометрия). Поэтому всякий новый базис должен проверяться в конформационных расчетах.

В табл. 18 приводим в качестве типичного примера коэффициенты разложения заполненных МО, т. е. волновую функцию молекулы воды, рассчитанных для расчетной равновесной конфигурации в базисе II.

Таблица 18

Коэффициенты разложения волновой функции молекулы H₂O, рассчитанной в расчетной равновесной конфигурации в базисе II (Ориентация А относительно осей системы координат *x*, *y*: положительная полуось *y* делит внутренний ∠ НОН пополам)

Базис	Собственные векторы				
(группы)	$1a_1$	$2a_1$	$1b_{2}$	$3a_1$	$1b_1$
<i>s</i> ₁ (O)	0.0393	0.8614	0	-0.4702	0
<i>s</i> ₂ (O)	0.5306	-0.1762	0	0.0774	0
<i>s</i> ₃ (O)	0.4242	-0.1065	0	0.0439	0
<i>s</i> ₄ (O)	0.1594	-0.0320	0	0.0133	0
$p_x(O)$	0	0	0.6514	0	0
$p_y(O)$	0.0066	0.1254	0	0.8129	0
$p_z(O)$	0	0	0	0	1
<i>s</i> (H ₁)	-0.0093	0.1595	0.3733	0.2229	0
s (H ₂)	-0.0093	0.1595	-0.3733	0.2229	0

5.4. Особенности расчетов в ограниченных базисах гауссовых функций

Предлагаемый ограниченный базисный набор 7s3p гауссовых функций для атомов второго периода (табл. 9) представляет собой разумный компромисс между требованиями точности расчетов и возможностями современных компьютеров применительно к большим молекулам или молекулярным ансамблям. Ошибка в расчете полной энергии атомов второго периода в таком базисе составляет примерно 0.2% от XФ значения энергии. При переходе к молекулярным расчетам исходный базис 7s3p (атом второго периода) + базис 3s(атом водорода) может быть контрактирован в базис 3(s)1(p) + 1(s) (базис III в табл. 13) без существенных ухудшений в конечных результатах. Ошибка в расчете энергии атомов в базисе 3(s)1(p) составляет примерно 0.4% от XФ значения энергии. Продемонстрируем возможности этого базиса в расчетах молекулы воды и других небольших систем. При этом сформулированные ниже выводы относительно ошибок, ограничений и особенностей, связанных с расчетами в ограниченном базисе, носят общий характер и относятся к расчетам в любом ограниченном базисе [58]. Рассматриваемые далее примеры иллюстрируют общие особенности расчетов в ограниченных базисах, поскольку эти особенности определяются только ограниченностью базиса, и рекомендуемый нами базис в принципе не отличается от других ограниченных базисов, предлагаемых разными авторами.

Рассмотрим прежде всего некоторые характеристики изолированной молекулы в ее экспериментальной равновесной геометрической конфигурации. Как типичный пример в табл. 15 представлены результаты расчета молекулы воды в базисе 3(s)1(p) + 1(s) (базис III). Из табл. 15 видно, что ошибка в определении полной энергии молекулы составляет примерно 0.4% от ХФ Орбитальные энергии воспроизводятся значения энергии. вполне удовлетворительно. Более того, при расчете в ограниченном базисе значение энергии ВЗМО часто лучше согласуется со значением первого потенциала ионизации, чем это имеет место в точном ХФ расчете. Конечно, это результат компенсации ошибок, но это систематический результат, – дело в том, что в ограниченных базисах, в силу вариационного принципа, орбитальные энергии принимают более высокие значения, чем при расчете в расширенном базисе, но учет электронной корреляции, раздвигая электронные уровни, поднимает ХФ энергию ВЗМО и таким образом приближает ее к значению, полученному в ограниченном базисе без учета корреляции. Вывод об удовлетворительном согласии между энергией ВЗМО и первым потенциалом ионизации верен только для нейтральных и положительно заряженных систем. В случае отрицательного иона правильно невозможно рассчитать энергии высоколежащих уровней, выполнив расчет в ограниченном базисе. Например, расчет иона OH⁻ в базисе 3(s)1(p) + 1(s) дает значение $\varepsilon_{B3MO} = +0.193$. Использование базиса 4(s)2(p) + 2(s) улучшает результат только количественно: $\varepsilon_{\rm B3MO} = +0.023$. Очевидно, что в случае ОН⁻ 2*p*-орбитали кислорода слишком бедно представлены: последние два занятых уровня в ОН- это вырожденные уровни заполненных 2*p*-орбиталей. Для того, чтобы орбитальные энергии этих уровней в ионе ОН⁻ стали отрицательными, необходим гораздо более широкий базисный набор *p*-функций. Согласно литературным данным, отрицательного и близкого к ХФ $\varepsilon_{\text{B3MO}} = -0.107$ можно добиться только в базисе, содержащем по крайней мере 5*p* базисных функций на кислороде. Таким образом, общий вывод состоит в том, что при расчетах в ограниченных базисах более или менее правильный количественный результат для орбитальных энергий следует ожидать для нейтральных молекул и положительно заряженных молекулярных ионов, а энергии высших заполненных уровней отрицательно заряженных систем воспроизводятся плохо.

Что касается распределения электронной плотности в молекулах (анализ заселенностей по Малликену), то это распределение и связанные с ним свойства, например, такие как дипольный момент молекулы, удовлетворительно воспроизводится в сбалансированном ограниченном базисе. Об этом свидетельствует множество расчетов разных авторов, как и наши результаты, представленные для молекулы воды в базисе III в табл. 15 в сравнении с более точными результатами, показанными в той же таблице в последней колонке.

Геометрические параметры молекулы, как правило, хорошо воспроизводятся при расчетах в ограниченных базисах. Например, наши расчеты равновесной геометрии молекулы воды привели к следующим результатам: $R_{\text{oH}} = 1.81 \text{ am. ed.}, \angle \text{HOH} = 106^{\circ}$ при экспериментальных значениях $R_{\text{oH}} = 1.809 \text{ am. ed.}, \angle \text{HOH} = 104,52^{\circ}$. Вполне надежно можно утверждать, что используя ограниченный, но тщательно выбранный базис гауссовых функций при расчете геометрии молекул мы не сделаем ошибок, бо́льших чем несколько сотых ангстремов в длинах связей и нескольких градусов в углах между связями.

Поляризационные функции на отдельных атомах при расчете молекул в ограниченном базисе не следует использовать. Добавление их может легко нарушить сбалансированность ограниченного базиса [59], а при вычислении энергии связи их включение приводит к неоправданно большим значениям. Интересное обсуждение этого вопроса содержится в [56]. В этой работе исследовалось, как изменяется энергия связи в молекуле воды при расширении неконтрактированного базиса гауссовых функций от 4s2p(O) + 2s(H)ЛО 13s8p(O) + 7s(H). Оказывается, энергия связи все время остается примерно постоянной величиной, близкой к экспериментальному значению, независимо от размерности базиса. Добавляя к ограниченному базису поляризационные функции, получаем значительное понижение полной энергии H₂O, т. е. значительное увеличение энергии связи, что, естественно, плохо. Когда же базис большой, достаточно расширенный, то добавление поляризационных функций не приводит к существенному понижению энергии системы, и, таким образом, энергия связи в этом случае сохраняет свое правильное значение. Поляризационные функции оказывают сильное влияние на распределение электронной плотности в молекулах. Их можно добавлять к ограниченному базису, например, для того, чтобы сделать дипольный момент молекулы равным экспериментальному значению, но совершенно понятно, что подобная процедура искусственна. Разве что, такая процедура может быть полезна при сравнительном расчете дипольного момента в ряду схожих молекул. Приведем пример из наших расчетов [52]. Энергия связи $Li^+ \cdots OH_2$, рассчитанная в базисе II (табл. 15) для H_2O и в базисе 4*s* для Li^+ , оказалась равной 43 *ккал/моль*, что несколько больше значения, полученного в расчетах с использованием расширенных, близких к ХФ базисам [56], которое не превышает 36 *ккал/моль*. Если же базис для Li^+ расширить путем включения поляризационных *р*-функций, то энергия связи становится равной 58 *ккал/моль*.

Причина, по которой энергия связи, рассчитанная в ограниченных базисах даже без добавления поляризационных функций, обычно преувеличена, состоит в следующем [58, 60]. Когда две подсистемы объединяются в одну единую систему, то диффузно распространенные в пространстве базисные функции одной подсистемы служат для лучшего описания другой подсистемы, что и приводит к некоторому дополнительному понижению энергии, т. е. к искусственному возрастанию энергии СВЯЗИ. Этого дополнительного энергии, конечно, не происходит когда базисные наборы, понижения описывающие подсистемы достаточно велики, – тогда влияние наличия одного базисного поднабора на описание другой подсистемы ничтожно мало, т. е. подсистемы и вся система в целом описываются одинаково хорошо. Таким образом, при вычислении обычным способом энергии связи в системе, описываемыми ограниченными базисами, мы имеем дело с неэквивалентным описанием всей системы и ее частей. Впервые эта проблема упоминается в [61, 62], где для энергии водородной связи были получены слишком большие значения. Так, например, для энергии Н-связи в димере молекулы воды при расчете в ограниченном неконтрактированном базисе 5s3p(O) + 3s(H) было получено значение 12.6 ккал/моль [62], в то время как экспериментальное и ХФ значение этой величины составляет всего примерно 5 ккал/моль [63]. Такое обязано сильное преувеличение энергии связи TOMV. что исходный ограниченный базис в [62] не контрактировался, и поэтому было много незанятых базисных функций в одной подсистеме, служащих для лучшего описания другой подсистеы. Отсюда следует вывод, что для уменьшения нежелательного эффекта завышения энергии СВЯЗИ при расчетах В ограниченном базисе важно разумно контрактировать исходный ограниченный базисный набор. В работах [64 – 66, 60] в связи с обсуждаемым расчетным артефактом было предложено для правильного вычисления энергии связи в системе А...В (например, в ион-молекулярном или межмолекулярном комплексе) энергию подсистемы А и подсистемы В вычислять в полном базисе всего комплекса А...В. Чтобы продемонстрировать как количественно меняется энергия данной подсистемы в присутствии «чужих» базисных функций, приведем пример из нашей работы [60]. Речь пойдет о ионмолекулярном комплексе.

Система $Li^+ \cdots OH_2$ рассчитывалась в базисе III для молекулы воды (табл. 15) и в базисе 4*s* для иона Li^+ , причем при каждом расстоянии между подсистемами мы вычисляли кроме полной энергии *E* еще и энергию H_2O в присутствии базисных функций иона Li^+ , и энергию Li^+ в присутствии базисных функций иона Li^+ , и энергию Li^+ в присутствии базисных функций H₂O, т. е. вычисляли те нефизические дополнительные вклады ΔE_{H_2O} и ΔE_{Li^+} в энергию связи, которые обязаны ограниченности базисов. Результаты расчетов [60, 58] представлены в табл. 19.

Таблица 19

$R_{_{O\cdots Li^+}}$	-E	$-\Delta E_{\rm H_2O}$	$-\Delta E_{\mathrm{Li}^+}$	$-\Delta E *$	$-E' = -E + \Delta E$	$E_{X\phi} + 0.3012$
3.00	83.04766	0.01064	0.00015	0.01079	83.03687	-83.0345
3.20	83.05422	0.01020	0.00005	0.01025	83.04397	
3.38	83.05564	0.00974	0.00004	0.00978	83.04586	
3.40	83.05562	0.00968	0.00004	0.00972	83.04590	
3.45	83.05545	0.00954	0.00003	0.00957	83.04588	
3.50	83.05512	0.00939	0.00002	0.00941	83.04571	-83.0444
3.90	83.04911	0.00810	0.00001	0.00811	83.04100	
4.50	83.03696	0.00619	0.00000	0.00619	83.03077	-83.0305
5.50	83.02052	0.00369	0.00000	0.00369	83.01683	
8.00	83.00096	0.00053	0.00000	0.00053	83.00043	-83.0008
10.00	82.99558	0.00009	0.00000	0.00009	82.99549	-82.9957
×	82.98706	0	0	0	82.98706	-82.9871

Энергия комплекса $Li^+ \cdots OH_2$ в зависимости от расстояния R_{Outit} , am. ed.

* $-\Delta E = -(\Delta E_{\mathrm{H_2O}} + \Delta E_{\mathrm{Li}^+})$

Как видно из данных этой табл. 19, основной вклад в дополнительное понижение энергии вносит $\Delta E_{\rm H_2O}$. Это и понятно, поскольку базисные функции Li⁺ включают группу, состоящую из функций с малыми показателями экспонент, которая и ответственна в основном за понижение энергии молекулы H₂O. Вклад в нефизическое взаимодействие $\Delta E_{\rm Li^+}$ ощутим лишь на малых расстояниях. Вычитая из полного значения энергии *E* найденные

дополнительные вклады, получаем энергию Е', которая, кроме суммы энергий подсистем на бесконечно большом расстоянии друг от друга, содержит только действительную энергию взаимодействия и которая почти точно воспроизводит ход почти ХФ потенциальной кривой [67], что видно из последнего столбца табл. 19, в котором полученные в [67] результаты подняты вверх по энергии для сравнения с нашим расчетом в ограниченном базисе так, чтобы диссоциационные пределы потенциальных кривых совпадали. Вычитая нефизическое взаимодействие ΔE , энергия связи в комплексе Li⁺...OH₂ от 43 ккал/моль уменьшается до 36 ккал/моль, что соответствует ХФ и экспериментальному значению энергии связи в этом комплексе, равному 34 ккал/моль. Равновесное расстояние между ионом Li⁺ и атомом кислорода молекулы воды увеличивается от 1.80 Å в нашем исходном расчете до 1.84 Å, которое характерно для расчетов в расширенных базисах [56, 67]. Такой подход к вычислению энергии связи в межмолекулярных и ион-молекулярных комплексах, конечно, усложняет расчеты, но приведенный выше пример с расчетом комплекса Li⁺...OH₂ говорит о том, что вполне реально получать верные ответы, работая в ограниченных базисах, и в любом случае знать, в какую сторону и насколько следует ожидать отклонений от точных ХФ расчетов.

Еще один пример такого рода – расчет линейной водородной связи H₂O···· HOH (плоскости молекул воды взаимно перпендикулярны), проведенный нами в ограниченном базисе [68 – 70]. Видим все те же особенности по сравнению с расчетами в расширенных базисах – тот же характерный сдвиг в сторону меньшего равновесного расстояния и большей энергии связи. Наш расчет привел к значению энергии связи 5.5 ккал/моль при равновесном расстоянии $R_{00} = 2.86$ Å. Хартри-фоковский расчет для энергии связи дает 4.8 *ккал/моль* при равновесном расстоянии $R_{00} = 3 \text{ Å}$ [63]. Отклонения в энергии связи здесь гораздо меньше, чем те, которые были в случае комплекса Li⁺···OH₂. И это вполне понятно – ведь две молекулы воды находятся в равновесии гораздо дальше друг от друга по сравнению с расстоянием между ионом лития и атомом кислорода в молекуле воды. Поэтому дополнительное понижение энергии, связанное с тем, что базисный набор гауссовых функций одной подсистемы служит для лучшего описания другой подсистемы, не так ощущается. Отметим, как уже упоминалось выше, что один из первых неэмпирических расчетов димера молекул воды [62] проводился неконтрактированном базисе 5s3p(O) + 3s(H) гауссовых функций, и дал для

энергии водородной связи неверную величину 12.6 *ккал/моль* при равновесном расстоянии 2.68 Å. Очевидно, что в этом расчете имело место сильное влияние базиса всего комплекса на описание каждой молекулы воды. Этот пример может служить яркой иллюстрацией того, как важно максимально возможно контрактировать исходный ограниченный базисный набор. Расчеты в ограниченных базисах требуют, конечно, гораздо большего внимания к выбору базиса, чем, как ни странно это звучит, в «примитивных» расчетах в широких базисах, но результаты наших расчетов комплексов $Li^+ \cdots OH_2$ и $H_2O \cdots HOH$ дают уверенность в том, что тщательно выбранные ограниченный базисы могут быть с успехом использованы в молекулярных расчетах и дают результаты, эквивалентные тем, которые могут быть получены в расширенных базисах.

Еще одна особенность расчетов в ограниченных базисах, тесно связанная с взаимным дополнительным влиянием базисных наборов, состоит в том, что такие эффекты как перенос электронной плотности между подсистемами и энергия делокализации, т. е. эффекты, связанные с перераспределением электронной плотности между подсистемами А и В, рассчитываемыми в ограниченных базисах, получаются преувеличенными. Например, В обсуждавшемся выше расчете комплекса $Li^+ \cdots OH_2$ в ограниченном базисе перенос электронной плотности на ион Li⁺ составил 0.042e, расчет же этого комплекса в ХФ базисе [56, 71] дает для переноса всего 0.018е. Об этом обсуждении следует помнить при вопросов, связанных с переносом электронной плотности в межмолекулярных и ион-молекулярных комплексах, и обсуждение подобных вопросов вести только в сравнительном плане, если расчеты велись в ограниченных базисах.

Общий расчетов молекулярных вывод относительно структур В ограниченных базисах гауссовых функций состоит в том, что тщательно выбранные ограниченные базисы вполне пригодны для количественного описания многих свойств молекул. Это утверждение особенно верно, когда мы рассматриваем не абсолютные значения свойств, а изменения их, разности между ними. Например, любая серия расчетов с целью установления геометрии молекулы – это как раз расчеты изменений в значении энергии в зависимости от положения ядер, и, как видим, такие расчеты вполне успешны в ограниченных базисах. Следует, однако, указать на тот предел, когда подобным изменениям можно доверять. Если конформации по энергии отличаются друг от друга всего лшь на несколько ккал/моль, то использовать ограниченный базис для предсказания геометрии нельзя. Например, мы проводили расчеты молекул LiOH ограниченных базисах 4s2p(O) + 2s(H) + 4s(Li)В И 3s1p(O) + 1s(H) + 4s(Li) искали равновесную геометрию в обоих базисах. При расчете в бо́льшем, первом базисе наиболее устойчивой оказалась линейная конфигурация молекулы LiOH, в меньшем, втором базисе – изогнутая конфигурация с углом \angle LiOH = 130°. Разность энергий обеих конфигураций очень мала – всего 2.5 *ккал/моль*. Предсказать, линейна или изогнута молекула LiOH, выполняя расчеты в ограниченных базисах, невозможно. Единственное, что можно утверждать, это то, что по отношению к изгибанию в определенном интервале углов потенциальная поверхность молекулы LiOH очень пологая.

Еще один пример – расчет *транс*-барьера в молекуле перекиси водорода H_2O_2 . Экспериментальное значение этого барьера составляет всего 1.1 *ккал/моль*. Ограниченные базисы вообще не в состоянии дать сколь-нибудь заметный барьер, и только расчет [72] в широком базисе вблизи ХФ предела с тщательной оптимизацией всей геометрии молекулы приводит к *транс*-барьеру в 1.1 *ккал/моль*. Подробное обсуждение ситуации, связанное с расчетами молекулы H_2O_2 , можно найти в [73].

Из приведенных примеров ясно, что, получив или не получив при расчете в ограниченном базисе барьер в несколько ккал/моль, нельзя придавать этому факту объективный физический смысл и тем более изучать его (барьера) природу. В качестве примера подобной ошибки приведем работу [74], в которой с использованием для расчетов ограниченного базиса показано, что корреляционный вклад в величину *транс*-барьера В молекуле H₂O₂ существенен. Представляется очевидным, что такое утверждение не может восприниматься с доверием, поскольку ХФ расчет в широком базисе, т. е. расчет без учета электронной корреляции, как уже было сказано выше, воспроизводит экспериментальное значение величины *транс*-барьера В молекуле H₂O₂. Очевидно, что истоки некорректности выводов работы [74] связаны с использованием ограниченного базиса для описания молекулы H₂O₂.

Вообще, следует заметить, ЧТО учет корреляционной энергии В неэмпирических расчетах молекул имеет смысл только тогда, когда в одноконфигурационном приближении уже достигнут ХФ предел по энергии, т. е. одноконфигурационный расчет выполнен в достаточно широком базисе. В противном случае, когда расчет проводится в ограниченном базисе, выбор пробной волновой функции в виде многоконфигурационного разложения позволяет просто понизить расчетное значение энергии молекул, часто даже не преодолевая ХФ предел, и сказать что-либо о величине учтенной энергии корреляции поскольку энергия корреляции, нельзя, ПО определению, отсчитывается от ХФ предела, который из-за ограниченности базиса не достигается в одноконфигурационном приближении. Таким образом, по нашему мнению, учет КВ при расчетах в ограниченных базисах есть лишь способ вариационного понижения энергии, которое, с другой стороны, может быть достигнуто в известных пределах путем расширения базиса в одноконфигурационном приближении.

В квантовохимической литературе встречаются статьи, в которых авторы серьезно обсуждают корреляционный вклад в энергию связи, в барьер внутреннего вращения, в распределение электронной плотности, в дипольный момент молекул, выполняя расчеты методом ССП КВ в ограниченных базисах, не достигнув ХФ предела. Полученные таким образом «корреляционные вычислительные артефакты, которые обычно ведут к вклады» – это ошибочным выводам. Может оказаться, что на самом деле таких вкладов просто нет, например, с высокой степенью достоверности можно утверждать, что их нет во взаимодействии между системами с замкнутыми электронными оболочками, типа рассмотренных выше межмолекулярных и ион-молекулярных комплексов. Методы КВ следует использовать при расчетах в ограниченных базисах только там, где он физически необходим, например, при описании открытых оболочек. Если же мы рассматриваем системы с замкнутыми электронными оболочками и проводим расчеты в ограниченных базисах, не достигнув ХФ предела, то использовать методы учета корреляции электронов не имеет смысла. Единственно правильный путь понижения энергии системы в таком случае – это путь расширения исходного базиса вплоть до получения ХФ решения, и только получив ХФ значение энергии, мы можем заняться вычислением корреляционных поправок.

В заключение, сформулируем сжато основные свойства и особенности расчетов молекулярных систем в ограниченных базисах гауссовых функций [58, 69]:

1. Ограниченные базисы часто используются по необходимости.

2. Исходный ограниченный базис должен быть контрактирован, причем оптимально максимальным способом. Например, исходный базис 7*s*3*p* для атомов второго периода следует правильно сжать до 3(s)1(p).

3. Поляризационные функции не рекомендуется добавлять к ограниченному базисному набору.

4. Ошибка в расчете полной энергии молекулы, состоящей из атомов второго периода и атомов водорода, обычно не превышает 0.5% от ХФ значения энергии, что для небольшой молекулы составляет несколько десятых долей атомной единицы энергии выше ХФ предела.

5. Орбитальные энергии, часто интерпретируемые как вертикальные потенциалы ионизации, могут безопасно использоваться при обсуждении свойств нейтральных молекул и их положительно заряженных ионов; для отрицательных же молекулярных ионов расчеты в ограниченных базисах ведут к слишком высоким значениям орбитальных энергий высших заполненных МО. 6. Геометрия молекулы, у которой энергетически явно выделена одна определенная конфигурация, предсказывается вполне удовлетворительно в ограниченном базисе.

7. Конформационные изменения энергии не всегда могут быть надежно предсказаны из расчетов в ограниченных базисах, если соответствующие энергетические разности не превышают 1 – 2 ккал/моль.

8. Энергия связи в межмолекулярном или ион-молекулярном комплексе, рассчитываемая в ограниченном базисе, часто преувеличена, что связано с неэквивалентностью базисов, служащих для описания составных частей системы и всей системы в целом из-за взаимного дополнительного влияния ограниченных базисных наборов. По этой же причине эффекты делокализации, такие как перенос электронной плотности между подсистемами, также часто преувеличены при расчетах в ограниченных базисах.

9. Во избежание неверных выводов, не рекомендуется использовать МК приближения в расчетах молекулярных систем с замкнутыми электронными оболочками, если расчеты ведутся в расширенных базисах.

Знание всех этих свойств и особенностей расчетов в ограниченных базисах гауссовых функций позволяет использовать такие расчеты вполне сознательно и знать, когда им можно доверять и использовать для предсказания свойств молекул и когда этого делать не следует и, таким образом, не только получать физически корректную и достаточно объективную информацию об электронной структуре молекул, но и решать многие интересные задачи теоретической химии [48].

Литература

- 1. M. Kotani, A. Amemiya, E. Ishiguro, T. Kimura. *Table of Molecular Integrals*. Tokyo: Maruzen, 1955.
- 2. K. Rudenberg. A Study of Two-Center Integrals Useful in Calculations on Molecular Structure. II. The Two-Center Exchange Integrals, *J. Chem. Phys.*, v. 19, 1459 (1951).
- 3. C. C. J. Roothaan. A Study of Two-Center Integrals Useful in Calculations on Molecular Structure. I, *J. Chem. Phys.*, v. 19, 1445 (1951).
- 4. H. Preuss. *Integraltafeln zur Quantenchemie*, v. *I IV*. Berlin: Springer, 1956 1961.

- 5. A. C. Wahl, P. E. Cade, C. C. J. Roothaan. Study of Two-Center Integrals Useful in Calculations on Molecular Structure. V. General Methods for Diatomic Integrals Applicable to Digital Computers, *J. Chem. Phys.*, v. 41, 2578 (1964).
- F. J. Corbato, A. C. Switendick. Integrals for Diatomic Molecular Calculations, In Berni Alder, S. Fernbach, and M. Rotenberg (eds) *Methods in Computational Physics*, v. 2. New York: Academic Press, 1963.
- 7. M. P. Barnett, C. A. Coulson. The evaluation of integrals occurring in the theory of molecular structure. Parts I & II, *Phil. Trans. Roy. Soc. (London)*, v. 243, 221 249 (1951).
- 8. M. P. Barnett. The Evaluation of Molecular Integrals by the Zeta Function Methods, In Berni Alder, S. Fernbach, and M. Rotenberg (eds) *Methods in Computational Physics*, v. 2. New York: Academic Press, 1963.
- 9. F. Harris, H. Michels. Multicenter integrals in quantum chemistry. I. Expansion of Slater-type orbitals about a new origin, *J. Chem. Phys.*, v. 43, S165 S169 (1965).
- 10. S. Huzinaga. Molecular Integrals, Prog. Theor. Phys., v. 40, 52 77 (1967).
- 11. I. I. Guseinov: <u>www.researchgate.net/profile/Israfil_Guseinov</u>
- 12. S. F. Boys. Electronic wavefunctions. I. A general method of calculation for stationary states of any molecular system, *Proc. Roy. Soc.*, v. A200, 542 554 (1950).
- 13. I. Shavitt. The Gaussian Function in Calculations of Statistical Mechanics and Quantum Mechanics, In Berni Alder, S. Fernbach, and M. Rotenberg (eds) *Methods in Computational Physics*, v. 2. New York: Academic Press, 1963.
- 14. E. Clementi, D. R. Davis. Electronic structure of large molecular systems, *J. Comp. Phys.*, v. 1: 2, 223 – 244 (1967).
- 15. F. Harris. Gaussian wave functions for polyatomic molecules, *Rev. Mod. Phys.*, v. 35, 558 569 (1963).
- J. Brown, R. Poshusta. Quantum-Mechanical Integrals over Gaussian Atomic Orbitals, J. Chem. Phys., v. 36, 1933 (1962).
- 17. S. F. Boys. The integral formulae for the variational solution of the molecular many-electron wave function in terms of Gaussian functions with direct electronic correlation, *Proc. Roy. Soc.*, v. A258, 402 411 (1960).
- K. Singer. The use of gaussian (exponential quadratic) wavefunction in molecular problems. General formulae for the evoluation integrals, *Proc. Roy. Soc.*, v. A258: 1294, 412 – 420 (1960).
- 19. E. Clementi. Simple Basis Set for Molecular Wave Functions Containing First and Second Row Atoms, J. Chem. Phys., v. 40, 1944 1945 (1964).
- 20. E. Clementi, C. C. J. Roothaan, M. Yoshimine. Lowest Configurations of the Neutral First Row Atoms, *Phys. Rev.*, v. 127, n. 5, 1618 (1962).
- 21. A. Meckler. Electronic energy levels of molecular oxygen, *J. Chem. Phys.*, v. 21, 1750 1762 (1953).
- 22. R. K. Nesbet. Ground State Electronic Wave Function of Methane, *J. Chem. Phys.*, v. 32, 1114 (1960).
- 23. M. Krauss. Hartree Fock Approximation of CH_4 and NH_4^+ , *J. Chem. Phys.*, v. 38: 2, 564 565 (1963).
- L. C. Allen. Gaussian Orbitals for Many-Electron Molecular Wave Functions, J. Chem. Phys., v. 37: 1, 200 (1962).
- 25. R. F. Stewart. Small Gaussian Expansions of Atomic Orbitals, J. Chem. Phys., v. 50, 2485 (1969).

- 26. W. J. Hehre, R. F. Stewart, J. A. Pople. Self-Consistent Molecular-Orbital Methods.
 I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals, J. Chem. Phys., v. 51, 2657 (1969).
- 27. R. F. Stewart. Small Gaussian Expansions of Slater-Type Orbitals, J. Chem. Phys., v. 52, 431 (1970).
- 28. S. Huzinaga. Gaussian-Type Functions for Polyatomic Systems. I, J. Chem. Phys., v. 42, 1293 (1965).
- 29. Ю. О.Кругляк, Х. Прейсс, Р. Яношек. Неемпіричний розрахунок електронної будови бензильного радикала, *Укр. фіз. ж.*, т. 15: 6, 977 985 (1970).
- Ю. А. Кругляк, Х. Прейсс, Р. Яношек. Расчет электронных оболочек бензильного радикала неограниченным методом Хартри – Фока на гауссовом базисе, *Ж. структ. химии*, т. 12: 4, 689 – 696 (1971).
- 31. I. G. Csizmadia, M. C. Harrison, J. W. Moskowitz, B. T. Sutcliffe. Non-Empirical LCAO-MO-SCF-CI Calculations on Organic Molecules with Gaussian Type Functions. Part I, *Theor. chim Acta*, v. 6, 191 (1966).
- 32. J. V. Longstaff, K. Singer. The Use of Gaussian (Exponential Quadratic) Wave Functions in Molecular Problems. II. Wave Functions for the Ground States of the Hydrogen Atom and of the Hydrogen Molecule, *Proc. Roy. Soc.*, v. A258, 421 – 430 (1960).
- 33. C. M. Reeves. Use of Gaussian Functions in the Calculation of Wavefunctions for Small Molecules. I. Preliminary Investigations, *J. Chem. Phys.*, v. 39, 1 (1963).
- 34. J. L. Whitten. Gaussian Expansion of Hydrogen-Atom Wavefunctions, *J. Chem. Phys.*, v. 39, 349 – 352 (1963).
- 35. М. Д. Долгушин, И. С. Ященко, Ю. А. Кругляк. О выборе оптимальных параметров в разложении атомных функций по гауссовым на примере функции 1*s* атома водорода, *Teop.* экспер. химия, т. 7, 528 531 (1971).
- 36. R. Hooke, T. A. Jeeves. "Direct search" solution of numerical and statistical problems, *J. Assoc. Comp. Mach.*, v. 8, 212 229 (1961).
- 37. И. И. Украинский, Ю. А. Кругляк. Определение оптимальных параметров спектров ЭПР свободных радикалов с изотропным сверхтонким взаимодействием, в Сб. Строение молекул и квантовая химия (ред. А. И. Бродский). Киев: Наукова думка, 1970.
- 38. M. D. Dolgushin. Self-consistent calculation for atoms by the method of expansion in terms of a basic function selection of Gaussian basic functions, *Theor. Exper. Chem.*, v. 8: 1, 74 – 78 (1974).
- 39. М. Д. Долгушин, Ю. А. Кругляк. Расчет атомов методом разложения и выбор гауссовых базисных функций. Конфигурации 1s²2s²2pⁿ, Препринт ИТФ АН УССР, № 58, 1974:
 <u>https://www.researchgate.net/publication/216156866 Rascet atomov metodom razlozenia i</u> vybor gaussovyh bazisnyh funkcij Konfiguracii 1s22s22pn
- 40. S. S. Seung, M. C. Harrison, I. G. Csizmadia. Non-Empirical Calculations on Organic Molecules with Gaussian Type Functions. Part III, *Theor. chim Acta*, v. 8, 281 (1967).
- 41. B. Roos, P. Siegbahn. Gaussian basis sets for the first and second row atoms, *Theor. chim Acta*, v. 17, 209 215 (1970).
- 42. H. Preuss. Bemerkungen zum Self-consistent-field-Verfahren und zur Methode der Konfigurationenwechselwirkung in der Quantenchemie. 2, Z. Naturforsch., v. 11, 823 (1956).

- 43. C. C. J. Roothaan, P. S. Bagus. Atomic self-consistent field calculations by the expansion methods In Berni Alder, S. Fernbach, and M. Rotenberg (eds) *Methods in Computational Physics*, v. 2. New York: Academic Press, 1963.
- 44. J. L. Whitten. Gaussian Lobe Function Expansions of Hartree—Fock Solutions for the First-Row Atoms and Ethylene, *J. Chem. Phys.*, v. 44: 1, 359 364 (1966).
- 45. J. D. Petke, J. L. Whitten, A. W. Douglas. Gaussian lobe function expansions of Hartree-Fock solutions for the second-row atoms, *J. Chem. Phys.*, v. 51: 1, 256 262 (1969).
- 46. S. K. Shih, R. J. Buenker, S. D. Peyerimhoff, B. Wirsam. Comparison of Cartesian and Lobe Function Gaussian Basis Sets, *Theor. chim Acta*, v. 18, 277 289 (1970).
- 47. J. F. Harrison. On the Gaussian-Lobe Representation of Atomic Orbitals, *J. Chem. Phys.*, v. 46, 1115 (1967).
- 48. М. Д. Долгушин. Эвристические методы квантовой химии или о смысле научных занятий. Москва: Эдиториал УРСС, 2001.
- 49. М. Д. Долгушин, Ю. А. Кругляк. Расчет электронной структуры молекул в базисе гауссовых функций, Препринт ИТФ АН УССР, № 59, 1974: <u>www.researchgate.net/publication/216156841 Rascet_elektronnoj_struktury_molekul_v_bazi</u> <u>se_gaussovyh_funkcij</u>
- 50. М. Д. Долгушин. Investigation of the characteristics of the nonempirical calculation of molecules with a basis set of gaussian functions exp(-*ar*²), *Teop.* экспер. хим., т. 9: 6, 782 789 (1973).
- 51. L. J. Schaad, G. O. Morrell. Approximations for the Functions $F_m(z)$ Occurring in Molecular Calculations with a Gaussian Basis, J. Chem. Phys., v. 54: 5, 1965 (1971).
- 52. М. Д. Долгушин, В. М. Пинчук, Ю. А. Кругляк. Неэмпирический расчет молекулярных комплексов Li⁺ ··· OH₂ и H₂O····H₂O в ограниченных гауссовых базисах, *Препринт ИТФ АН УССР*, № 116, 1973.
- 53. M. C. Harrison. Gaussian Wavefunctions for the 10-Electron Systems. II. Hydrogen Fluoride, *J. Chem. Phys.*, v. 41: 2, 499 (1964).
- 54. J. W. Moskowitz, M. C. Harrison. Gaussian Wavefunctions for the 10-Electron Systems. III. OH⁻, H₂O, H₃O⁺, *J. Chem. Phys.*, v. 43: 10, 3550 (1965).
- 55. D. Neumann, J. W. Moskowitz. One-Electron Properties of Near-Hartree Fock Wavefunctions. I. Water, J. Chem. Phys., v. 49: 5, 2056 (1968).
- 56. E. Clementi, H. Popkie. Study of the Structure of Molecular Complexes.I. Energy Surface of a Water Molecule in the Field of a Lithium Positive Ion, J. Chem. Phys., v. 57: 3, 1077 (1972).
- 57. T. Dunning, R. Pitzer, S. Aung. Near Hartree Fock Calculations on the Ground State of the Water Molecule: Energies, Ionization Potentials, Geometry, Force Constants, and One-Electron Properties, J. Chem. Phys., v. 57: 12, 5044 (1972).
- 58. М. Д. Долгушин, Ю. А. Кругляк, В. М. Пинчук. О неэмпирических расчетах молекул в ограниченных базисах гауссовых функций, *Ж. структ. хим.*, т. 19: 4, 587 593 (1978).
- 59. B. Roos, P. Siegbahn. Polarization functions for first and second row atoms in Gaussian type MO-SCF calculations, *Theor. chim Acta*, v. 17, 199 (1970).
- 60. В. М. Пинчук, М. Д. Долгушин, Ю. А. Кругляк. К вычислению *ab initio* энергии взаимодействия между системами, описываемыми ограниченными базисами, *Препринт ИТФ АН УССР*, № 127, 1974.
- 61. E. Clementi. Study of the Electronic Structure of Molecules. II. Wavefunctions for the NH₃+HCl→NH₄Cl Reaction, *J. Chem. Phys.*, v. 46, 3851 (1967).

- 62. K. Morokuma, L. Pedersen. Molecular-Orbital Studies of Hydrogen Bonds. An *Ab Initio* Calculation for Dimeric H₂O, *J. Chem. Phys.*, v. 48, 3275 (1968).
- 63. G. Diercksen. SCF-MO-LCGO studies on hydrogen bonding. The water dimer, *Theor. chim. Acta*, v. 21, 335 (1971).
- 64. S. F. Boys, F. Bernardi. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, *Mol. Phys.*, v. 19, 553 (1970).
- 65. A. Meunier, B. Levy, G. Berthler. Corrélation électronique et effets de base dans l'étude de la liaison hydrogène: le dimère mixte ammoniac-eau, *Theor. chim. Acta*, v. 29, 49 (1973).
- 66. A. Johansson, P. Kollman, S. Rothenberg. An application of the functional Boys Bernardi counterpoise method to molecular potential surfaces, *Theor. chim. Acta*, v. 29, 167 (1973).
- 67. G. H. F. Diercksen, W. Kraemer. SCF MO LCGO studies on the hydration of ions: The systems H⁺H₂O, Li⁺H₂O, and Na⁺H₂O, *Theor. chim. Acta*, v. 23: 4, 387 – 392 (1972).
- 68. М. Д. Долгушин, В. М. Пинчук, Ю. А. Кругляк. Неэмпирический расчет молекулярных комплексов Li⁺ … OH₂ и H₂O… HOH в ограниченных гауссовых базисах, Препринт ИТФ АН УССР, № 116, 1973.
- 69. М. Д. Долгушин, Ю. А. Кругляк, В. М. Пинчук. О неэмпирических расчетах молекул в ограниченных базисах гауссовых функций, *Препринт ИТФ АН УССР*, № 48, 1976.
- 70. M. D. Dolgushin, V. M. Pinchuk. A study of the hydrogen bond by means of comparative calculations, *Theor. chim. Acta*, v. 45, 157 165 (1977).
- 71. H. Kistenmacher, H. Popkie, E. Clementi. Study of the structure of molecular complexes. II. Energy surfaces for a water molecule in the field of a sodium or potassium cation, *J. Chem. Phys.*, v. 58, 1689 (1973).
- 72. T. Dunning, W. Winter. Hartree—Fock calculation of the barrier to internal rotation in hydrogen peroxide, *Chem. Phys. Lett.*, v. 11, 194 (1971).
- 73. В. Г. Дашевский. Неэмпирические расчеты геометрии и конформаций многоатомных молекул, *Усп. хим.*, т. 43, 491 (1974).
- 74. V. A. Kuprievich, V. E. Klimenko, G. Nyeki. Препринт ИТФ АН УССР, № 60E, 1974.

Глава 6. Электронная и спиновая структура бензильного радикала ab initio

6.1. Введение

Как отмечалось в разделе 2.3, неограниченный метод ХФ служит простейшим методом учета корреляции электронов и широко применяется в расчетах молекулярных систем. Волновая функция НХФ (33/гл. 2) не является собственной функцией оператора \hat{S}^2 . Для устранения этого недостатка применяют полное или частичное проектирование волновой функции НХФ на состояние с требуемой мультиплетностью. Следует иметь в виду, что отпроектированная волновая функция уже не является оптимальной в смысле вариационного принципа. Поэтому ее адекватность реальной ситуации, вообще очевидна. Последовательной процедурой следует говоря, не считать дальнейшее варьирование отпроектированной волновой функции с целью получения минимума полной энергии, т. е. использовать расширенный метод $X\Phi$ (§ 2.1). Тем не менее, $HX\Phi$ с частичным или полным проектированием нередко приводит к хорошему согласию с различными экспериментальными данными, в том числе и по сверхтонким расщеплениям в спектрах ЭПР свободных радикалов. В [1 – 3] приведены результаты расчетов в рамках метода НХФ с частичным проектированием волновой функции органических свободных радикалов с малым числом электронов. Позже в разделе 9.4 мы обсудим влияние полного проектирования волновой функции НХФ на электронное строение полиеновых радикалов с большим числом электронов $N \rightarrow \infty$. С этой точки зрения объект рассмотрения в этой главе – бензильный радикал C₆H₅CH₂, можно считать, занимает промежуточное положение (N = 49). Нами был выполнен неэмпирический расчет бензильного радикала методом НХ Φ с учетом всех 49 электронов на гауссовом базисе [4 – 7]. Далее мы дадим подробные сведения о результатах этого расчета, а затем рассмотрим строение электронных оболочек бензильного радикала в рамках метода НХФ и влияние на них полного проектирования волновой функции НХФ на дублетное состояние.

6.2. Расчет электронных оболочек бензильного радикала неограниченным методом Хартри – Фока на гауссовом базисе

Электронное строение бензильного радикала всегда привлекало внимание специалистов в области квантовой химии. Теория его электронного строения в рамках методов МО и ВС достаточно проста. Вместе с тем после тщательного анализа его спектра ЭПР обнаружилось расхождение между экспериментальными значениями расщеплений на протонах и вычисленными теоретически по *π*-электронным спиновым плотностям посредством простого

Мак-Коннела [8]. уравнения Согласно экспериментальным данным, расщепление на *пара*-протоне больше, чем на *орто*-протоне. Многочисленные расчеты в π-электронном приближении, в том числе с учетом полного КВ как для равносвязной геометрии (§ 2.7.3.7), так и для «равновесной» геометрии (Приложение П-7), приводят к обратному соотношению π -электронных спиновых плотностей на атомах углерода, соседних с указанными протонами. Это несоответствие между экспериментальными значениями расщеплений на орто- и пара-протонах бензильного радикала и весьма совершенными расчетными моделями, казалось бы, для такого простого объекта как бензильный радикал, заслужено получило название «бензильный парадокс». Именно это расхождение побудило нас выполнить неэмпирический расчет бензильного радикала методом НХФ. Такой расчет дает возможность вычислить спиновую плотность непосредственно на протонах.

Расчет бензильного радикала был нами выполнен в 1968 году на ЭВМ IBM-7090 Института физики и астрофизики им. М. Планка по программе Allgemeines Programmsystem/Unrestricted SCF-MO-LC (LCGO), разработанной в группе Х. Прёйсса.

Длины связей в бензильном радикале принимались такими же как в молекуле бензола: $R_{\rm CC} = 2.630$, $R_{\rm CH} = 2.040$ *ат.ед*. Углы между связями брались равными 120°.

Использовался простейший базис безузловых гауссовых функций. Функция $1_{s}(H)$ аппроксимировалась одной гауссовой функцией с a = 0.283[9]. Функции $s(\mathbf{C})$ аппроксимировались 4-мя гауссовыми функциями с a = 0.395, 4.850, 21.600, 141.000; функции $2p\pi$ – одной группой с $a = 0.305, \delta = \pm 0.360$ и $\delta = \pm 2.5647$; функции $2p\sigma$ – двумя группами с a = 0.720, одна из которых $2p\sigma(\parallel)$ ориентирована вдоль направления связи С–Н, а другая $2p\sigma(\perp)$ – в перпендикулярном направлении. Итак, все 49 электронов бензильного радикала в нашем расчете описывались 77-ю гауссовыми функциями, разбитыми на 56 групп. Молекулярные системы аналогичной сложности уже рассчитывались к тому времени [10 – 14].

После 30 итераций процедуры самосогласования, потребовавшей около 11 часов машинного времени, полная энергия получилась равной E = -264.3598, а электронная энергия $E_{el} = -526.7991$ *ат.ед*. Сходимость процесса самосогласования показана в табл. 1. После 10-ой итерации начинается систематическое, но неравномерное понижение энергии, а после 20-ой итерации имели место осцилляции, обусловленные накоплением ошибок неортогональности при диагонализации матриц Фока и погрешностей округления. Интеграл ошибок (31/§ 3.2) аппроксимировался по Чебышеву.

314

Таблица 1

ω	$E(\omega) - E(\omega - 1)$	ω	$E(\omega) - E(\omega - 1)$	ω	$E(\omega) - E(\omega - 1)$
7	-2.75350	15	-0.00129	23	0.00009
8	-1.92483	16	-0.00118	24	-0.00025
9	0.23246	17	-0.00037	25	0.00007
10	-0.02863	18	-0.00075	26	-0.00029
11	-0.03027	19	-0.00010	27	0.00008
12	-0.00253	20	-0.00057	28	-0.00017
13	-0.00562	21	0.00004	29	0.00008
14	-0.00151	22	-0.00056	30	-0.00024

Сходимость процесса самосогласования при расчете $C_6H_5CH_2$ методом НХФ (ω – номер итерации), *ат. ед.*

6.3. Обсуждение результатов расчета

Сначала рассмотрим структуру спектра и отнесение одноэлектронных энергий бензильного радикала (табл. 2). Принятые в расчете нумерация атомов и выбор координатных осей показаны на рис. 1.

Рис. 1. Система координат и нумерация атомов в бензильном радикале.

Семь нижних МО относятся к электронам 1*s* атомов С. Все атомы С в бензильном радикале разбиваются на две группы. В первую группу входят атомы C_1 , C_4 и C_7 , не имеющие комплементарных относительно оси симметрии $C_2(z)$. В соответствии с группой симметрии радикала $C_{2\nu}$, МО, относящиеся в основном к этим атомам, имеют симметрию a_1 . Остальные атомы С разбиваются по два еще на две подгруппы: C_2 , C_6 и C_3 , C_5 . Каждой подгруппе

соответствует пара МО, одна симметрии a_1 , а другая – симметрии b_1 . Итак, σ -остов радикала образован двумя МО симметрии b_1 и пятью МО симметрии a_1 .

Таблица 2

c^{α}	Симметрия и	c^{β}	c^{α}	Симметрия и	c^{β}
ε,	отнесение	ε _i	ε,	отнесение	ε _i
-0.5302	6 <i>b</i> ₁	-0.5288	0.5784	$10b_1 \sigma^*(C-H)$	0.5819
-0.5622	5 <i>b</i> ₁	-0.5520	0.5697	$5b_2 \pi^*$	0.5882
-0.6038	11 <i>a</i> ₁	-0.6028	0.5675	$17a_1 \sigma^*(C-H)$	0.5741
-0.6303	10 <i>a</i> ₁	-0.6222	0.5618	$9b_1 \sigma^*(C-H)$	0.5613
-0.7865	9 <i>a</i> ₁	-0.7745	0.5360	$16a_1 \sigma^*(C-H)$	0.5349
-0.8291	4 <i>b</i> ₁	-0.8263	0.5247	$15a_1 \sigma^*(C-H)$	0.5320
-0.9581	8 <i>a</i> ₁	-0.9072	0.4564	$14a_1 \sigma^*(C-H)$	0.4730
-1.0525	3 <i>b</i> ₁	-1.0476	0.3472	$4b_2 \pi^*$	0.3902
-1.0935	7 <i>a</i> ₁	-1.0784	0.3029	$2a_2 \pi^*$	0.3158
-1.1945	$6a_1 \sigma(C-C)$	-1.1870	- <u>0.1303</u>	$3b_2$ π, π^*	0.2178
-11.3173	$5a_1 1s(C_1)$	-11.3198	-0.2106	$1a_2 \pi$	- <u>0.1940</u>
-11.3319	$2b_1$ $1s(C_2, C_6)$	-11.3292	-0.2778	$2b_2 \pi$	-0.2132
-11.332_{0}	$4a_1 1s(C_2, C_6)$	-11.3293	-0.3923	$1b_2 \pi$	-0.3686
-11.3329	$3a_1 1s(\bar{C}_3,\bar{C}_5;\bar{C}_4)$	-11.3315	-0.4162	$8b_1 \sigma(C-H)$	-0.4153
-11.3330	$1b_1 1s(C_3, C_5)$	-11.3352	-0.4251	13 <i>a</i> ₁	-0.4204
-11.3343	$2a_1$ $1s(\dot{C}_4; \dot{C}_3, \dot{C}_5)$	-11.3354	-0.4839	$7b_1$	-0.4752
-11.3534	$1a_1$ $1s(C_7)$	-11.3483	-0.5138	12 <i>a</i> ₁	-0.5064

Структура и отнесение энергетических уровней спектра основного состояния $C_6H_5CH_2$, *ат. ед.* ($\omega = 30$, ВЗМО подчеркнуты)

Далее следует валентная оболочка радикала. Орбитали ее σ -составляющей имеют, как и о́стовные MO, симметрию a_1 и b_1 , а π -составляющей – симметрию a_2 и b_2 . В соответствии с классической формулой бензильного радикала, σ -подоболочка состоит из 14 MO, что равно общему числу σ -связей С–С и С–Н. Поскольку число пар комплементарных связей равно шести, то из 14 MO шесть имеют симметрию b_1 , а остальные – симметрию a_1 . Четкое отнесение этих MO по связям выполнить невозможно из-за близости их энергий. Можно лишь сказать, что нижние MO σ -подоболочки относятся к связям С–С, а самые верхние – к связям С–Н. Промежуточные MO – смешанные.

Неэмпирический расчет приводит к той же структуре π -подоболочки, особенно ее заполненной электронами части, что и π -электронная модель. Обратим внимание на то обстоятельство, что в нашем расчете верхняя

незаполненная π^* -MO 5 b_2 отделена от остальных π -MO набором разрыхляющих MO $\sigma^*(C-H)$.

Тесная между полуэмпирическим π-электронным аналогия И неэмпирическим описаниями заполненной электронами части π-подоболочки видна из табл. 3, в которой сопоставлены приведенные значения $\varepsilon_i^{\prime \alpha}$ и спектр π-ΜΟ одноэлектронных энергий \mathcal{E}_{i}^{π} , вычисленный В π-электронном приближении ограниченным методом ССП по теории открытой оболочки [15 - 17].

> Таблица 3 Сопоставление энергетических спектров π-МО бензильного радикала, рассчитанных неэмпирически и в π-электронном приближении*, эв

i	$\mathcal{E}_{i}^{\primelpha}$	${\cal E}^{\pi}_i$
$5b_2$	13.375	3.392
$4b_2$	7.345	0.536
$2a_2$	6.145	-0.007
$3b_2$	(-5.595)	-5.595
$1a_{2}$	-7.771	-11.183
$2b_2$	-9.592	-11.726
$1b_2$	-12.695	-14.582

Как показывает наш опыт проведения неэмпирических расчетов, расширение базисного набора может привести к тому, что отдельные π -MO станут более устойчивыми, чем некоторые σ -орбитали. В таком случае можно ожидать существенного σ - π -взаимодействия. На основании наших расчетов нет оснований ожидать наличия сильного σ - π -взаимодействия в бензильном радикале. Наши результаты подтверждают обычную схему энергетических уровней бензильного радикала, которая получается в π -электронном приближении.

В табл. 4 приведено распределение спиновой плотности $\rho^{\pi}(C)$ и $\rho(H)$ на ядрах атомов С и Н бензильного радикала и проведено сопоставление вычисленных сверхтонких расщеплений на протонах с опытными данными.

Как и многие расчеты в π -электронном приближении, неэмпирические вычисления привели к близким значениям π -спиновой плотности $\rho^{\pi}(C)$ на *орто-* и *пара*-атомах углерода. Пользуясь далее простым уравнением Мак-Коннела, получаем одинаковые расщепления на *орто-* и *пара*-протонах, что не согласуется с опытными данными. Вместе с тем прямое вычисление спиновой плотности на протонах приводит к правильному отношению соответствующих расщеплений. Мы еще вернемся ниже к более подробному обсуждению этой «проблемы» бензильного радикала.

Перейдем, однако, к проектированию результатов расчета на чистое дублетное состояние.

Таблица 4

Спиновая плотность и сверхтонкие расщепления *а^н* в бензильном радикале, вычисленные методом НХФ без проектирования

Атом	$\rho^{\pi}(C)$	а ^н , Э					$\rho(\mathrm{H})$	Атом
		Расчет*	Опыт		Расчет**			
			[18]	[19]	[20]			
C ₂	0.2760	-7.45	5.14	5.15	5.08	-5.88	-0.011 ₆	H ₈
C ₃	-0.191 ₆	5.17	1.79	1.75	1.7	3.95	0.0078	H ₉
C_4	0.2757	-7.44	6.14	6.18	6.18	-6.18	-0.0122	H_{10}
C ₇	0.7671	-18.72	16.35	16.35	15.7	-15.20	-0.030_{0}	H ₁₃

* Вычислено по уравнению Мак-Коннела [21, 22] с константами $Q_{CH}^{H} = -27$ и $Q_{CH_{2}}^{H} = -24.4$ э [23].

** Вычислено по уравнению $a^{\rm H} = Q^{\rm H} \rho_z({\rm H})$ с константой $Q^{\rm H}$, равной сверхтонкому расщеплению в свободном атоме водорода (506.82 э).

6.4. Метод полного проектирования волновой функции НХФ на состояние с определенной спиновой мультиплетностью

Волновая функция НХФ имеет вид (33/§ 2.1). Орбитали поднаборов { φ_{ia} } и { φ_{ib} }, входящие в (33/§ 2.1), в общем случае не удовлетворяют соотношениям (27/§ 2.1). Однако, всегда можно найти такие унитарные матрицы *U* и *V*, что орбитали $\varphi'_{sa} \equiv \chi_s$ и $\varphi'_{rb} \equiv \eta_r$, заданные соотношениями (25/§ 2.1) и (26/§ 2.1), будут удовлетворять (27/§ 2.1). Приведем метод построения матриц *U* и *V*.

Введем обозначения

$$O_{ij} = \left\langle \varphi_{ib} \middle| \varphi_{ja} \right\rangle. \quad \begin{pmatrix} i = 1, 2, ..., m \\ j = 1, 2, ..., n \end{pmatrix}$$
(1)

и построим матрицу

$$\boldsymbol{A} = \boldsymbol{O}^{\dagger} \boldsymbol{O} \,. \tag{2}$$

Поскольку O – прямоугольная матрица $m \times n$, то A будет квадратной матрицей $n \times n$. Из (2) следует, что A – эрмитова матрица:

$$\boldsymbol{A}^{\dagger} = (\boldsymbol{O}^{\dagger}\boldsymbol{O})^{\dagger} = \boldsymbol{A}. \tag{3}$$

Для вычисления унитарной матрицы *V* следует решить задачу на собственные значения

$$AV = VD, \qquad (4)$$

где

 $D_{ik} = d_k \delta_{ik}. \quad (d_{k+1} \le d_k)$

$$OAV = OVD \tag{5}$$

или

BK = KD,

где

$$\boldsymbol{B} = \boldsymbol{O}\boldsymbol{O}^{\dagger}, \quad \boldsymbol{K} = \boldsymbol{O}\boldsymbol{V}. \tag{6}$$

$$\boldsymbol{K}^{\dagger}\boldsymbol{K} = \boldsymbol{V}^{\dagger}\boldsymbol{A}\boldsymbol{V} = \boldsymbol{D},\tag{7}$$

т.е.

$$\sum_{i=1}^{m} K_{il} K_{ip} = d_l \delta_{lp}, \quad (l, p = 1, 2, ..., n)$$
(8)

откуда следует, что *К* – ортогональная матрица.

Казалось бы, что столбцы матрицы K образуют n линейно независимых векторов. Однако, поскольку ранг матрицы B (6) равен m, то согласно (5) может быть только m ($\leq n$) линейно независимых столбцов матрицы K, а остальные n-m столбцов должны либо совпадать с некоторыми из m линейно независимых столбцов, либо равны нулю. В силу (8) реализуется последний случай. Таким образом, n-m последних столбцов матрицы K имеют нулевую длину, а n-m собственных значений матрицы A равны нулю.

Запишем матрицу К в виде

$$\boldsymbol{K} = \boldsymbol{U}\boldsymbol{T},\tag{9}$$

где

$$T_{ij} = t_j \delta_{ij}, \quad (j = 1, 2, ..., m)$$
 (10)

$$t_j = \left(\sum_{i=1}^m K_{ij}^2\right)^{-1/2}.$$
 (11)

Из (7) – (11) следует, что матрица U – унитарная, если исключить из нее последние n-m столбцов. Домножив (9) слева на U^{\dagger} , с учетом (6) получим

$$\boldsymbol{U}^{\dagger}\boldsymbol{O}\boldsymbol{V}=\boldsymbol{T}.$$

Из (12) следует, что

$$\langle \eta_r | \chi_s \rangle = \lambda_r \delta_{rs},$$
 (13)

причем

$$\lambda_r = t_r = \sqrt{d_r}. \quad (r = 1, 2, ..., m)$$

Итак, две унитарные матрицы U и V диагонализуют матрицу O. Величины λ_r имеют смысл интегралов перекрывания соответствующих орбиталей χ_r и η_r . Отметим также, что преобразование (25/§ 2.1) – (26/§ 2.1) не изменяет волновой функции (33/§ 2.1) в силу унитарности матриц U и V. Поэтому в дальнейшем будем предполагать, что $\Psi^{(UHF)}$ имеет вид (33/§ 2.1), если в это выражение вместо Φ_1 подставить

$$\Phi'_1 = \chi_1(1)\chi_2(2)\cdots\chi_n(n)\eta_1(n+1)\eta_2(n+2)\cdots\eta_m(N).$$

Перейдя от самосогласованных орбиталей $\{\varphi_{i;a,b}\}$ к соответствующим орбиталям, мы можем использовать для проектирования волновой функции НХФ методы, описанные в разделе 2.1. Для анализа одноэлектронных матриц плотности наиболее удобным является метод Гарримана [24]. Перейдем от соответствующих орбиталей χ_i и η_i к естественным орбиталям v_i с помощью соотношений [24, 25]

$$\begin{aligned}
\nu_r &= (2+2\lambda_r)^{-1/2} (\chi_r + \eta_r), \quad (r = 1, 2, ..., m) \\
\nu_r &= \chi_r, \quad (r = m+1, m+2, ..., n) \\
\nu_{N+1-r} &= (2-2\lambda_r)^{-1/2} (\chi_r - \eta_r). \quad (r = 1, 2, ..., m)
\end{aligned}$$
(14)

В [24] показано, что орбитали *v_i* диагонализуют матрицу электронной плотности, построенную на функции (33/§ 2.1), а именно:

$$P(\vec{r}, \vec{r}') = \sum_{i=1}^{N} n_i v_i(\vec{r}) v_i^*(\vec{r}'), \qquad (15)$$

где числа заполнения

$$n_{i} = 1 + \lambda_{i}, \quad (i = 1, 2, ..., m)$$

$$n_{i} = 1, \qquad (i = m + 1, m + 2, ..., n)$$

$$n_{N+1-i} = 1 - \lambda_{i}. \quad (i = 1, 2, ..., m)$$
(16)

Матрица спиновой плотности на волновой функции НХФ (33/§ 2.1) имеет вид

$$\rho_{z}(\vec{r},\vec{r}') = \sum_{i=1}^{N} \tilde{n}_{i} \tilde{v}_{i}(\vec{r}) \tilde{v}_{i}^{*}(\vec{r}'), \quad (z \parallel \pi \text{-MO})$$
(17)

где естественные спин-орбитали

$$\tilde{v}_{i} = \frac{1}{\sqrt{2}} (v_{i} + v_{N+1-i}), \quad (i = 1, 2, ..., m)$$

$$\tilde{v}_{i} = v_{i}, \qquad (i = m+1, m+2, ..., n)$$

$$\tilde{v}_{N+1-i} = \frac{1}{\sqrt{2}} (v_{i} - v_{N+1-i}), \quad (i = 1, 2, ..., m)$$
(18)

а соответствующие им числа заполнения

$$\begin{split} \tilde{n}_{i} &= +\sqrt{1 - \lambda_{i}^{2}}, \quad (i = 1, 2, ..., m) \\ \tilde{n}_{i} &= 1, \qquad (i = m + 1, m + 2, ..., n) \\ \tilde{n}_{N+1-i} &= -\sqrt{1 - \lambda_{i}^{2}}. \quad (i = 1, 2, ..., m) \end{split}$$
 (19)

Проектированная волновая функция для состояния с мульплетностью 2S + 1 определяется определяется выражением (34/§ 2.1). Матрицы электронной γ и спиновой плотности δ на функции (34/§ 2.1) имеют вид:

$$\gamma(\vec{r}, \vec{r}') = \sum_{i=1}^{N} \xi_i v_i(\vec{r}) v_i^*(\vec{r}'), \qquad (20)$$

$$\delta(\vec{r},\vec{r}') = \sum_{i=1}^{N} \tilde{\xi}_i \tilde{\nu}_i(\vec{r}) \tilde{\nu}_i^*(\vec{r}'), \qquad (21)$$

отличаясь от аналогичных матриц на непроектированной волновой функции (33/§ 2.1) лишь числами заполнения, которые для состояния с наименьшей мультиплетностью $\left(S = M_s = \frac{1}{2}(n-m)\right)$ определяются следующим образом: $\xi_i = 1 + \lambda_i \omega_S(i) / \omega_S, \quad (i = 1, 2, ..., m)$ $\xi_i = 1, \quad (i = m + 1, m + 2, ..., n)$ (22) $\xi_i = 1 - \lambda_i \omega_S(i) / \omega_S, \quad (i = 1, 2, ..., m)$ $\tilde{\xi}_i = \frac{S}{S+1} \left[\left(1 + \sqrt{1 - \lambda_i^2}\right) \omega_S(i) / \omega_S - 1 \right], \quad (i = 1, 2, ..., m)$ $\tilde{\xi}_i = 1 + \frac{1}{S+1} \sum_{j=1}^m \left[1 - \omega_S(j) / \omega_S \right], \quad (i = m + 1, m + 2, ..., n)$ (23) $\tilde{\xi}_{N+1-i} = \frac{S}{S+1} \left[\left(1 - \sqrt{1 - \lambda_i^2} \right) \omega_S(i) / \omega_S - 1 \right], \quad (i = 1, 2, ..., m)$

где ω_s определяется, как будет показано позже, выражением (151/§ 9.4.3). Сейчас отметим только, что величина ω_s есть интеграл перекрывания волновой функции НХФ с ее проекцией на состояние мультиплетности 2*S*+1. Величины $\omega_s(i)$ есть интегралы перекрывания тех же функций, у которых отсутствуют соответствующие орбитали η_i и χ_i .

Формулы (14) – (23) достаточны для вычисления одноэлектронных матриц плотности на волновых функциях НХФ до и после полного проектирования, если заданы соответствующие орбитали $\{\eta_i\}$ и $\{\chi_i\}$.

6.5. Орбитальный анализ электронной и спиновой заселенности атомов бензильного радикала без проектирования

Воспользуемся результатами расчета бензильного радикала *ab initio* (§ 6.2) и вычислим зарядовые и спиновые заселенности базисных АО на функциях вида (33/§ 2.1) и (34/§ 2.1), т. е. без проектирования волновой функции НХФ и с ее полным проектированием на дублетное состояние. Атомы бензильного радикала содержат 49 электронов. Следовательно, в выражениях предыдущего параграфа следует положить $n = 25, m = 24, M_s = 1/2$. В качестве базисных АО в расчете использовались 56 групп гауссовых функций (§ 6.2). Таким образом, самосогласованные МО имеют вид

$$\varphi_{i\sigma} = \sum_{\mu=1}^{56} c_{i\mu}^{(\sigma)} \kappa_{\mu}, \quad (i = 1, 2, ..., 56; \sigma = \alpha, \beta)$$

где через κ_{μ} обозначена АО, аппроксимируемая μ -ой группой гауссовых функций. В качестве исходных данных использовались коэффициенты $c_{i\mu}^{(\sigma)}$, полученные при расчете бензильного радикала *ab initio*, а также матрица перекрывания \hat{S} базисных АО. Следует иметь в виду, что самосогласование было проведено в § 6.2 с точностью до нескольких единиц четвертого знака после запятой (табл. 1) в значениях $c_{i\mu}^{(\sigma)}$. Примерно с такой же точностью верны приведенные ниже результаты.

Заселенность атомов и связей электронами со спином σ определяется соответствующими элементами матриц

$$\boldsymbol{R}_{\sigma} = \frac{1}{2} \left(\boldsymbol{S} \boldsymbol{P}_{\sigma} + \boldsymbol{P}_{\sigma} \boldsymbol{S} \right), \tag{24}$$

где *S* – матрица перекрывания базисных функций,

$$P_{\mu\nu,\sigma} = \sum_{i} c_{i\mu}^{(\sigma)} c_{i\nu}^{(\sigma)}$$
(25)

с суммированием по заполненным орбиталям. Сумма матриц

$$\boldsymbol{P} = \boldsymbol{R}_{\alpha} + \boldsymbol{R}_{\beta}$$

определяет электронную заселенность базисных групп, атомов и связей, а разность

$$\boldsymbol{\rho} = \boldsymbol{R}_{\alpha} - \boldsymbol{R}_{\beta}$$

дает нам спиновую заселенность. Результаты вычисления электронной и спиновой заселенности атомов Н бензильного радикала и зарядов на атомах водорода приведены в табл. 5.

Таблица 5

Электронная и спиновая заселенность атомов водорода и зарядов на атомах водорода бензильного радикала *ab initio*

Св-во	H_8	H9	H_{10}	H ₁₃
R_{α}	0.607	0.618	0.608	0.588
R_{β}	0.619	0.610	0.620	0.618
Р	1.226	1.228	1.228	1.206
Q	-0.226	-0.228	-0.228	-0.206
ρ	-0.011 ₆	0.0078	-0.0122	-0.0300

По этим данным вычислялись спиновая плотность и сверхтонкие расщепления a^{H} в бензильном радикале, вычисленные методом НХФ без проектирования и приведенные в табл. 4.

Отметим, что наименее отрицательно заряжены в нашем расчете оказались атомы водорода метиленовой группы. Отрицательный заряд на атомах водорода возрастает при переходе от *орто*-протона к *пара*-протону.

В табл. 6 помещены результаты анализа электронной и спиновой заселенности базисных АО атомов углерода бензильного радикала. Для орбиталей типа *s* приведена суммарная заселенность, поскольку электроны 1*s* и 2s аппроксимировались одним и тем же орбитальным базисом. При аппроксимации электронов типа 2р оси симметрии линейных комбинаций соответствующих базисных функций ориентировались вдоль направления связей С-Н бензольного кольца и перпендикулярно к нему, а в случае атома углерода метиленовой группы – вдоль С₁-С₇ и перпендикулярно к ней. Соответствующие компоненты обозначены как $2p\sigma(\parallel)$ и $2p\sigma(\perp)$. В этой же таблице приведены орбитальные и суммарные значения зарядов Q на атомах углерода. Они вычислены относительно орбитального распределения в состоянии ${}^{5}S$ атома углерода. Все атомы углерода бензильного радикала несут положительный заряд. Он имеет наибольшее значение на атоме углерода метиленовой группы и наименьшее – на соседнем с ним атоме кольца. Метаатом C₃ заряжен больше, чем его соседи, из которых орто-атом C₂ заряжен меньше, чем *пара*-атом С₄. Заряды на атомах обусловлены σ-оболочками радикала, причем значительные отрицательные заряды орбиталей типа $2p\pi$ с большим избытком компенсируются положительными зарядами орбиталей 2р .
Таблица 6

Орбитали	Св-во	C1	C2	C3	C4	C7
	R_{α}	1.657	1.646	1.627	1.644	1.637
	R_{β}	1.679	1.626	1.643	1.625	1.581
1s + 2s	Р	3.336	3.272	3.270	3.269	3.218
	ρ	-0.022	0.020	-0.016	0.019	0.056
	Q	-0.336	-0.272	-0.270	-0.269	-0.218
	R_{α}	0.389	0.351	0.342	0.349	0.394
	R_{β}	0.410	0.343	0.349	0.340	0.372
$2p\sigma()$	Р	0.799	0.694	0.691	0.689	0.766
	ρ	-0.021	0.008	-0.007	0.009	0.022
	Q	0.201	0.306	0.309	0.311	0.234
	R_{α}	0.398	0.416	0.400	0.412	0.333
	R_{β}	0.411	0.405	0.413	0.400	0.312
$2p\sigma(\perp)$	Р	0.809	0.821	0.813	0.812	0.645
	ρ	-0.013	0.011	-0.013	0.012	0.021
	Q	0.191	0.179	0.187	0.188	0.355
	R_{α}	0.358	0.648	0.401	0.643	0.901
	R_{β}	0.574	0.372	0.590	0.368	0.133
$2p\pi$	Р	0.932	1.020	0.991	1.011	1.034
	ρ	-0.216	0.276	-0.189	0.275	0.768
	Q	0.068	-0.020	0.009	-0.011	-0.034
	R_{α}	0.787	0.767	0.742	0.761	0.727
	R_{β}	0.821	0.748	0.762	0.740	0.684
$2p\sigma$	Р	1.608	1.515	1.504	1.501	1.411
	ρ	-0.034	0.019	-0.020	0.021	0.043
	Q	0.392	0.485	0.496	0.499	0.589
	R_{α}	1.145	1.415	1.143	1.404	1.628
	R_{β}	1.395	1.120	1.352	1.108	1.817
2 <i>p</i>	Р	2.540	2.535	2.495	2.512	2.445
	ρ	-0.250	0.295	-0.209	0.296	0.811
	Q	0.460	0.465	0.505	0.488	0.555

Орбитальные и суммарные электронные и спиновые заселенности атомов углерода бензильного радикала

	R_{α}	2.444	2.413	2.369	2.405	2.364
	R_{β}	2.500	2.374	2.405	2.365	2.265
σ	Р	4.944	4.787	4.774	4.770	4.629
	ρ	-0.056	0.039	-0.036	0.040	0.099
	Q	0.056	0.213	0.226	0.230	0.371
	R_{α}	2.802	3.061	2.770	3.048	3.265
	R_{β}	3.074	2.746	2.995	2.733	2.398
$\sigma \!\!+\!\! \pi$	Р	5.876	5.807	5.765	5.781	5.663
	ρ	-0.272	0.315	-0.225	0.315	0.867
	Q	0.124	0.193	0.235	0.219	0.337
Орбитали	Св-во	C1	C2	C3	C4	C7

Оболочки π -симметрии вносят незначительный вклад в суммарные заряды. В отличие от π -электронного приближения получается неоднородное распределение π -электронной заселенности атомов углерода. Примечательно также то, что π -заряды альтернируют: они положительны на атомах C₁, C₃ и C₅ и отрицательны на соседних атомах.

Воспользовавшись значениями зарядов (таблицы 5 и 6), были посчитаны вклады орбиталей и отдельных групп атомов в дипольный момент бензильного радикала. Соответствующие результаты приведены в табл. 7.

Таблица 7

Атомные и орбитальные вклады в дипольный момент бензильного радикала

Ορбитаци	Атомы Н		Атомы С			$\mathbf{\nabla}$	
Оронтали	$H_8 - H_{12}$	H ₁₃ ,H ₁₄	Bce H	$C_1 - C_6$	C ₇	Bce C	
1s + 2s	-2.72	+6.42	+3.70	+0.46	+2.91	+3.37	+7.07
$2p\sigma()$	—	—	—	+0.76	-3.13	-2.37	-2.37
$2p\sigma(\perp)$	—	—	—	+0.03	-4.74	-4.71	-4.71
$2p\pi$	—	—	—	-0.33	+0.45	+0.12	+0.12
$2p\sigma$	—	—	—	+0.79	-7.87	-7.08	-7.08
2 <i>p</i>	—	—	—	+0.46	-7.42	-6.96	-6.96
σ	-2.72	+6.42	+3.70	+1.25	-4.96	-3.71	-0.01
$\sigma + \pi$	-2.72	+6.42	+3.70	+0.92	-4.51	-3.59	+0.11

Дипольный момент получился равным 0.11*D* с отрицательным концом диполя на метиленовой группе.

Основной вклад в дипольный момент дают π -оболочки радикала. В σ -оболочках вклады от орбиталей типа *s* и 2*p* практически компенсируют друг друга.

325

Опираясь на данные таблиц 5 и 6, проанализируем спиновые заселенности базисных АО бензильного радикала более подробно. Спиновая заселенность AO атомов углерода положительна на атомах C_2 , C_4 , C_6 , C_7 и отрицательная на соседних атомах (табл. 6). Такой характер альтернирования спиновой заселенности имеет место во всех оболочках (1s, 2s, $2p\sigma$, $2p\pi$) бензильного радикала. Преимущественный вклад в значения спиновой заселенности атомов углерода дают *п*-оболочки радикала. Спиновая заселенность атомов водорода (табл. 5) положительна только на мета-протоне (H₉, H₁₁). В табл. 4 экспериментальные значения расщеплений сверхтонкой структуры а в спектре ЭПР бензильного радикала сопоставлены с теоретическими значениями расщеплений, рассчитанными двумя способами. В одном случае расщепления простейшему уравнению Мак-Коннела из π -спиновых вычислялись по плотностей (табл. 5) на атомах углерода, соседних с протонами. При таком способе расчета расщепление на орто-протоне получается больше, чем на пара-протоне, независимо от того, используются ли значения π-спиновых плотностей, полученных неэмпирически (табл. 6) или В рамках полуэмпирических подходов (§ 2.7.3.7 и Приложение П-7). Такая ситуация характерна для всех известных случаев оценки расщеплений на орто- и парапротонах бензильного радикала посредством простого уравнения Мак-Коннела. Из анализа экспериментального спектра ЭПР бензильного радикала следует, что в противоположность этим расчетам расщепление на *пара*-протоне больше, чем на орто-протоне. Это свидетельствует о необходимости использования обобщенного уравнения Мак-Коннела [26] для расчетов СТС спектров ЭПР свободных радикалов.

В рамках неэмпирического расчета возможно непосредственное вычисление расщеплений СТС с использованием спиновых заселенностей АО атомов водорода. Как видно из табл. 4, такой расчет дает удовлетворительное количественное согласие расщеплений с экспериментом, если спиновые заселенности вычисляются на волновой функции НХФ. При этом оказывается, что расщепление на *пара*-протоне больше, чем на *орто*-протоне несмотря на то, что разность π -спиновых плотностей на соответствующих атомах углерода имеет обратный знак.

Таким образом, наш неэмпирический расчет подтверждает вытекающее из сопоставлений экспериментальных расщеплений СТС спектра ЭПР бензильного радикала с соответствующими значениями π -электронных спиновых заселенностей заключение, что связь между этими величинами является более сложной, чем это следует из простого уравнения Мак-Коннела.

326

6.6. Электронное строение бензильного радикала в модели НХФ с проектированием волновой функции на дублетное состояние

Воспользовавшись результатами § 6.4, выполним проектирование волновой функции НХФ бензильного радикала на дублетное состояние. Необходимые для вычисления соответствующих орбиталей элементы матрицы *О* вычислялись по формуле

$$O_{ij} = \sum_{\mu,\nu=1}^{56} c_{i\mu}^{(\beta)} S_{\mu\nu} c_{j\nu}^{(\alpha)}.$$
 (26)

Для вычисления матриц матриц U и V, а также соответствующих орбиталей, использовались соотношения (4) – (12).

В табл. 8 даны значения интегралов перекрывания λ_i и $\omega_{1/2}(i)$.

Таблица	8
Интегралы перекрывания соответствующих орби	италей λ_i
и вклад проектированной функции (34/§ 2.	.1)
в функцию НХФ (33/§ 2.1) бензильного ради	кала

Симм.	i	λ_{i}	$\omega_{\!_{1/2}}(i)$	$\omega_{\mathrm{l/2}}(i)/\omega_{\mathrm{l/2}}$
	1–17	1.0000	0.9536	1.0000
	18	0.9994	0.9540	1.0004
σ	19	0.9980	0.9549	1.0014
	20	0.9959	0.9562	1.0027
	21	0.9918	0.9587	1.0053
	22	0.9900	0.9599	1.0066
π	23	0.9787	0.9670	1.0141
	24	0.9741	0.9699	1.0171

Все величины λ_i близки к единице, что свидетельствует о незначительной разнице между орбиталями $\{\varphi_{ia}\}$ и $\{\varphi_{ib}\}$. На это же указывает близость соответствующих им одноэлектронных энергий ε_i^{α} и ε_i^{β} . Различие между ними усиливается по мере роста ε_i^{σ} . Аналогичная ситуация наблюдается и при расчетах электронной структуры молекулярных систем в π -электронном приближении.

Из табл. 8 следует, что вес дублетной компоненты $\omega_{1/2}$ в непроектированной функции равен 0.9536. Таким образом, доминирующий вклад в волновую функцию НХФ бензильного радикала дает дублетное состояние.

Вычислим среднее значение оператора \hat{S}^2 на волновой функции НХФ бензильного радикала. Для этого воспользуемся формулой

$$\left\langle \hat{S}^{2} \right\rangle = M_{S}^{2} + \frac{N}{2} - \sum_{i,j=1}^{N} R_{\alpha}(i,j) R_{\beta}(j,i),$$
 (27)

где $R_{\sigma}(i, j)$ – элементы матрицы электронной заселенности со спином σ в представлении естественных орбиталей v_i (14). Учитывая (14), выпишем отличные от нуля матричные элементы $R_{\sigma}(i, j)$, а именно:

$$R_{\alpha}(i,i) = R_{\beta}(i,i) = \begin{cases} (1+\lambda_{i})/2, & (i \le m) \\ (1-\lambda_{i})/2, & (i > n) \end{cases}$$

$$R_{\sigma}(i,i) = \delta_{\sigma\alpha}, \qquad (i = m+1, m+2, ..., n)$$

$$R_{\sigma}(i,\bar{i}) = \tau_{\sigma}\sqrt{1-\lambda_{i}^{2}}/2, \qquad (i = 1, 2, ..., m)$$

$$\bar{i} = N+1-i, \quad \tau_{\sigma} = \begin{cases} 1, & (\sigma = \alpha) \\ -1, & (\sigma = \beta) \end{cases}$$
(28)

Подставляя (28) в (27), получаем

$$\left\langle \hat{S}^{2} \right\rangle = M_{S}^{2} + \frac{N}{2} - \sum_{i=1}^{N} \left[R_{\alpha}(i,i) R_{\beta}(i,i) + R_{\alpha}(i,\overline{i}) R_{\beta}(\overline{i},i) \right] = M_{S}^{2} + M_{S} + \sum_{i=1}^{m} (1 - \lambda_{i}^{2}) = 0.893, \quad (29)$$

тогда как для чистого дублетного состояния $\langle \hat{S}^2 \rangle = 0.75$, т. е. вклад в \hat{S}^2 состояний с более высокой мультиплетностью равен 16%.

Оценим вклад в среднее значение \hat{S}^2 состояний с различной мультиплетностью. Для этого представим (27) в виде

$$\left\langle \hat{S}^{2} \right\rangle = \sum_{S=M_{S}}^{N/2} S(S+1)\omega_{S,M_{S}}, \tag{30}$$

причем $\sum_{S=M_S}^{N/2} \omega_{S,M_S} = 1.$

Положив в (30) отличными от нуля ω_{S,M_S} при $S = M_S = \frac{1}{2}$ и $S = \frac{3}{2}$ и взяв значение $\omega_{1/2,1/2} \equiv \omega_{1/2}$ из табл. 8, получим

$$\langle \hat{S}^2 \rangle = \frac{3}{4} \omega_{1/2} + \frac{15}{4} (1 - \omega_{1/2}) = 0.8892.$$
 (31)

Сравнивая (31) и (29), найдем, что вклад квартетного состояния в \hat{S}^2 равен 15.7%, тогда как его вес $\omega_{3/4,1/2}$ меньше 4.6%. Состояния с более высокой мультиплетностью вносят в \hat{S}^2 всего 0.3%. Проведенная оценка вкладов функцию бензильного высших мультиплетов НХΦ радикала В И соответствующее ей значение \hat{S}^2 свидетельствует о том, что проектирование существенно сказаться может лишь на спиновых характеристиках рассматриваемой молекулярной системы.

Пусть естественные орбитали (14) и (18) имеют вид

$$\begin{aligned}
\nu_i &= \sum_{\mu=1}^{56} c_{\mu i} \kappa_{\mu}, \\
\tilde{\nu}_i &= \sum_{\mu=1}^{56} \tilde{c}_{\mu i} \kappa_{\mu}.
\end{aligned}$$
(32)

Тогда электронная и спиновая заселенность базисных АО после проектирования дается диагональными элементами матриц

$$\boldsymbol{\Gamma} = \frac{1}{2} (\boldsymbol{\gamma} \boldsymbol{S} + \boldsymbol{S} \boldsymbol{\gamma}), \tag{33a}$$

$$\boldsymbol{\Delta} = \frac{1}{2} (\boldsymbol{\delta} \boldsymbol{S} + \boldsymbol{S} \boldsymbol{\delta}), \qquad (336)$$

где в представлении базисных функций

$$\gamma_{\mu\nu} = \sum_{i=1}^{N} \xi_i c_{\mu i} c_{\nu i},$$

$$\delta_{\mu\nu} = \sum_{i=1}^{N} \tilde{\xi}_i \tilde{c}_{\mu i} \tilde{c}_{\nu i}.$$
(34)

В таблицах 9 и 10 даны значения электронной $\Gamma_{\mu\mu}$ и спиновой $\Delta_{\mu\mu}$ орбитальной и полной заселенности атомов Н и С бензильного радикала, вычисленные на проектированной волновой функции вида (34/§ 2.1).

Из сравнения с аналогичными непроектированными значениями (таблицы 5 и 6) видно, что выделение квартета и всех более высоких мультиплетов практически не влияет на распределение электронной заселенности. Поэтому все сказанное ранее о распределении зарядов в бензильном радикале остается в силе. Значения заселенности, приведенные в таблицах 9 и 10, верны с точностью до нескольких единиц последнего знака, что связано с низкой точностью исходных значений коэффициентов $c_{i\mu}^{(\sigma)}$. Эта погрешность сильно

сказывается на значениях спиновой заселенности, особенно *σ*-орбиталей, поскольку соответствующие величины малы и до проектирования.

Таблица 9

Орбитальная и суммарная электронная Г_{µµ} и спиновая $\Delta_{µµ}$ заселенность атомов углерода бензильного радикала,

вычисленные на проектированной функции*

Орбитали	Св-во	C ₁	C ₂	C ₃	C ₄	C ₇
	$\Gamma_{\mu\mu}$	3.337	3.275	3.271	3.268	3.219
1 <i>s</i> +2 <i>s</i>	$\Delta_{\mu\mu}$	-0.002	0.007	-0.002	0.001	0.006
	$\Delta'_{\mu\mu}$	-0.007	0.007	-0.005	0.006	0.019
	$\Gamma_{\mu\mu}$	0.799	0.694	0.691	0.691	0.766
$2p\sigma()$	$\Delta_{\mu\mu}$	-0.001	0.001	-0.000	0.001	0.002
	$\Delta'_{\mu\mu}$	-0.007	0.003	-0.002	0.003	0.007
	$\Gamma_{\mu\mu}$	0.809	0.821	0.814	0.812	0.645
$2p\sigma(\perp)$	$\Delta_{\mu\mu}$	-0.001	-0.000	-0.001	0.001	0.001
	$\Delta'_{\mu\mu}$	-0.004	0.004	-0.004	0.004	0.007
	$\Gamma_{\mu\mu}$	0.932	1.020	0.992	1.011	1.034
$2p\pi$	$\Delta_{\mu\mu}$	-0.069	0.164	-0.060	0.161	0.695
	$\Delta'_{\mu\mu}$	-0.072		-0.063		
	$\Gamma_{\mu\mu}$	1.608	1.515	1.505	1.502	1.411
$2p\sigma$	$\Delta_{\mu\mu}$	-0.001	0.001	-0.001	0.001	0.003
	$\Delta'_{\mu\mu}$	-0.011	0.006	-0.007	0.007	0.014
	$\Gamma_{\mu\mu}$	2.540	2.535	2.497	2.513	2.445
2 <i>p</i>	$\Delta_{\mu\mu}$	-0.070	0.164	-0.061	0.162	0.698
	$\Delta'_{\mu\mu}$	-0.083		-0.070		
	$\Gamma_{\mu\mu}$	4.945	4.790	4.776	4.770	4.630
σ	$\Delta_{\mu\mu}$	-0.006	0.007	-0.000	0.000	0.009
	$\Delta'_{\mu\mu}$	-0.019	0.013	-0.012	0.013	0.033
	$\Gamma_{\mu\mu}$	5.877	5.810	5.768	5.781	5664
$\sigma \!\!+\!\! \pi$	$\Delta_{\mu\mu}$	-0.075	0.171	-0.060	0.161	0.704
	$\Delta'_{\mu\mu}$	-0.091		-0.075		
$\frac{1}{1}$		<u>^</u> .				

* $\hat{\Delta}' = \frac{S}{S+1}\hat{\rho}$; вычисление $\hat{\Delta}'$ для $2p\pi$ оболочки атомов C₂, C₄ и C₇

требует расчета вклада от неспаренной орбитали до и после проектирования.

Таблица 10 Электронная $\Gamma_{\mu\mu}$ и спиновая $\Delta_{\mu\mu}$ заселенность

атомов водорода бензильного радикала, вычисленные на проектированной волновой функции*

Св-во	H8	H9	H10	H13		
$\Gamma_{\mu\mu}$	1.226	1.227	1.228	1.202		
$\Delta_{\mu\mu}$	-0.001	0.000	-0.001	-0.006		
$\Delta'_{\mu\mu}$	-0.004	0.003	-0.004	-0.012		
$*\hat{\Delta}' = \frac{S}{S+1}\hat{\rho}.$						

В табл. 11 приведены числа заполнения естественных орбиталей, вычисленные на волновых функциях до и после проектирования.

Таблица 11

Числа заполнения естественных орбиталей до и после проектирования

Симм.	i	n _i	ξ_i	\tilde{n}_i	$\tilde{\xi}_i$	${ ilde n_i}/{ ilde \xi_i}$
	1–17	2.0000	2.0000	0.0000	0.0000	3.00
	18	1.9994	1.9998	0.0345	0.0115	3.00
σ	19	1.9980	1.9993	0.0633	0.0216	2.93
	20	1.9959	1.9986	0.0906	0.0311	2.91
	21	1.9918	1.9971	0.1277	0.0446	2.86
	22	1.9900	1.9965	0.1411	0.0495	2.85
	23	1.9787	1.9924	0.2053	0.0741	2.77
	24	1.9741	1.9907	0.2261	0.0824	2.74
π	25	1	1	1	0.9684	1.03
	26	0.0259	0.0093	-0.2261	-0.0710	3.18
	27	0.0213	0.0076	-0.2053	-0.0647	3.17
	28	0.0100	0.0035	-0.1411	-0.0452	3.12
	29	0.0082	0.0029	-0.1277	-0.0410	3.11
	30	0.0041	0.0014	-0.0906	-0.0293	3.09
σ	31	0.0020	0.0007	-0.0633	-0.0207	3.06
	32	0.0006	0.0002	-0.0345	-0.0113	3.05
	33–49	0.0000	0.0000	-0.0000	-0.0000	3.00

Из выражений для чисел заполнения естественных спиновых орбиталей до проектирования (19) и после него (23), привлекая данные последнего столбца табл. 7, видим, что проектирование должно уменьшить эти числа примерно в

(S+1)/S = 3 раза. Этот вывод подтверждается данными табл. 11, в том числе и для π -орбиталей. Таким образом, для оценки спиновой заселенности базисных АО радикала после проектирования можно практически без потери точности воспользоваться непроектированными соответствующими значениями, разделив их на три. Полученная таким путем спиновая заселенность обозначена в таблицах 9 и 10 символом $\Delta'_{\mu\mu}$. Корректность такого подхода подтверждается еще и тем, что $Sp\hat{\Delta}' = 0.995$. Он дает малую относительную погрешность и для π -орбиталей, если не учитывать неспаренную орбиталь (i = 25), число заполнения которой в результате проектирования изменяется незначительно $\hat{\tilde{\rho}} = S / (S+1)\hat{\rho}$ (табл. 11). Можно показать, ЧТО равенство является асимптотически точным при $N \to \infty$. В нашем случае оно выполняется с большой точностью в силу малости величин $1 - \lambda_i^2$ (табл. 7).

В табл. 12 приведены *п*-электронные спиновые заселенности в бензильном радикале.

Таблица 12

(Спиновые заселенности <i>π</i> -оболочек					
	вб	бензильн	ом ради	кале		
	Δτοι	ΠΠΠ	ab initio			
	AIOM	ПКВ	НΧΦ	НХФ-СП		
	C ₁	-0.112	-0.216	-0.069		
	C ₂	0.183	0.276	0.164		
	C ₃	-0.069	-0.189	-0.060		
	C ₄	0.161	0.275	0.161		
	C ₇	0.724	0.768	0.695		

Во второй колонке этой таблицы приведены значения, рассчитанные нами в многоконфигурационном приближении с учетом полного КВ в рамках π -электронного приближения ППП (§ 2.7.3.7). В следующих двух колонках приведены значения π -электронных заселенностей, полученные в рамках неэмпирического расчета методом НХФ как с проектированием волновой функции на дублетное состояние, так и без него.

Обращает на себя внимание то обстоятельство, что π -электронные спиновые заселенности атомов углерода бензильного радикала, рассчитанные неэмпирически с проектированной волновой функцией НХФ, весьма близки к соответствующим значениям, полученным на точной волновой функции π -электронной модели ППП (§ 2.7.3.7). Очевидно, что это совпадение нельзя назвать случайным. Оно свидетельствует о том, что полуэмпирические методы

в своих лучших модификациях, в целом правильно отражают строение π -электронных оболочек.

Отметим также, что непроектированные значения спиновой заселенности атомов водорода бензильного радикала (табл. 4 и 5) гораздо лучше согласуются с экспериментальными значениями сверхтонких расщеплений на его протонах чем соответствующие проектированные значения (табл. 10). Аналогичный факт для случая неэмпирических расчетов отмечался в литературе [27, 28] и мы уже обращали на него внимание ранее на примере расчета атома Li (табл. 3/§ 2.1.1). По-видимому, в этой ситуации имеет место взаимная компенсация ошибки при вычислении спиновой плотности в методе НХФ и погрешности за счет сильно ограниченного набора исходных базисных функций. Учитывая данные табл. 11, к этому можно добавить также, что НХФ с последующим проектированием волновой функции дает гораздо лучшие результаты для π -электронов, чем для глубоко лежащих σ -электронов.

Литература

- 1. А. Т. Амос. Некоторые свойства π-ионов и триплетных состояний, В кн. *Современная квантовая химия, т.* 1 (ред. А. М. Бродский, В. В. Толмачев). Москва: Мир, 1968.
- G. G. Hall, A. T. Amos. Molecular Orbital Theory of the Spin Properties of Conjugated Molecules, In *Advances in Atomic and Molecular Physics*, v. 1, eds. D. R. Bates, I. Estermann. New York: Academic Press, 1965.
- J. A. Pople, D. L. Beveridge, P. A. Dobosh. Molecular Orbital Theory of the Electronic Structures of Organic Compounds. II. Spin Densities in Paramagnetic Species, *J. Amer. Chem. Soc.*, v. 90, 4201 – 4209 (1968).
- 4. Ю. О. Кругляк, Х. Прейсс, Р. Яношек. Неемпіричний розрахунок електронної будови бензильного радикала, *Укр. фіз.. ж.*, т. 15: 6, 977 985 (1970).
- 5. Ю. А. Кругляк, Х. Прейсс, Р. Яношек. Неэмпирический расчет электронной структуры бензильного радикала, *Укр. физ.. ж.*, т. 15: 6, 980 988 (1970).
- Ю. А. Кругляк, Х. Прейсс, Р. Яношек. Расчет электронных оболочек бензильного радикала неограниченным методом Хартри – Фока на гауссовом базисе, *Ж. структ. хим.*, т. 12: 4, 689 – 696 (1971).
- Yu. A. Kruglyak, H. Preuss, R. Janoschek. Calculation of the electron shells of the benzyl radical by the unrestricted Hartree – Fock method on a gaussian basis, *J. Struct. Chem.*, v. 12: 4, 623 – 629 (1971).
- 8. Г. М. Жидомиров, П. В. Счастнев, Н. Д. Чувылкин. *Квантовохимические расчеты магнитно-резонансных параметров. Свободные радикалы.* Новосибирск: Наука, 1978.
- 9. H. Preuss. Das SCF-LCGO-Verfahren. IV. Atomrechnungen (Schluss), Z. Naturforsch., v. 20A, 1290 – 1298 (1965).
- G. Diercksen, H. Preuss. Erste Mitteilung uber Absolutrechnungen nach der neuen SCF-MO-LC(LCGO)-Methode am Benzol und Cyclopentadienylanion, *Z. Naturforsch.*, v. 21A, 863 (1966).
- H. Preuss, G. Diercksen. Wellenmechanische Absolutrechnungen an Molekülen und Atomsystemen mit der SCF-MO-LC(LCGO) Methode. I. Das Cyclopentadienylanion(C₅H₅⁻), *Intern. J. Quantum Chem.*, v. 1: 4, 349 – 355 (1967).

- 12. G. Diercksen, H. Preuss. Wellenmechanische Absolutrechnungen an Molekülen und Atomsystemen mit der SCF-MO-LC(LCGO) Methode. II. Das Benzol (C6H6), *Intern. J. Quantum Chem.*, v. 1, 357 359 (1967).
- 13. R. Janoschek, H. Preuss, G. Diercksen. Wellenmechanische strukturuntersuchung am benzol, *Intern. J. Quantum Chem.*, v. 1S, 209 216 (1967).
- 14. H. Preuss. Gegenwärtige Möglichkeiten wellenmechanischer Absolutrechnungen an Molekülen und Atomsystemen, *Fortschritte chem. Forschung*, v. 9, n. 3 (1968).
- 15. Е. В. Моздор, Ю. А. Кругляк. Электронная структура основного состояния бензильного радикала, *Теор. экспер. химия*, т. 5: 6, 731 739 (1969).
- 16. Ю. А. Кругляк, Е. В. Моздор, В. А. Куприевич. Полное конфигурационное взаимодействие для бензильного радикала, *Укр. физ. ж.*, т. 15: 1, 48 58 (1970).
- 17. Е. В. Моздор, Ю. А. Кругляк, В. А. Куприевич. Матричные элементы операторов физических величин на одноконфигурационных функциях радикалов, *Teop.* экспер. химия, т. 5: 6, 723 730 (1969).
- 18. A. Carrington, I. C. P. Smith. The electron spin resonance spectrum and spin density distribution of the benzyl radical, *Molec. Phys.*, v. 9: 2, 137 147 (1965).
- 19. H. G. Benson, A. Hudson. On the spin density distribution in the benzyl radical, *Molec. Phys.*, v. 20: 1, 185 187 (1971).
- R. V. Lloyd, D. E. Wood. Free radicals in adamantane matrix. EPR and Indo study of the benzyl, aniline, and phenoxy radicals and their fluorinated derivatives, *J. Amer. Chem. Soc.*, v. 96: 3, 659 665 (1974).
- H. M. McConnell. Electron densities in semiquinones by paramagnetic resonance, J. Chem. Phys., v. 24: 3, 632 (1956).
- 22. H. M. McConnell. Indirect hyperfine interactions in the paramagnetic resonance spectra of aromatic free radicals, *J. Chem. Phys.*, v. 24: 4, 764 (1956).
- 23. R. W. Fessenden, R. H. Schuler. Electron spin resonance studies of transient alkyl radicals, *J. Chem. Phys.*, v. 39: 9, 2147 (1963).
- 24. J. E. Harriman. Natural Expansion of the First-Order Density Matrix for a Spin-Projected Single Determinant, J. Chem. Phys., v. 40, 2827 (1964).
- 25. K. M. Sando, J. E. Harriman. Spin-Projected and Extended SCF Calculations, *J. Chem. Phys.*, v. 47, 180 (1967).
- H. M. McConnell. Spin Density Matrices for Paramagnetic Molecules, J. Chem. Phys., v. 28, 1188 (1958).
- 27. W. A. Goddard. Improved quantum theory of many-electron systems: II. The basic method, *Phys. Rev.*, v. 157: 1, 81 93 (1967).
- 28. R. C. Ladner, W. A. Goddard. Improved Quantum Theory of Many-Electron Systems. V. The Spin-Coupling Optimized GI Method, *J. Chem. Phys.*, v. 51, 1073 (1969).

Глава 7. Анализ взаимодействия иона Li⁺ с молекулой азота

7.1. Введение

Первые указания на возможность образования стабильных комплексов металлов с молекулярным азотом появились в 1960 г. одновременно в работах [1 – 3]. Сыркин [1] для комплекса между атомом металла на поверхности и N молекулой N₂ считает наиболее выгодным перпендикулярное строение м · Ⅲ. N Сравнивая возбужденные π-π*-состояния изоэлектронных молекул CO и N₂,

Оргел [2] приходит к выводу, что перпендикулярный комплекс (ПК) является более предпочтительным по сравнению с линейным комплексом (ЛК) м · N ≡ N, С

чем м · ∥ по сравнению с м · O = C, оставляя, однако, открытым вопрос об О

абсолютной устойчивости ПК и ЛК с участием молекулы азота.

Теоретическое изучение комплексов молекулярного азота с ионами и атомами различных металлов началось вскоре после того, как была экспериментально показана возможность восстановления N₂ до гидразина и даже аммиака при комнатных условиях в растворе в присутствии соединений переходных металлов (обзоры [4 – 6] и цитированная в них литература). Этот замечательный экспериментальный факт, открывший перспективу фиксации газообразного азота в мягких условиях, и последовавший за ним синтез разнообразных комплексов с молекулярным азотом инициировали серию теоретических работ, направленных на выяснение стабильности подобных ион-молекулярных комплексов, их пространственного и электронного строения и степени активации связи N = N. Так, в работах [7, 8] методом РМХ был рассчитан комплекс Fe·N₂. Позже тем же методом рассматривались многоядерные комплексы N₂ с атомами металлов первого переходного ряда [9–13], второго [9, 10] и даже третьего ряда [9], а также биядерные комплексы с 3d- [10, 14, 15] и некоторыми 4d- [9, 10] и 5d-переходными металлами [9]. В работах [16, 17] в том же приближении РМХ развита оригинальная методика качественного рассмотрения возможных форм координации N_2 и N_4 с одним и двумя атомами первого переходного ряда. С гамильтонианом ППДП/2, однако, без самосогласования, т. е. фактически в приближении РМХ, рассчитана стабильность комплексов Li·N₂, Li·N₄ и Li₂·N₄ [18]. Модифицированным методом ППДП/2 [19] рассчитывались литиевые и натриевые комплексы M_nN₂ (n = 1, 2, 4) [20], комплексы Ni·N₂ и Co·N₂[19] и другие бинарные π -комплексы N₂ с металлами IV периода [21]. В стандартном модели ППДП/2 рассчитаны конформации комплексов Li⁺·N₂ и F⁻·N₂ [22], а также моно- и биядерных комплексов N₂ с ионами H⁺, Li⁺, B⁺ и нейтральными лигандами Be, BH₃, BF₃ [11] в связи с моделированием общих черт механизма ферментативных реакций [23, 24] и, в частности, фермент-субстратного комплекса активного центра нитрогеназы [25, 26]. Изменение электронного строения молекулы N₂, а также молекул H₂ и O₂ в поле точечного заряда рассчитывалось неэмпирически [27].

Упомянутые теоретические работы так или иначе направлены на выяснение возможности активации связи N = N и механизма восстановления молекулярного азота в присутствии атомов или ионов металлов. Поскольку степень активации может зависеть от ориентации атома (иона) металла относительно связи N = N, сначала всегда проводился поиск наиболее стабильных конформаций комплексов. Так, в случае интересующего нас комплекса $Li^+ \cdot N_2$ наиболее стабильной в стандартном приближении ППДП/2

оказывается перпендикулярная Li⁺ · **"**конформация [11, 22].

N

Второй круг вопросов, для решения которых необходимы детальные сведения о возможных конформациях и гиперповерхностях потенциальной энергии ион-молекулярных комплексов, в частности Li⁺·N₂, связан с задачей вычисления потенциалов отталкивания между атомами и молекулярными ионами, нейтральными атомами и молекулами. Потенциалы отталкивания можно оценить из экспериментальных данных по неупругому рассеянию при высоких энергиях. Подобные эксперименты выполнены преимущественно для инертных газов. Они все еще весьма сложны и, к сожалению, пока приводят к слишком широкому разбросу параметров потенциалов отталкивания, не обеспечивают достаточную точность, в частности для радиальной зависимости потенциалов. Спирс [28] показал, что область разброса параметров потенциалов отталкивания можно существенно сузить, если воспользоваться потенциальными кривыми ион-молекулярных взаимодействий, которые для этой цели должны быть вычислены с высокой точностью. Он же провел электростатический расчет потенциалов взаимодействия ионов щелочных металлов с молекулами N₂, O₂ и CO₂ [29]. Во всех случаях более стабильной оказалась линейная конформация комплексов, что находится в прямом противоречии с предсказанием метода ППДП/2 для комплекса Li⁺·N₂ [11, 22]. Намного большая стабильность линейной конформации этого комплекса окончательно утверждается высокоточными неэмпирическими расчетами Штеммлера [30], в том числе с учетом электронной корреляции, с целью интерпретации различий в рассеянии ионов Li⁺ на молекулах H₂ [31, 32], N₂ и СО [33] и приводимыми ниже результатами наших неэмпирических расчетов, предпринятых прежде всего с целью анализа энергии связи в системе Li⁺·N₂ [34].

Вычисления нами проводились методом XФ на ЭВМ IBM 370/168 Межрегионального центра электронных расчетов CIRCE (Орсей, Франция) по программе, первоначально написанной Альрихсом и др. [35] и дополненной А. Бейером методами расчленения энергии взаимодействия на отдельные составляющие.

Далее во втором параграфе подробно описываются использованные в наших расчетах орбитальные базисы, в третьем кратко обсуждаются результаты расчета подсистем комплекса – иона Li^+ и молекулы N_2 , в четвертом собраны все результаты расчета системы $Li^+ \cdot N_2$ и подробно обсуждается физическая природа связи в этой системе, что стало возможным благодаря участию Г. В. Бугрий (ИТФ АН УССР) в программировании и выполнении всех вспомогательных расчетов.

7.2. Орбитальные базисы

В расчетах использовались контрактированные орбитальные базисы безузловых сферических гауссовых функций (глава 5). Атомные орбитали *p*-и *d*-симметрии строились из примитивных гауссовых функций согласно [36].

7.2.1. Орбитальный базис иона Li⁺

Для иона Li⁺ использовался расширенный базис 9s4p, сжатый до 6(s)4p. Базис 9s был взят у Хузинаги [37], сжат до 6(s) по схеме [4,1,1,1,1,1] и дополнен четырьмя *p*-функциями из [38], где показатели экспонент этих функций оптимизировались для системы Li⁺·H₂. Полные сведения об орбитальном базисе иона Li⁺ приведены в [8/Табл. П-1].

В ХФ расчете свободного иона Li⁺ p-функции не играют никакой роли. Включение p-функций с большими значениями показателей экспонент становится существенным, если необходимо учесть поляризацию иона Li⁺ при расчете его взаимодействия с другими системами, а также для учета корреляционной энергии самого иона Li⁺ и изменения ее при расчете взаимодействия иона Li⁺ с другими электронными системами. Включение p-функций с малыми значениями показателей экспонент α существенно для учета делокализации электронной плотности с молекулы N₂ на ион Li⁺.

7.2.2. Орбитальный базис атома N

молекуле N₂ использовался Для атома азота В базис 9s4p2d, контрактированный до 5(s)3(p)2d. Базис 9s4p предложен Хузинагой [37], был сжат до 5(s)3(p) по схемам [5,1,1,1,1] для s-функций и [2,1,1] для p-функций и дополнен двумя наборами *d*-функций. Один из них с $\alpha = 0.9$ необходим для получения приемлемого значения энергии связи N₂. Однако включение только этого одного набора поляризационных *d*-функций не обеспечивает удовлетворительных значений квадрупольного момента и поляризуемости α_{\perp} молекулы N₂, которые отвечают за дальнодействующие взаимодействия в комплексе Li⁺·N₂. Поэтому был добавлен еще один набор более диффузных *d*-функций со значение показателя экспоненты $\alpha = 0.2$, которое обеспечивает хорошее расчетное значение поляризуемости.

Полные данные об орбитальном базисе атома N приведены в [8/Табл. П-2]. Система координат при расчетах комплекса Li⁺· N₂ показана на рис. 1.

Рис. 1. Нумерация атомов азота и система координат, принятая при расчете комплекса Li⁺ · N₂.

7.3. Результаты расчета иона Li^+ и молекулы N_2

Прежде чем перейти к обсуждению результатов расчета комплекса $Li^+ \cdot N_2$ приведем расчетные данные для изолированных иона Li^+ и молекулы N_2 .

7.3.1. Ион Li⁺

Точная ХФ энергия иона Li⁺ полагают равна –7.2364122 *ат. ед.* [38, 39]. В нашем базисе получается –7.2359873 *ат. ед.* [30, 38]. Разница составляет 0.0004249 *ат. ед.* и вызвана в основном недостаточно точным значением *cusp* волновой функции на ядре иона. Напомним, что величина *cusp* является исключительно чувствительным тестом поведения волновой функции в области $r \rightarrow 0$, а именно: для точного решения уравнения ХФ

$$-(\lambda+1)\frac{1}{f_{\lambda}}\left(\frac{df_{\lambda}}{dr}\right)_{r=0}=Z,$$

где λ – угловой момент, $r^{\lambda} f_{\lambda}$ – радиальная часть атомной функции, Z – заряд ядра. При решении уравнений ХФ методом разложения отклонение левой части от Z служит критерием точности аппроксимации волновой функции в области $r \rightarrow 0$. Обсуждение величин *cusp* для *s*-орбиталей приведено в [39, 40], а для $\lambda \neq 0$ – в [41]. Как показали расчеты других систем [42], эта погрешность не изменяется в сколь-нибудь заметной степени при варьировании геометрии молекулярной системы и не влияет на разностные энергетические эффекты.

В табл. 1 приводим одноэлектронные уровни энергии иона Li⁺ и его волновую функцию.

7.3.2. Молекула N₂

Молекула азота рассчитывалась нами при расстоянии между ядрами r = 2.067 *ат. ед.*, близком к экспериментальному значению равновесного расстояния $r_e = 2.074$ *ат. ед.*[43]. Одноэлектронные уровни энергии ε_i молекулы N₂ приведены в табл. 2. Собственные векторы ХФ основного состояния $X^1\Sigma_g^+$ молекулы N₂ даны в [8/Табл. П-5].

Таблица 1

i	\mathcal{E}_{i}	i	C _i
1 (1s)	-2.79220	1	0.2066580
2 (2s)	-0.19628	2	0.3448578
3-5 (2p)	-0.12465	3	0.4254947
6	-0.02954	4	0.1680437
7 – 9	0.05150	5	0.0015341
10	0.90714	6	-0.0002423
11 – 13	2.40436	7	0
14	5.20878	8	0
15 - 17	12.33272	:	
18	25.21725	18	0

Орбитальные энергии ε_i (*am. ed.*) и коэффициенты c_i орбитали 1*s* иона Li⁺

Таблица 2 Одноэлектронные уровни энергии *є*, молекулы N₂, *ат. ед.*

i	Симм.	\mathcal{E}_{i}	i	\mathcal{E}_{i}
1	$1\sigma_{g}$	-15.6793	11	0.5197
2	$1\sigma_u$	-15.6757	12	0.5240
3	$2\sigma_{g}$	-1.4709	13	0.5270
4	$2\sigma_u$	-0.7718	14, 15	0.6464
5	$3\sigma_{g}$	-0.6279	16, 17	0.7087
6,7	$1\pi_u$	-0.6082	18	0.7679
8,9		0.1744	19	0.7730
10		0.4251	20	0.9396
			:	:

Результаты нашего расчета в описанном выше базисе приведены в табл. 3 вместе с известными экспериментальными данными и результатами расчета вблизи ХФ предела [43, 44]. В данном случае полагают, что «вблизи» означает превышение расчетного значения энергии [43] над точным ХФ пределом примерно на 0.001 ат. ед. Одноконфигурационный расчет не может достаточную точность вычисления обеспечить таких свойств **N**₂ как равновесное расстояние, силовая постоянная и особенно энергия диссоциации. Даже вблизи ХФ предела погрешность расчета этих свойств составляет соответственно –3, +35 и –45%. Точность можно существенно повысить путем учета электронной корреляции. Однако для наших целей в этом нет необходимости

Таблица 3

Расчетные и экспериментальные значения свойств молекулы N₂:

 r_e – равновесное расстояние, k_e – силовая постоянная,

 D_e – энергия диссоциации, Q, H – квадру- и гексадекапольный моменты,

Сройство	Pac	Эконор				
Своиства	[30]	[43]	Экспер.			
r_e , am. $e\partial$.	2.025	2.013	2.074 [43]			
k _e , мдин/Å	31.63	30.73	22.91 [43]			
D _e , ЭВ	5.13	5.27	9.91 ¹⁾			
<i>Q</i> , ат. ед.*	-0.943^{2}	-0.947 [44]	-1.1 [45, 46]			
Н, ат. ед.*	-6.78^{2}	—	—			
$\alpha_{\parallel}, am. e\partial.*$	13.46^{2}	_	16.06 [47]			
α_{\perp} , am. ed.*	8.20 ²⁾	_	9.79 [47]			
Е, ат. ед.	$-108.95655^{2,3)}$	$-108.9928^{4)}$	—			
¹⁾ Из $D_0(\Im B) = 9$	9.76+0.005 [48] при <i>ћ</i>	$\omega_e/2 = 1179.8 \ cm^{-1} = 0$).146 э <i>В</i> [49].			
²⁾ При $r = 2.067$	7 am. ed.					
³⁾ Результат на	пего расчета. Причина	а несколько бо́льшего	значения			
E = -108.95593, приведенного в [30] и вычисленного в том же базисе						
при том же значении $r = 2.067$ <i>ат. ед.</i> , нам не известна.						
⁴⁾ При $r = 2.068 \ am. ed.$						
* 1 am. ed. $Q = 1.3449 \cdot 10^{-26}$ 3c.e. cm^2 ;						
$1 \text{ am. ed. } H = 3.7661 \cdot 10^{-43} $						
1 am. ed. $\alpha =$	$0.1482 \cdot 10^{-24} \ cm^3$.					

 $\alpha_{\parallel}, \alpha_{\perp}$ – компоненты тензора поляризуемости

Для описания взаимодействия молекулы N_2 с ионом Li⁺ более важно воспроизвести с достаточной точностью такие свойства молекулы азота как квадрупольный момент и компоненты тензора поляризуемости α . Расчетные значения этих свойств исключительно чувствительны к выбору базиса. Так, даже биэкспоненциальный базис абсолютно непригоден для вычисления Q: -1.8 [50, 51] вместо -0.95 [43]. Как видно из табл. 3, включение в базис двух наборов поляризационных функций понижает погрешность вычисления Q и α до 15 – 20 % по отношению к экспериментальным значениям, которые, кстати, известны с весьма низкой точностью.

7.4. Результаты расчета и анализ энергии взаимодействия иона Li⁺ с молекулой N₂

Результаты наших вычислений полной энергии комплекса $Li^+ \cdot N_2$ и энергии взаимодействия иона Li^+ с молекулой N_2 в линейной и перпендикулярной конформациях вместе с данными из [30] приведены в табл. 4.

Таблица 4 Полные энергии *E* комплекса $Li^+ \cdot N_2$ и энергии взаимодействия ΔE , *ккал/моль* иона Li^+ с молекулой N_2 при r = 2.067 *ат. ед.* без учета энергии корреляции ΔE_{HF} и с её учетом $\Delta E_{HF} + \Delta E_{corr}$

θ	<i>R</i> ,	E, an	п. ед.	ΛE	ΔE_{HF} +
	ат. ед.	[30]	[8] ¹⁾	ΔL_{HF}	$\Delta E_{corr}^{3)}$
	3.0	-115.74828	_	-278.48	-272.33
	4.0	-116.17786	—	-8.83	-7.35
	4.5	-116.20769	-116.20874	10.17^{2}	
0°	5.0	-116.21266	-116.21362	13.23^{2}	14.53
	5.5	-116.21029	-116.21116	11.69^{2}	
	7.0	-116.20061	_	5.45	6.05
	10.0	-116.19428	—	1.48	1.60
90°	3.0	-116.14300	_	-30.71	-30.62
	4.0	-116.19643	_	2.83	0.97
	4.5	-116.19921	-116.20026	4.85^{2}	3.1 ⁴⁾
	5.0	-116.19869	_	4.25	2.66
	7.0	-116.19426	_	1.47	0.61
	10.0	$-1\overline{16.192}\overline{44}$		0.33	0.03
	15.0	-116.19187	-116.19250	$-0.02_4^{(2)}$	_

¹⁾ Причина более низких значений *E* по сравнению с [30], вычисленными в том же базисе, нам не известна.

²⁾ Результаты наших вычислений. Остальные значения Δ*E* взяты из [30].

³⁾ Корреляционный вклад ΔE_{corr} в энергию взаимодействия оценен в [30].

⁴⁾ Найдено графической интерполяцией зависимости $\Delta E_{corr}(R)$.

Из данных в табл. 4 можно сделать следующие выводы о потенциальной поверхности этого комплекса.

Абсолютному минимуму энергетической поверхности комплекса $Li^+ \cdot N_2$ соответствует линейный комплекс с равновесным значением расстояния $R \approx 5.0 \text{ am. ed.} = 2.65 \text{ Å}$ и энергией связи около 14.5 *ккал/моль*. Седловой точке потенциальной поверхности соответствует перпендикулярный комплекс с $R \approx 4.5 \text{ am. ed.} = 2.38 \text{ Å}$ и энергией связи около 3.1 *ккал/моль*. Для комплекса $Li^+ \cdot N_2$

оценен [29] энтропийный вклад в свободную энергию ΔG его образования: $T\Delta S = -7.3 \ \kappa \kappa a n/monb$ при $T = 310 \ K$ с погрешностью около 1 $\kappa \kappa a n/monb$. Воспользовавшись расчетным значением энтропии образования этого комплекса $\Delta H = -14.5 \ \kappa \kappa a n/monb$, для свободной энергии образования получим $\Delta G = -7.2 \ \kappa \kappa a n/monb$ по сравнению со значением $-5.2 \ \kappa \kappa a n/monb$, полученным из экспериментальной оценки константы равновесия термического образования этого комплекса [52, 53]. Согласие между расчетным и экспериментальным значением ΔG можно считать хорошим, если учесть, что константа равновесия определена экспериментально с весьма большой погрешностью [29, 52, 53].

Для перпендикулярной конформации на большом расстоянии $R \approx 15 am.ed.$ имеет место небольшое отталкивание с энергией около 24 *ккал/моль*: потенциальная кривая в этой области имеет максимум и приближается к диссоциационному пределу сверху в отличие от обычного хода потенциальной кривой для линейной конформации.

Учет электронной корреляции в модели СЕРА/РNO [35, 54] показал, что корреляция электронов стабилизирует линейный комплекс и дестабилизирует перпендикулярный [30]. Вблизи равновесия комплексов корреляционный вклад в энергию связи составляет +9% для линейного случая и -60% для перпендикулярного.

Обсудим взаимодействие иона Li^+ с молекулой N_2 более подробно. На больших расстояниях ион Li^+ «чувствуется» молекулой N_2 как положительный точечный заряд. Качественная картина дальнодействующего взаимодействия молекулы с точечным зарядом дается электростатическим потенциалом молекулы [55]. Его можно представить графически в виде сечений потенциальной поверхности взаимодействия молекулы с протоном. В таком виде электростатический потенциал молекулы азота [56, 57] показан на рис. 2.

Рис. 2. Карта потенциальной энергии взаимодействия молекулы N₂ с протоном в плоскости, проходящей через ядра азота, *ккал/моль*.

Отчетливо видны области с положительными И отрицательными значениями энергии взаимодействия. Область положительных значений соответствует связыванию положительного точечного заряда на больших расстояниях и расположена аксиально относительно связи N = N. Наибольшее связывание имеет место на линии связи N = N и соответствует образованию стабильного линейного комплекса за счет неподеленной пары концевого атома азота в молекуле N₂. Взаимодействие положительного точечного заряда, приближающегося радиально к молекуле N₂, носит на больших расстояниях отталкивательный характер. На средних и малых расстояниях необходимо учитывать реальную электронную структуру иона и расчет энергии взаимодействия производить учетом квантовых взаимодействий. с Приведенные выше результаты квантовомеханического расчета показывают, что радиальное движение иона Li^+ к молекуле N_2 приводит к слабосвязанному нестабильному комплексу при $R \approx 2.4$ Å. Электростатический потенциал дает качественно правильную картину взаимодействия только на большом расстоянии. Какой из двух возможных комплексов с молекулой N₂ – линейный или перпендикулярный окажется более стабильным на равновесном расстоянии, по-видимому, может зависеть от природы иона.

В приближении ППДП/2 наиболее устойчивым оказывается перепендикулярный комплекс, что находится в противоречии с результатами более точных неэмпирических расчетов (табл. 5).

Несмотря на ошибочность предсказания наиболее устойчивой конформации, равновесные значения R_e в приближении ППДП/2 получаются правильными. Так же правильно предсказывается тенденция к увеличению равновесного расстояния при переходе от перпендикулярного комплекса (ПК) к линейному (ЛК).

Асимптотическое поведение потенциальной поверхности системы $Li^+ \cdot N_2$ в основном состоянии, как и системы $Li^+ \cdot H_2$ [38, 58], должно описываться с высокой точностью мультипольным разложением энергии взаимодействия:

$$\Delta E = \Delta E_Q + \Delta E_{IND} + \Delta E_H + \dots, \tag{1}$$

где

$$\Delta E_Q = -\frac{qQ}{R^3} P_2(\cos\theta)$$

дает энергию взаимодействия точечного заряда q иона Li^+ с квадрупольным моментом Q молекулы азота;

$$\Delta E_{IND} = \frac{q^2}{2R^4} \left[\alpha + \frac{2}{3} \left(\alpha_{\parallel} - \alpha_{\perp} \right) P_2(\cos \theta) \right]$$

дает энергию взаимодействия точечного заряда с индуцированным дипольным моментом молекулы азота;

$$\Delta E_H = -\frac{qH}{R^5} P_4(\cos\theta)$$

дает энергию взаимодействия точечного заряда с гексадекапольным моментом молекулы азота.

Таблица 5

```
Сравнение равновесных расстояний R_e, Å и энергии связи \Delta E, ккал/моль
```

θ	ППДП/	['] 2 [11] ¹⁾	ab initio [34]				
	$R_e^{(2)}$ ΔE		R_{e}	$\Delta E^{(3)}$			
0°	2.78	74.7	~2.65	~14.5			
90°	2.37	77.9	~2.38	~3.1			
1) Аналогичные результаты получены в [22].							
2) По оценке авторов [11] погрешность расчета R_e							
составляет ±0.02 Å.							
3) Учтена корреляционная поправка по данным [30].							

в линейных и перпендикулярных комплексах Li⁺·N₂, вычисленных в приближениях ППДП/2 и *ab initio*

Все эти три члена учитываются в приближении ХФ, как и соответствующие им члены более высокого порядка по R, например, энергия взаимодействия точечного заряда с отличными от нуля высшими мультипольными моментами (пропорциональна следующим нечетным степеням *R*), а также энергия взаимодействия точечного заряда с индуцированным октупольным и более высокими мультипольными моментами (пропорциональна *R*⁻⁶ и более высоким четным степеням *R*). Как будет показано ниже, уже вклад ΔE_{μ} мал по сравнению с предыдущими членами в (1). Можно ожидать, что вклад более высоких членов пренебрежимо мал. В приближении ХФ не учитываются дисперсионные взаимодействия, основной вклад в которые в нашем случае дает Li⁺ индуцированных дипольных взаимодействие моментов И N_2 (пропорционально *R*⁻⁶). Однако, энергия дисперсионных взаимодействий (пропорциональна четным степеням R, начиная с R^{-6}) резко падает с ростом R. В использованном нами в расчетах ХФ приближении для анализа асимптотики потенциальной поверхности мы ограничимся лишь выписанными выше членами в разложении (1). Соответствующие численные значения (табл. 6) рассчитаны с использованием экспериментальных оценок величин $Q, \alpha_{\parallel}, \alpha_{\perp}$ и расчетного значения Н (табл. 3).

Данные табл. 6 вместе с ХФ потенциалом показаны на рисунках 3 и 4 для обеих конформаций комплекса Li⁺ · N₂.

Качественно те же результаты получаются при использовании расчетных значений Q, α_{\parallel} , α_{\perp} . В табл. 6 электростатические вклады в ΔE приведены вплоть до R = 4 *ат. ед.*, т. е. до расстояния, лишь приблизительно вдвое

превышающего размеры молекулы азота. На столь коротких расстояниях мультипольная аппроксимация (1) потенциала взаимодействия в системе $Li^+ \cdot N_2$ сомнительна, так что соответствующие числа в табл. 6 служат лишь для качественной ориентации. В этой области расстояний важную роль играют чисто квантовые взаимодействия. С увеличением расстояния *R* мультипольная аппроксимация становится все более справедливой.

Сначала обсудим линейную конформацию. В кулоновской составляющей

$$\Delta E_{COUL} = \Delta E_Q + \Delta E_H$$

энергии связи ΔE основной вклад дает ион — квадрупольное взаимодействие, однако, с уменьшением *R* роль ион — гексадекапольного взаимодействия растет. Оба взаимодействия приводят к стабилизации комплекса.

В области равновесия индукционное взаимодействие более существенно по сравнению с ион – квадрупольным, вплоть до $R \approx 7$ *ат. ед.*

Таблица 6

	R.				ΔE_{Q}	$\Delta E_Q +$
θ	am.	ΔE_o	ΔE_{IND}	ΔE_{H}	+	$\Delta E_{IND} +$
	ед.	2			ΔE_{H}	ΔE_{H}
	4	10.789	19.689	4.156	14.945	34.634
	5	5.524	8.065	1.362	6.886	14.951
	6	3.196	3.889	0.547	3.743	7.632
	7	2.013	2.099	0.253	2.266	4.365
	8	1.349	1.231	0.130	1.478	2.709
	9	0.947	0.768	0.072	1.019	1.787
	10	0.690	0.504	0.043	0.733	1.237
	11	0.519	0.344	0.026	0.545	0.889
0°	12	0.400	0.243	0.017	0.417	0.660
	13	0.314	0.176	0.011	0.326	0.502
	14	0.252	0.131	0.008	0.260	0.391
	15	0.205	0.100	0.006	0.210	0.310
	16	0.169	0.077	0.004	0.173	0.250
	17	0.141	0.060	0.003	0.144	0.204
	18	0.118	0.048	0.0023	0.121	0.169
	19	0.101	0.039	0.0017	0.102	0.141
	20	0.086	0.032	0.0013	0.088	0.119
	4	-5.394	12.003	1.559	-3.836	8.166
	5	-2.762	4.916	0.511	-2.251	2.665
	6	-1.598	2.370	0.205	-1.393	0.978
	7	-1.106	1.279	0.095	-0.911	0.368
	8	-0.674	0.750	0.049	-0.626	0.125
	9	-0.474	0.468	0.027	-0.447	0.022
	10	-0.345	0.307	0.016	-0.329	-0.022
	11	-0.259	0.210	0.010	-0.249	-0.040
90°	12	-0.200	0.148	0.006	-0.193	-0.045_{2}
	13	-0.157	0.108	0.004	-0.153	-0.045_{3}
	14	-0.126	0.080	0.003	-0.123	-0.043
	15	-0.102	0.061	0.002	-0.100	-0.039
	16	-0.084	0.047	0.0015	-0.083	-0.036
	17	-0.070	0.037	0.0011	-0.069	-0.032
	18	-0.059	0.029	0.000_{8}	-0.058	-0.029
	19	-0.050	0.024	0.000_{6}	-0.050	-0.026
	20	-0.043	0.019	0.000_{5}	-0.043	-0.023

Вклады ΔE_{Q} и ΔE_{IND} , *ккал/моль* в потенциал взаимодействия иона Li⁺ с молекулой N₂ в линейной и перпендикулярной конформациях

При бо́льших значениях *R* на первый план выступает ион – квадрупольное взаимодействие. Из данных таблиц 4 и 6 можно составить более полную картину различных вкладов в энергию взаимодействия в линейном комплексе (табл. 7).

Кроме уже упомянутых вкладов в ΔE в табл. 7 приведены значения

$$\Delta E_{ES}^{(\geq 6)} \cong \Delta E_{HF} - \left(\Delta E_{COUL}^{(3,5)} + \Delta E_{IND}^{(4)}\right),\tag{2}$$

Таблица 7

Разделение энергии взаимодействия *∆Е*, *ккал/моль* в линейной и перпендикулярной конформациях комплекса Li⁺ · N₂ на различные вклады на разных расстояниях *R*

θ	R, ат. ед.	$\Delta E_{COUL}^{(3,5)}$	$\Delta E_{IND}^{(4)}$	$\Delta E_{ES}^{(7,8)}$	ΔE_{HF}	ΔE_{CORR}	ΔE
	5	(6.89)	(8.07)		13.23	1.30	14.53
0°	7	2.27	2.10	1.09	5.45	0.60	6.05
	10	0.73	0.50	0.25	1.48	0.12	1.60
	4	(-3.84)	12.00		2.83	-1.86	0.97
90°	5	-2.25	4.92	2.58	4.25	-1.59	2.66
	7	-0.91	1.28	1.10	1.47	-0.86	0.61
	10	-0.33	0.31	0.35	0.33	-0.30	0.03
	15	-0.10	0.06	0.02	-0.02		

где верхние индексы указывают степени 1/*R* учтенных членов в мультипольной взаимодействия. аппроксимации потенциала Равенство (2) тем более справедливо, чем больше значение *R*. Чем ближе к равновесию, тем больше это равенство нарушается за счет все большего вклада чисто квантовых взаимодействий в ΔE_{HF} . Тем не менее, следующая закономерность должна всегда иметь место: при уменьшении *R* корреляционная поправка ΔE_{CORR} и энергия электростатического взаимодействия точечного заряда с высшими мультипольными моментами $\Delta E_{ES}^{(\geq 6)}$ должна расти. Как видно из табл. 7, это действительно так везде, кроме точки вблизи равновесия *R* ≈ 5 *ат. ед.* В этой точке $\Delta E_{ES}^{(\geq 6)}$ принимает отрицательное значение, тогда как физически правильное значение $\Delta E_{FS}^{(\geq 6)}$ должно быть больше +1.09 *ккал/моль*. Это является следствием того, что в области равновесия мультипольная аппроксимация энергии взаимодействия не работает.

В перпендикулярной конформации комплекса $Li^+ \cdot N_2$ ион – квадрупольное взаимодействие доминирует. Это приводит к появлению максимума в области $R \approx 12-13$ *ат. ед.* Как видно из таблиц 4 и 7, учет электронной корреляции может лишь увеличить этот максимум. Как и в случае ЛК, в области равновесия ПК мультипольная аппроксимация потенциала взаимодействия несправедлива: при R = 4 *ат. ед.* $\Delta E_{ES}^{(\geq 6)} < 0$.

Существование экстремальных точек на крыльях (большие R) потенциальных поверхностей ион-квадрупольных систем является общим явлением. Отбросив в разложении (1) малосущественный вклад в потенциал ион – гексадекапольного взаимодействия, легко видеть, что угловая зависимость максимума потенциала при $R > R_{c}$ имеет вид:

$$\Delta E_{\max}(\theta) = -\left(\frac{3}{8}\right)^3 \frac{Q^4}{q^2} \frac{(3\cos^2\theta - 1)^4}{\left[\alpha_{\perp} + (\alpha_{\parallel} - \alpha_{\perp})\cos^2\theta\right]^3}$$

при

$$R_{\max}(\theta) = \frac{4}{3} \frac{q}{Q} \frac{\left[\alpha_{\perp} + (\alpha_{\parallel} - \alpha_{\perp})\right] \cos^2 \theta}{3\cos^2 \theta - 1}.$$

Если величины q и Q одного знака, то максимальные значения потенциала со значениями $\Delta E = \Delta E_{\text{max}}$ реализуются при $R = R_{\text{max}}$ в области $0^{\circ} \le \theta < 54^{\circ}42'$, в противном случае – в области $54^{\circ}42' < \theta \le 90^{\circ}$.

Потенциал при больших *R* становится максимальным по θ при θ , равном 0° или 90° в зависимости от знаков величин *q* и *Q*. В случае одинаковых знаков потенциал максимален при $\theta = 0^\circ$ и

$$\Delta E_{\rm max} = -\frac{27}{32} \frac{Q}{q^2 \alpha_{\parallel}^3}$$

при

$$R_{\max} = \frac{2}{3} \frac{q\alpha_{\parallel}}{Q}.$$

Если знаки величин *q* и *Q* противоположны, максимальное по *Q* значение потенциала реализуется при $\theta = 90^{\circ}$ и

$$\Delta E_{\rm max} = -\frac{27}{512} \frac{Q}{q^2 \alpha_{\perp}^3}$$

при

$$R_{\rm max} = -\frac{4}{3} \frac{q\alpha_{\perp}}{Q}.$$

Наиболее сложна для анализа область вблизи равновесия комплекса Li⁺·N₂. В рамках метода МО предложено несколько схем деления энергии

связи на отдельные компоненты [59 – 62]. Из них схемы Коллмана – Аллена [61] и Морокумы [62] позволяют разделить энергию связи на такие компоненты, физический смысл которых наиболее близок к таковому для отдельных членов ряда теории возмущений в применении к межмолекулярным взаимодействиям. Обсудим эти две схемы более подробно, а затем приведем наши результаты деления для системы Li⁺·N₂.

Рассмотрим взаимодействие $A+B \rightarrow AB$. Пусть антисимметризованные волновые функции изолированных подсистем A и B есть ψ_A^0 и ψ_B^0 , H_{AB} – гамильтониан системы AB. Морокума [62] предложил использовать четыре аппроксимации волновой функции Ψ_{AB} системы AB и соответственно этому разделил энергию связи на четыре компоненты.

1. Вычисляется энергия *E*₁ системы AB на хартриевском произведении

$$\Psi_1 = \psi_A^0 \psi_B^0$$

Тогда разность

$$E_0 - E_1 = \Delta E_{COUL},$$

где E_0 – сумма энергий изолированных подсистем, дает вклад в энергию связи классического кулоновского взаимодействия неполяризованных подсистем. Член ΔE_{coul} учитывает лишь часть электростатической энергии взаимодействия, а именно ту, которая не связана с поляризацией одной подсистемы в поле другой.

2. Вычисляется энергия E_2 системы AB на антисимметризованном произведении

$$\Psi_2 = \hat{A}(\psi_A^0 \psi_B^0).$$

Тогда разность

$$E_0 - E_2 = \Delta E_{COUL} + \Delta E_{EX}$$

есть аналог энергии взаимодействия в первом порядке теории возмущений с учетом обмена. Вклад

$$\Delta E_{EX} = E_1 - E_2$$

соответствует учету обменного отталкивания в рамках теории МО. Вычисленная таким образом обменная энергия несколько отличается от обычного обменного вклада в теории возмущений, поскольку в теории МО учитывается не только одночастичный обмен.

3. Вычисляется энергия *E*₃ системы AB на хартриевском произведении

$$\Psi_3 = \psi_A \psi_B,$$

где антисимметризованная волновая функция $\psi_A(\psi_B)$ подсистем A(B) вычислена в поле другой подсистемы B(A) с использованием полного гамильтониана \hat{H}_{AB} . Тогда разность

$$E_0 - E_3 = \Delta E_{COUL} + \Delta E_{POL} = \Delta E_{ES}$$

учитывает поляризационный вклад в энергию взаимодействия. Член

$$\Delta E_{POL} = E_1 - E_3$$

вместе с кулоновским членом ΔE_{coul} исчерпывают электростатическую энергию взаимодействия ΔE_{es} . Разность $E_0 - E_3$ Морокума отождествил с суммой поляризационного и дисперсионного вкладов. В одноконфигурационной теории ССП, использованной в расчетах Морокумой [62] и нами, дисперсионная часть энергии взаимодействия не учитывается.

4. Наконец, вычисляется энергия *E*₄ системы AB на обычной антисимметризованной волновой функции всей системы AB:

$$\Psi_4 = \Psi_{AB}$$

Тогда разность

$$E_0 - E_4 = \Delta E$$

дает энергию связи *∆Е* в виде суммы четырех слагаемых:

$$\Delta E = \Delta E_{COUL} + \Delta E_{POL} + \Delta E_{EX} + \Delta E_{DEL},$$

из которых первые два соответствуют электростатическому вкладу, а последние два учитывают чисто квантовые эффекты:

$$\Delta E_{OUA} = \Delta E_{EX} + \Delta E_{DEL}.$$

Член

$$\Delta E_{DEL} = E_2 + E_3 - E_1 - E_4,$$

по-видимому, связан с (де)стабилизацией системы AB в результате делокализации электронов (перекрывания электронных облаков, переноса электронной плотности).

Приведенная система анализа энергии связи во многом условна и нуждается в более строгом обосновании. Наибольшие затруднения вызывает физическая интерпретация делокализационного члена. Тем не менее, эта схема и ее модификации нашли широкое использование и содействовали углублению наших представлений о природе связи в ион-молекулярных [63, 64] и межмолекулярных комплексах [61, 62, 65]. Коллман и Аллен [61] предложили делить энергию связи на две части:

$$\Delta E = \Delta \tilde{E}_{ES} + \Delta \tilde{E}_{DEL}.$$

Электростатический вклад вычисляется как разница в энергии двух неполяризованных подсистем на конечном расстоянии и их энергии на бесконечно большом расстоянии. Энергия вычисляется на антисимметризованном произведении волновых функций изолированных подсистем; используются ортогонализованные начальные (в процедуре ССП) векторы изолированных подсистем. Этот член в точности соответствует сумме кулоновского и обменного вкладов в схеме Морокумы:

$$\Delta \tilde{E}_{ES} = \Delta E_{COUL} + \Delta E_{EX},$$

так что название «электростатический» [61] лишь затемняет физический смысл этого слагаемого. Это же замечание относится и к делокализационному члену, который кроме действительно делокализационного вклада содержит также поляризационный вклад:

$$\Delta \tilde{E}_{DEL} = \Delta E_{POL} + \Delta E_{DEL}$$

Мы вычисляли различные вклады в энергию взаимодействия в системе $Li^+ \cdot N_2$ для нескольких значений расстояния при фиксированном значении R = 2.067 *ат. ед.* (табл. 8).

Таблица 8

Разделение ХФ энергии связи ΔE_{HF} , *ккал/моль* в системе Li⁺ · N₂ на различные составляющие

$\theta \mapsto$	0°			90°	
ΔE	4.5	5.0	5.5	4.5	15.0
$\Delta { ilde E}_{ES}$	-3.699	2.714	3.541	-3.414	-0.082
$\Delta ilde{E}_{ m DEL}$	13.870	10.521	8.149	8.259	0.058
ΔE_{COUL}	9.448	6.211	4.352	-2.285	-0.082
ΔE_{POL}	22.885	12.276	7.162	6.781	0.052
ΔE_{ES}	32.333	18.487	11.514	4.496	-0.030
ΔE_{EX}	-13.147	-3.498	-0.811	-1.129	-0.000
ΔE_{DEL}	-9.015	-1.755	0.987	1.478	0.006
ΔE_{QUA}	-22.162	-5.253	0.176	0.349	0.006
ΔE_{HF}	10.171	13.234	11.691	4.845	-0.024

В области равновесия ЛК (R = 5 am. ed.) электростатическая оценка сильно энергию связи: 18.5 вместо 13.2 ккал/моль. преувеличивает Разница представляет собой вклад квантовых эффектов ΔE_{OUA} и составляет 28 % от электростатического вклада ΔE_{ES} . Роль квантовых эффектов, естественно, растет с уменьшением расстояния – 69% при R = 4.5 am. ed. и падает с увеличением расстояния: 16% при $R = 5.5 \, am. \, ed.$ Аналогичная картина имеет место для ПК. Так, в области равновесия ПК (*R* = 4.5 *am. ed.*) вклад квантовых эффектов составляет 29% от электростатического вклада в энергию связи. Даже при большом расстоянии *R* = 15 *ат. ед.* в ПК вклад квантовых эффектов в потенциал взаимодействия все еще велик (4.5%). В приведенных выше оценках эффектов по роли квантовых сравнению с электростатическими взаимодействиями не учитывались знаки отдельных слагаемых в ΔE_{OUA} и ΔE_{ES} . Если поляризационные взаимодействия всегда стабилизируют комплекс Li⁺ · N₂, а обменные – дестабилизируют независимо от конформации системы, то роль взаимодействий кулоновских зависит OT конформации системы. а делокализационного вклада – от расстояния между подсистемами. Можно ожидать, что при больших расстояниях делокализация электронов должна стабилизировать систему независимо от ее конформации. Величина этой энергии стабилизации должна падать с уменьшением расстояния, а при расстояниях небольших делокализация электронов может даже дестабилизировать систему из-за увеличения отталкивания между электронами. Данные табл. 8 иллюстрируют эту закономерность. Необходимо только отметить, что то расстояние R, при котором стабилизирующая роль потенциал взаимодействия делокализационного вклада В меняется на дестабилизирующую, исключительно чувствительно к выбору орбитального базиса. С расширением базиса это значение сдвигается в сторону меньших расстояний. Так или иначе, роль делокализации электронов в стабилизацию системы Li⁺·N₂ весьма значительна. Например, ПК в области равновесия на 30 % стабилизирован за счет делокализации электронов. Следует отметить еще раз, что приведенные оценки носят лишь качественный характер.

Дополнительные сведения о природе связи в системе Li⁺·N₂ дает электронная заселенность атомов и заселенность перекрывания связей (табл. 9).

В линейной конфигурации ближайший к иону лития атом азота заряжен отрицательно, а дальний – положительно. В перпендикулярной конформации все три атома комплекса всегда заряжены положительно. Возникающее в связи с этим кулоновское (монопольное) отталкивание в перпендикулярной

352

конформации компенсируется силами связывания различной природы на расстояниях вблизи равновесного значения $R \approx 4.5 \text{ am. ed.}$

Таблица 9

Электронная заселенность атомов и заселенность перекрывания связей в линейной и перпендикулярной конформациях системы Li⁺ · N₂ при разных расстояниях *R*, *am. ed*.

θ	R	$P(N_1)$	$P(N_2)$	$P(\mathrm{Li}^{+})$	P(NN)	$P(N_1Li^+)$
	4.5	7.070	6.870	2.060	1.825	0.052
0°	5.0	7.055	6.874	2.071	1.735	0.102
	5.5	7.045	6.889	2.066	1.682	0.100
000	4.5	6.961	6.961	2.078	1.528	0.067
90	15.0	6.99996	6.99996	2.00008	1.430	0.000
	∞	7	7	2	1.426	0

При увеличении расстояния *R* силы связывания падают гораздо быстрее, чем силы кулоновского отталкивания. В результате уже на расстоянии R = 15 am. ed. последние доминируют, то приводит к появлению максимума на потенциальной кривой для перпендикулярной конформации системы $\text{Li}^+ \cdot \text{N}_2$.

При средних расстояниях между ионом Li⁺ и молекулой N₂ имеет место небольшой перенос электронной плотности на ион Li⁺. При увеличении расстояния *R* перенос электронной плотности сильно падает, приблизительно экспоненциально. Наличие небольшого переноса плотности с донорных уровней молекулы на акцепторные уровни иона вытекает из квантовой модели сольватации ионов с внешними замкнутыми *sp*-оболочками [66 – 69]. Из простых квантовомеханических соображений перенос электронной плотности в таких ион-молекулярных системах всегда отличен от нуля, хотя и весьма невелик. В нашем расчете перенос плотности, если и завышен за счет взаимной компенсации орбитальных базисов подсистем [70 – 72], то лишь незначительно. Следует отметить, что в работе [70] на примере комплекса $Li^+ \cdot OH_2$ сделана попытка выяснить, насколько при расчете ион-молекулярных комплексов существенно учитывать акцепторные орбитали иона. Автор работы [70] пришел к выводу, что расчет ион-молекулярного комплекса при использовании ограниченных базисов приводит к существенной переоценке величины переноса электронного заряда от молекулы к иону. Неучет акцепторных орбиталей иона является безусловной ошибкой. Многочисленные достаточно точные расчеты ион-молекулярных комплексов, например, [64, 73, 74], показали, что учет акцепторных орбиталей иона принципиально важен и не приводит к заметному искусственному переносу электронной плотности на ион, если, конечно, акцепторные орбитали описаны достаточно широким базисом. Ошибочность описания в работе [70] иона лития только в базисе функции 1*s* непосредственно следует из табл. 1 этой работы: при таком выборе базиса иона лития расчет приводит к переносу плотности с иона на молекулу, что невозможно оправдать никакими физическими соображениями. Не так важно, что этот перенос мал. Важно то, что перенос плотности в этом направлении физически невозможен. Имеющее место в этом случае хорошее совпадение расчетного значения энергии связи комплекса Li⁺ · OH₂ С экспериментальной оценкой является, несомненно, случайным. На это прямо указывает то обстоятельство, что дальнейшее расширение орбитального базиса приводит К ухудшению согласования иона лития расчетного И экспериментального значений энергии связи. И лишь учет акцепторных орбиталей иона с использованием широкого набора базисных функций [74] приводит к правильному значению энергии связи.

Литература

- 1. Я. К. Сыркин. Образование трехцентровых связей при хемосорбции, *Ж. структ. хим.*, т. 1: 2, 189 – 193 (1960).
- 2. Л. Оргел. *Введение в химию переходных металлов. Теория поля лигандов.* Ред. М. Е. Дяткина, пер. Ю. А Кругляка. Москва: Мир, 1964.
- 3. E. Ruch. In 10 Jahre Fonds der Chemischen Industrie. Dusseldorf: Verlag Chem. Ind., 1960.
- 4. М. Е. Вольпин, В. Б. Шур. Комплексообразование как путь активации молекулярного азота, *Ж. В. Х. О. Д. И. Менделеева*, т. 12, 31 35 (1967).
- 5. Ю. Г. Бородько, А. Е. Шилов. Комплексы молекулярного азота, *Усп. химии*, т. 38: 4, 761 – 764 (1969).
- 6. А. Е. Шилов. Фиксация азота в растворах в присутствии комплексов переходных металлов, *Усп. химии*, т. 43: 5, 863 915 (1974).
- К. Б. Яцимирский, Ю. А. Кругляк. Реакционная способность и геометрическое строение комплекса железа с молекулой азота (FeN₂), ДАН СССР, сер. Химия, т. 186: 4, 885 – 893 (1969).
- 8. Ю. А. Кругляк, Г. В. Бугрий, П. Шустер, А. Бейер. К анализу взаимодействия иона лития с молекулой азота, *Препринт ИТФ АН УССР*, Киев, № 127, 1975.
- С. М. Виноградова, М. Г. Каплунов, Ю. Г. Бородько. Расчет электронных плотностей и интерпретация колебательных спектров комплексов Fe, Pu, Os и Ti с молекулярным азотом, *Ж. структ. хим.*, т. 13: 1, 67 – 70 (1972).
- С. М. Виноградова, Ю. Г. Бородько. Расчет электронной структуры комплексов металлов первого и второго переходных рядов с молекулярным азотом, *Ж. физич. химии*, т. 47: 4, 789 – 793 (1973).
- И. Б. Голованов, В. М. Соболев. Активация молекулярного азота при комплексообразовании. Рассмотрение модельных комплексов, *Teop. экспер. химия*, т. 10: 3, 327 – 334 (1974).
- 12. К. Б. Яцимирский, Ю. П. Назаренко, Ю. И. Братушко, Ю. А. Кругляк. Расчет электронного строения комплексов 3*d*-переходных металлов с молекулой азота, *Teop.* экспер. химия, т. 6: 6, 729 736 (1970).

- 13. К. Б. Яцимирский, Ю. И. Братушко, Ю. П. Назаренко, Ю. А. Кругляк. Электронное и геометрическое строение комплексов переходных металлов с молекулой азота, В кн. *Теория электронных оболочек атомов и молекул*. Вильнюс: Минтис, 1971.
- 14. Ю. И. Братушко, Ю. П. Назаренко, К. Б. Яцимирский. Электронное строение двуядерных комплексов 3*d*-переходных металлов с молекулой азота, *Teop.* экспер. химия, т. 9: 1, 13 16 (1973).
- 15. Ю. П. Назаренко, Ю. И. Братушко, К. Б. Яцимирский. Вычисление энергии активации процессов изменения конфигураций молекул расширенным методом Хюккеля, *Teop. экспер. химия*, т. 9: 6, 790 798 (1973).
- Е. М. Шусторович. О возможной димеризации молекулярного азота при связывании его комплексными соединениями переходных металлов, *Ж. структ. хим.*, т. 10: 2, 159 – 168 (1969).
- Е. М. Шусторович, Г. И. Каган, Г. М. Каган. Гомоатомные ненасыщенные системы в качестве лигандов. 2. Координация систем N₂ и N₄ с переходными металлами, *Ж. структ. хим.*, т. 11: 1, 108 – 115 (1970).
- 18. R. C. Spiker, L. Andrews, C. Trindle. Infrared matrix and theoretical studies of the reduction of molecular nitrogen bt lithium atoms, *J. Amer. Chem. Soc.*, v. 94: 7, 2401 2408 (1972).
- 19. И. И. Захаров, В. И. Авдеев, А. И. Болдырев. Электронная структура бинарных комплексов Ni·N₂ и Co·N₂, *Препринт ИТФ АН УССР*, Киев, № 68, 1975.
- В. И. Авдеев, И. И. Захаров, Ю. А. Борисов, Н. Н. Булгаков. Электронная структура *π*-комплексов молекулярного азота с литием и натрием. *VI Всесоюзное совещание по квантовой химии. Тезисы докладов.* Кишинев: Штиинца, 1975.
- В. И. Авдеев, И. И. Захаров. Бинарные π-комплексы молекулярного азота с металлами IV периода. Природа активации N₂. VI Всесоюзное совещание по квантовой химии. Тезисы докладов. Кишинев: Штиинца, 1975.
- С. Г. Гагарин, И. А. Лыгина. Расчет электронного строения комплексов молекулы азота с ионами Li⁺ и Fe⁻ в полуэмпирическом приближении, *Ж. структ. хим.*, т. 16: 1, 112 – 117 (1975).
- 23. И. Б. Голованов, В. М. Треушников. Механизм и кинетика ферментативных реакций. 1. Постановка задачи. Квантовохимический аспект, Депонент № 1789-70. Москва: ВИНИТИ, 1970.
- 24. И. Б. Голованов, Д. Д. Черемисина, В. М. Треушников. Механизм и кинетика ферментативных реакций. 2. Молекула А₂ в поле нескольких центров, *Депонент № 1998-70*. Москва: ВИНИТИ, 1970.
- 25. И. Б. Голованов, В. М. Соболев, М. В. Волькенштейн. Модели комплексов с участием N₂. Подходы к изучению активного центра нитрогеназы, *VI Всесоюзное совещание по квантовой химии. Тезисы докладов.* Кишинев: Штиинца, 1975.
- 26. И. Б. Голованов, В. М. Соболев, М. В. Волькенштейн. Квантовохимическое изчение моделей некоторых фермент-субстратных комплексов. Моделирование взаимодействия N₂ с активным центром нитрогеназы, *Физика молекул*, № 3, 51 97 (1976).
- 27. А. И. Герасимчук, Д. А. Жоголев. Неэмпирические расчеты электронного строения молекул H₂, N₂ и O₂ в поле точечного заряда, имитирующего сильное электрическое поле, VI Всесоюзное совещание по квантовой химии. Тезисы докладов. Кишинев: Штиинца, 1975.
- K. G. Spears. Repulsive potentials of atomic ions, atoms and molecules, J. Chem. Phys., v. 57: 6, 1842 – 1849 (1972).
- 29. K. G. Spears. Ion-neutral bonding, J. Chem. Phys., v. 57: 6, 1850 1854 (1972).
- 30. V. Staemmler. *Ab initio* calculation of the potential energy surface of the system $N_2 \cdot Li^+$, *Chem. Phys.*, v. 7: 1, 17 21 (1975).
- R. David, M. Faubel, J. P. Toennies. Measurements of differential cross sections for vibrational quantum transitions in scattering of Li⁺ on H₂, *Chem. Phys. Lett.*, v. 18: 1, 87 – 96 (1973).

- 32. J. Schottler, J. P. Toennies. Experimental evidence for a spectator mechanism in the dissociation of H₂ by single collisions with Li⁺, *Chem. Phys. Lett.*, v. 12: 4, 615 623 (1972).
- 33. R. Bottner. Thesis. Gottingen, 1974.
- 34. Ю. А. Кругляк, Г. В. Бугрий, П. Шустер, А. Бейер. К анализу взаимодействия иона лития с молекулой азота, *Физика молекул*, № 6, 61 76 (1978).
- 35. R. Ahlrichs, H. Lischka, V. Staemmler, W. Kutzelnigg. Methods for efficient evaluation of integrals for Gaussian type basis sets, *Theor. chim. Acta*, 33: 2, 157 168 (1974).
- 36. F. Driessler, R. Ahlrichs. Approximation of *d* and *f*-type orditals by spherical Gaussian functions, *Chem. Phys. Lett.*, v. 23: 4, 571 589 (1973).
- S. Hyzinaga. Gaussian-type functions for polyatomic systems, J. Chem. Phys., v. 42: 5, 1293 – 1307 (1965).
- 38. W. Kutzelnigg, V. Staemmler, C. Hoheisel. Computed potential hypersurface including electron correlation of the system Li⁺·H₂, *Chem. Phys.*, v. 1: 1, 27 45 (1973).
- 39. C. C. J. Roothaan, L. V. Sachs, A. W. Weiss. Analytical self-consistent field functions for the atomic configurations 1s²2s and 1s²2s², *Rev. Mod. Phys.*, v. 32: 2, 186 190 (1960).
- 40. C. C. J. Roothaan, A. W. Weiss. Correlated orbitals for ground state of helium-like systems, *Rev. Mod. Phys.*, v. 32: 2, 194 203 (1960).
- P.-O. Lowdin. Studies of atomic self-consistent fields. 2. Interpolation problems, *Phys. Rev.*, v. 94: 6, 1600 1609 (1954).
- 42. W. Kutzelnigg, V. Staemmler, M. Gelus. Potential curve of the lowest triplet state of Li₂, *Chem. Phys. Lett.*, v. 13: 4, 496 507 (1972).
- 43. P. E. Cade, K. D. Sales, A. C. Wahl. Electronic structure of diatomic molecules. 3. Hartree Fock wave functions and energy quantities for N₂ ($X^{1}\Sigma_{g}^{+}$) and N₂⁺ ($X^{2}\Sigma_{g}^{+}, A^{2}\Pi_{u}, B^{2}\Sigma_{u}^{+}$) molecular ions, J. Chem. Phys., v. 44: 5, 1973 – 1985 (1966).
- 44. H. F. Schaffer III. *The electronic structure of atoms and molecules. A survey of rigorous quantum mechanical results.* London: Addison-Wesley, 1972.
- 45. A. D. Buckingham. Permanent and induced molecular moments and long-range intermolecular forces, *Adv. Chem. Phys.*, v. 12: 1, 107 123 (1967).
- 46. D. Stogryn, A. Stogryn. Molecular multipole moments, *Mol. Phys.*, v. 11: 2, 371 384 (1966).
- 47. Landolt-Bornstein. Bd. 1, T. 3. Molekeln II. Berlin: Springer, 1951.
- 48. A. G. Gaydon. *Dissociation energies and spectra of diatomic molecules*. London: Chapman and Hall, 1968.
- 49. G. Herzberg. Spectra of Diatomic Molecules. New York: Van Nostrand, 1950.
- 50. T. H. Dunning. Gaussian basis functions for use in molecular calculations.
 4. The representation of polarization functions for the first row atoms and hydrogen,
 J. Chem. Phys., v. 55: 11, 3958 3963 (1971).
- 51. L. C. Snyder, H. Basch. Molecular wave functions and properties. New York: Wiley, 1972.
- G. E. Keller, R. A. Beyer. CO₂ and O₂ clustering to sodium ions, *J. Geophys. Res.*, v. 42: 5, 1293 – 1307 (1965).
- 53. G. E. Keller, R. A. Beyer. The clustering of atmospheric gases to alkali ions, *Trans. Amer. Geophys. Union*, v. 52: 4, 303 328 (1971).
- 54. W. Meyer. PNO-CI studies of electron correlation effects. 1. Configuration expansion by means of nonorthogonal orbitals and application to the ground state and ionized states of methane, *Intern. J. Quantum Chem.*, v. S5: 2, 341 349 (1973).
- 55. R. Bonaccorsi, R. Cimiraglia, E. Scrocco, J. Tomasi. Multipole expansions of the electrostatic molecular potentials, *Theor. chim. Acta*, v. 33: 1, 97 107 (1974).
- 56. *En aspects de la chimie quantique contemporaine*. Eds. R. Daudel, A. Pullman. Paris: C.N.R.S., 1971.
- 57. R. Bonaccorsi, E. Scrocco, J. Tomasi. *Theoretical Sect. Program Report*. Pisa: Lab. Chim. Quantum C.N.R., 1970.

- 58. W. A. Lester. Interaction potential between Li⁺ and H₂. 1. Region appropriate for rotational excitation, *J. Chem. Phys.*, v. 53: 5, 1511 (1970).
- 59. E. Clementi, H. Popkie. Study of the structure of molecular complexes. 1. Energy surface of a water molecule in the field of a lithium cation, *J. Chem. Phys.*, v. 57: 3, 1077 1089 (1972).
- 60. M. Dreyfus, A. Pullman. A non-empirical study of the hydrogen bond between peptide units, *Theor. chim. Acta*, v. 19: 1, 20 43 (1970).
- 61. P. A. Kollman, L. C. Allen. An SCF partitioning scheme for the hydrogen bond, *Theor. chim. Acta*, v. 18: 4, 399 405 (1970).
- 62. K. Morokuma. Molecular orbital studies of hydrogen bonds. 3. C=O···H–O hydrogen bond in H₂CO···H₂O and H₂CO···2H₂O, *J. Chem. Phys.*, v. 55: 4, 1236 1248 (1971).
- 63. A. Pullman, P. Schuster. Model studies of the binding of metal cations to macrocyclic ligands. The interaction of Li⁺ with carbonyl groups, *Chem. Phys. Lett.*, v. 24: 3, 472 486 (1974).
- P. Russegger, P. Schuster. *Ab initio* calculations on the interaction of oxygen containing ligands with alkali cations. The system H₂CO·Li⁺, *Chem. Phys. Lett.*, v. 19: 1, 254 267 (1973).
- 65. P. Schuster. Neuere Ergebnisse aus der Theorie der Wasserstoffbrucken und Protonenubergange, Z. Chem., v. 13: 1, 41 49 (1973).
- 66. Н. А. Измайлов, Ю. А. Кругляк. К вопросу о сольватации ионов, ДАН СССР, Сер. Химия, т. 134: 6, 1390 – 1394 (1960).
- 67. Ю. А. Кругляк. Теория сольватации ионов с внешними замкнутыми *sp*-оболочками, *Труды хим. фак. и НИИ химии Харьков. ун-та*, т. 19, 172 180 (1963).
- 68. Ю. А. Кругляк. Изучение сольватации протона и ионов металлов I и II групп элементов Периодической системы на основе квантовой механики, Канд. дисс., Харьков. ун-т, 1963.
- 69. Ю. А. Кругляк. Координационная связь, Краткая химическая энциклопедия, т. 2, гл. ред. И. Л. Кнунянц. Москва: Советская энциклопедия, 1963.
- 70. В. Е. Клименко. К расчету потенциала взаимодействия иона лития с молекулой воды, ДАН УССР, Сер. А, № 10, 923 – 925 (1975).
- 71. В. М. Пинчук, М. Д. Долгушин, Ю. А. Кругляк. К вычислению *ab initio* энергии взаимодействия между системами, описываемыми ограниченными базисами, *Препринт ИТФ АН УССР*, № 127, 1974.
- 72. V. M. Pinchuk, Yu. A. Kruglyak, M. D. Dolgushin. Spacial and electronic structure of the complexes Li⁺, Na⁺, Be²⁺ and Mg²⁺ ions with HF, H₂O, and NH₃ molecules, *Preprint Inst. Theor. Phys.*, № 128. Kiev: AS UkrSSR, 1974.
- 73. G. H. F. Diercksen, W. P. Kraemer. SCF MO LCGO studies on the hydration of ions: The systems H⁺H₂O, Li⁺H₂O, and Na⁺H₂O, *Theor. chim. Acta*, v. 23: 4, 387 – 392 (1972).
- 74. H. Kistenmacher, H. Popkie, E. Clementi. Study of the structure of molecular complexes.
 2. Energy surfaces of a water molecule in the field of a sodium and potassium cation, *J. Chem. Phys.*, v. 58: 6, 1689 1703 (1973).

Глава 8. Фрагментация, конформации и перегруппировка молекул в электрическом поле

8.1. Фрагментация электронным ударом

Важное место среди новых физических методов исследования строения и способности органических реакционной соединений занимает новая экспериментальная техника и современная теория масс-спектрометрии. Если раньше масс-спектрометрия использовалась главным образом в аналитических целях, то сегодня широкое развитие получили исследования, связанные с определением физических свойств молекул, радикалов и соответствующих ионов. Универсальность метода обусловлена появлением новых методов ионизации, которые наряду с электронным ударом ныне широко используются в современной масс-спектрометрии. К ним, в частности, относятся полевая ионизация, химическая ионизация, фотоионизация, ионизация лазерным излучением и т. д. Хотя масс-спектры, полученные различными методами, имеют определенную специфичность, тем не менее можно указать общие закономерности распада молекулярных ионов и формирования масс-спектров.

Далее основное внимание мы уделим изучению методами квантовой химии путей фрагментации положительных молекулярных ионов, полученных электронным ударом или в результате воздействия внешнего электрического поля на молекулы исследуемого вещества (полевая ионизация).

Основная цель теоретической интерпретации масс-спектров состоит в превращения предсказании возможных путей молекулярных ИОНОВ, полученных тем или иным методом, а также в определении состава условиях эксперимента. Сложность масс-спектра в разных при этом заключается в том, что помимо простых разрываемых связей исходные молекулярные ионы в камере масс-спектрометра участвуют в различного рода реакциях перегруппировки.

Сложность проблемы установления реакций механизма В масс-спектрометрии по сравнению с реакциями мономолекулярного распада в газовой фазе обусловлена весьма фундаментальными причинами. Концентрация ионов в масс-спектрометре чрезвычайно мала, поэтому их свойства не могут быть изучены непосредственно стандартными физическими методами, структура этих частиц и продуктов их превращения не всегда может быть выяснена с достаточной надежностью. Таким образом, в масс-спектрометрии отсутствует привычная информация, необходимая для реакций. Далее, обсуждения механизма диссоциация ИОНОВ В масс-спектрометре – это процесс, который в значительной степени отличается от мономолекулярной реакции термического распада. Причина этого отличия

359
состоит в том, что химическая реакция, как правило, протекает при определенной температуре, в то время как ионизированная молекула в камере масс-спектрометра представляет собой фактически изолированную систему.

Выделим три главных направления В теоретическом анализе Исторически первой масс-спектров. возникла так называемая квази-равновесная теория (КРТ), предложенная в 1952 г. [1] для объяснения количественных закономерностей в масс-спектрах простейших насыщенных углеводородов. В основе этой статистической теории лежат следующие предположения:

a) Ионизация молекулы происходит за время намного меньшее, чем диссоциация молекулярного иона по какой-либо связи;

б) Полученный в результате электронной бомбардировки молекулярный ион, находящийся в одном из возбужденных вибронных состояний, безызлучательно переходит на некоторый колебательный уровень основного электронного состояния иона;

в) Осколочные ионы образуются в результате мономолекулярных реакций распада колебательно-возбужденного иона, при этом скорость диссоциации по любой связи намного меньше скорости перераспределения энергии возбуждения по внутренним степеням свободы как электронным, так и колебательным;

г) Распад молекулярного иона, обладающего внутренней энергией E, по связи i происходит независимо от разрывов остальных связей. Константа скорости $K_i(E)$ такого процесса диссоциации определяется согласно теории абсолютных скоростей реакций [2]

$$K_i(E) = \frac{\sigma}{h} \frac{W_i(E - \varepsilon_i)}{\rho(E)},$$

где $W_i(E - \varepsilon_i)$ – число состояний активированного комплекса, энергия которых меньше или равна $E - \varepsilon_i$, $\rho(E)$ – плотность состояний системы с энергией E, σ – число распадов, приводящих к одним и тем же продуктам.

Уже для простейших углеводородов КРТ встречается со значительными трудностями, связанными в основном с отсутствием надежной информации о плотности энергетических уровней и колебательных частотах переходного состояния, необходимых для вычисления констант скорости элементарных процессов. Еще в меньшей степени КРТ пригодна для количественного описания масс-спектров простых молекул с функциональными группами. Особенно заметны расхождения между экспериментальными данными и рассчитанными согласно КРТ интенсивностями линий в масс-спектрах при

бомбардировке молекул электронами, энергия которых близка к потенциалу ионизации исследуемого соединения [3].

Хотя общие основы КРТ можно считать достаточно надежными, ее главный недостаток состоит в том, что для расчета интенсивностей линий масс-спектр нужно знать заранее. Это связано с тем, что теория неявно использует предположение о почти полном тождестве структуры ионизируемой молекулы и молекулярного иона. Более того, приходится делать определенные предположения о направлении распада многоатомного молекулярного иона. Эти оба требования взаимосвязаны. Постулируя структуру иона, мы тем самым уже в какой-то мере определяем путь его распада по наиболее слабым химическим связям и, как следствие, делая какие-либо предположения на этот счет, приходим к противоречию с исходной структурой. Если же структура ионов неизвестна, то невозможно правильно выбрать распадающихся параметры в выражении для константы скорости процесса. Тем не менее, КРТ позволяет дать количественное описание масс-спектров на основе произвольно выбираемых параметров, которые затем можно проверить, сопоставляя расчетные спектры с экспериментальными. Для более полного ознакомления с этим подходом рекомендуем литературу, цитируемую в [4].

Основой другого подхода в теоретической интерпретации масс-спектров служат квантовохимические расчеты электронного и пространственного строения молекул и соответствующих ионов.

Исследуя масс-спектр н-октана, Томпсон [5] впервые выдвинул предположение, согласно которому относительные интенсивности линий осколочных ионов можно рассчитать теоретически, если положить, что вероятности разрыва каждой связи С-С в образовавшемся молекулярном ионе пропорциональна плотности положительного заряда на ЭТОЙ СВЯЗИ. Распределение положительного заряда В ионе рассчитывалось В предположении, что оно равно вкладу в полную электронную плотность электрона на ВЗМО. Это означает, что для молекулы и ее соответствующего иона положительного С допущением 0 наряду тождественном пространственном строении используются одни и те же МО, т. е. используется приближение «замороженных» МО, которые в этом случае выражаются в виде ЛК орбиталей φ_k скелетных связей С–С [6]: $\psi_i = \sum_{i} C_{ik} \varphi_k$. Суммирование

проводится по всем скелетным связям в соответствии с приближением объединенного атома [7], согласно которому группы атомов CH₃, CH₂ и некоторых других в гетеросоединениях описываются одной групповой орбиталью связи. Все несмежные взаимодействия орбиталей связей, как это принято в приближении Хюккеля [8], положены равными нулю, а смежные

параметров, выбраны полуэмпирических В качестве оценка которых производится из совпадения рассчитанных и экспериментальных потенциалов рассматриваемых молекул. В такой ионизации модели плотность заряда на данной связи k в ионе дается положительного квадратом коэффициента разложения С_{ік} для ВЗМО исходной молекулы.

Используя приближение ЛК групповых орбиталей связей, а также более совершенный метод ЭМО [9] Фуэки и Хирота [10] выполнили расчет распределения положительного заряда в молекулярных ионах насыщенных углеводородов С₃-С₁₀. Они показали, что избыточный положительный заряд на каждой связи С-С последовательно возрастает от концов углеродной цепи к ее середине, достигая максимального значения на центральной связи С-С. Однако, согласно экспериментальным данным вероятность разрыва связей С–С хотя и имеет наименьшее значение на концах цепи, но максимума достигает на третьей или четвертой от концов связи С-С, а не на середине. Таким образом, масс-спектры парафинов, более тяжелых чем н-декан, не находятся В соответствии с распределением избыточного положительного заряда В исходном молекулярном ионе. Такое расхождение между экспериментальными данными и предсказаниями на основе МО модели можно объяснить тем, что для больших углеводородных молекул значительную роль играют процессы вторичной фрагментации осколочных ионов, образованных в результате разрыва скелетных связей в исходных молекулярных ионах в соответствии с распределением избыточного положительного заряда. Именно по этой причине предположение о простой корреляции между плотностью положительного заряда, локализованного на связи, и вероятностью ее разрыва при первичной фрагментации положительного иона вызвало ряд критических замечаний [11, 12]. Основной смысл замечаний заключается в том, что по конечным продуктам, детектируемым В масс-спектрометре, нельзя восстановить первичную фрагментацию молекулярного иона, полученного электронным ударом. Однако, при определенных условиях, а именно, при низкой энергии бомбардирующих электронов и высокой температуре ионного источника можно полностью установить вторичные процессы, и экспериментальные будут адекватным отражением первичной масс-спектры фрагментации, коррелирующей с распределением положительного заряда в молекулярном 14]. В полевой масс-спектрометрии благодаря относительно ионе [13, невысокой энергии возбуждения молекулярных ионов и ограниченному времени их пребывания в ионном источнике вклад вторичных процессов незначителен и масс-спектры отражают характер первичной фрагментации, что служит весомым доводом в пользу применения квантовохимических методов при интерпретации их состава.

Дальнейшие исследования в области МО трактовки масс-спектров были направлены на выяснение условий распространения высказанного Томпсоном [5] предположения на более сложные углеводороды (разветвленные и циклические), а также на гетеросоединения. Так, Лорке [15] методом ЭМО рассчитал электронное строение ряда однократно ионизированных молекул разветвленных и циклических насыщенных и ненасыщенных углеводородов. Оказалось, как и в случае простых алканов, вероятность разрыва скелетных связей С–С достаточно хорошо коррелирует с распределением избыточного положительного заряда в молекулярном ионе.

Метод ЭМО применялся к анализу масс-спектров циклоалканов [16]. Предполагалось, что диссоциация молекулярного иона состоит из двух последовательных разрывов связей С–С, а вероятность разрыва второй связи с образованием осколочного иона пропорциональна плотности положительного заряда на данной связи в исходном ионе. Вероятности разрыва С–С связей, рассчитанных для циклогексана, -гептана, -октана и -пентана находятся в удовлетворительном согласии с экспериментальными значениями вероятности распадов, полученных из масс-спектров этих соединений.

вероятности связей При исследовании разрыва скелетных В гетеросоединениях необходимо учитывать, что, как правило, большая часть избыточного положительного заряда локализована на гетероатоме либо на двойной связи положительного иона, полученного из исходной молекулы электронным ударом. С использованием упрощенного варианта метода ЭМО показано, что более 56% избыточного положительного заряда в молекулярных ионах метил-*н*-бутилкетона И метилизобутилкетона сосредоточено на карбонильной связи [17]. Такую относительно высокую степень локализации молекулярном положительного заряда В ионе можно объяснить пренебрежением перераспределения оставшихся после ионизации электронов, а также определенными недостатками, присущими использованному методу. Однако, если учесть только положительный заряд, рассредоточенный лишь по C–C, СВЯЗЯМ TO теоретически полученные вероятности ИХ разрыва удовлетворительно согласуются экспериментальными С данными для упомянутых соединений и для втор-, трет-бутилметилкетона [18].

Исследования первичных аминов методом ЛКОС в приближении объединенного атома показали, что около 90% избыточного положительного заряда молекулярного иона приходится на связь С–N, а остальные 10 % – на связи С–С, вероятности разрыва которых фактически и рассматривались [19]. Такое пренебрежение основным количеством положительного заряда, повидимому, не может привести к достоверным выводам [20].

В работах [21, 22] в приближении ППДП/2 рассмотрено поведение первичных и вторичных алкиламинов при электронном ударе, а также обсуждаются пути фрагментации их молекулярных ионов. С целью выяснить распределение положительного заряда по связям МО, рассчитанные исходно в валентном *sp*-базисе, преобразовывались к базису sp^3 -гибридных орбиталей. Плотность положительного заряда на определенной связи, образованной двумя гибридными АО, центрированными на двух химически связанных атомах, равна сумме вкладов, вносимых ВЗМО этих гибридных орбиталей в общую рассматриваемых атомах. электронную плотность на Распределение положительного заряда по скелетным связям однократно ионизированных молекул аминов показывает, что связь α-С-С, смежная со связью C-N, ослабляется в результате ионизации в наибольшей степени. С одной стороны, это соответствует экспериментально определенной вероятности ее разрыва, а с другой стороны противоречит данным, полученным в приближении ЛКОС [19]. Из этого можно сделать вывод, что приближение ЛКОС, а также метод ЭМО мало пригодны для расчета электронной структуры молекул и ионов гетеросоединений С целью интерпретации ИХ масс-спектров. Экспериментальные вероятности разрывов α -C–C > C–N > β -C–C хорошо воспроизводятся теоретически на основе рассмотрения распределения положительного заряда в молекулярных ионах первичных и вторичных алкиламинов.

В работе [22] ставится вопрос о вероятности локализации положительного заряда на осколках, образующихся при разрыве связи в молекулярном ионе. Авторы этой работы полагают, что чем больше положительный заряд на определенной группе связанных между собой атомов молекулярного иона, тем больше вероятность формирования данной группы в виде положительно заряженной частицы. Стивенсон [23], изучая масс-спектры низших алканов, пришел к выводу, что осколок, состоящий из большого числа атомов углерода, несет на себе положительный заряд, а другой осколок становится радикалом. В [24] сообщается о наличии хорошей корреляции между числом атомов углерода в осколке и вероятностью локализации положительного заряда на нем при фрагментации ионов сложных насыщенных углеводородов.

Упомянутые способы рассмотрения локализации положительного заряда не учитывают, однако, существенной перестройки электронного облака исходного молекулярного иона при его диссоциации. Этому вопросу уделено внимание в работах [20, 25, 26]. При анализе распределении положительного заряда на различных связях исследуются только те свойства молекулярного иона, которые связаны с его конкретной геометрической конфигурацией, соответствующей точке энергетической гиперповерхности, полученной в результате франк-кондоновского перехода при ионизации молекулы. Другими словами, решая вопрос о месте локализации положительного заряда, нужно обращать внимание на возможное изменение электронной плотности в процессе диссоциации молекулярного иона по определенной связи. Мы еще вернемся к этому вопросу при рассмотрении масс-спектров полевой ионизации.

В литературе также имеются сообщения о достаточно хорошей корреляции между распределением положительного заряда в молекулярном ионе и рассчитанными из экспериментальных масс-спектров вероятностями разрывов связей для некоторых других классов органических соединений таких, как простые и сложные эфиры и эфиры аминокислот [27].

Обобщая работы, в которых рассматриваются корреляционные зависимости между распределением положительного заряда в ионе и вероятностями разрывов его связей, следует подчеркнуть, что в основе такого подхода лежат следующие предположения [28]:

а) ионизация молекулы электронным ударом приводит к образованию молекулярного иона в возбужденном состоянии по отношению к основному электронному состоянию иона [29], фрагментация которого ведет к стабилизации образующихся продуктов;

б) вероятность разрыва скелетной связи в ионе пропорциональна плотности положительного заряда на этой связи или иначе электронной плотности, создаваемой электроном ВЗМО на этой связи в исходной молекуле;

в) такой подход применим только для объяснения исходной фрагментации, а вторичные и другие типы разрывов обычно трактуются на основе КРТ.

Рассмотренный подход к рассмотрению масс-спектров электронного удара помимо уже упомянутых имеет и другие недостатки. Основной из них заключается в игнорировании акта первичного взаимодействия между налетающим электроном и молекулой. Рассматривая этот акт, следует иметь в виду, что при взаимодействии электрона с большими органическими молекулами внутри молекул возникают локальные возбуждения, вблизи которых и происходят фрагментационные процессы [30]. Одновременно могут возникнуть несколько таких центров, так как в случае больших молекул через их электронное облако могут пройти несколько электронов. Это хорошо согласуется с известным экспериментальным фактом, состоящим в том, что некоторые механизмы фрагментации осуществляются при одновременном разрыве двух или даже более связей.

При теоретической интерпретации масс-спектров рассматриваются также другие типы корреляционных зависимостей. Так, экспериментально и теоретически с использованием простого метода МО ЛКАО изучались масс-спектры *орто-*, *мета-* и *пара-*замещенных анилина и анизола. Найдено,

что между логарифмом суммы интенсивностей ионов, образующихся при разрыве связи между заместителем и анилиновым или анизольным остатком, и частичным порядком этой связи, обусловленным электроном фронтальной МО, имеет место линейная корреляция, справедливая для всех исследованных соединений. Такая же зависимость наблюдается и для производных бензола и хлорбензола.

Помимо упомянутых корреляций в ряде работ исследовался вопрос о зависимости вероятности разрыва связи в молекулярных ионах от других величин, вычисляемых в рамках МО подхода. В работе [32] методом РМХ с согласованием по зарядам [33] показано, что вероятность разрыва связи хорошо коррелирует с относительной энергией $B_{AB}^{(i)}$ этой связи в молекулярном ионе. Величина $B_{AB}^{(i)}$, через которую выражается полная энергия $E^{(i)}$ иона с неспаренным электроном на *i*-ой МО

$$E^{(i)} = \sum_{p} \left(\sum_{j=1}^{n-1} 2C_{jp}^2 + C_{ip}^2 \right) H_{pp} + \sum_{A>B} B_{AB}^{(i)},$$

дается выражением

$$B_{AB}^{(i)} = \sum_{p \in A} \sum_{q \in B} k(H_{pp}, H_{qq}) \left(4 \sum_{j=1}^{n-1} C_{jp} C_{jq} + 2C_{ip} C_{iq} \right),$$

где H_{pp} – кулоновский интеграл, C_{jp} – коэффициент при АО χ_p в разложении *j*-ой МО; n – число занятых МО в основном состоянии молекулы, коэффициент $k(H_{pp}, H_{qq})$ фигурирует в выражении резонансного интеграла H_{pq} по Вольфсбергу – Гельмгольцу

$$H_{pq} = \frac{1}{2}k(H_{pp} + H_{qq})S_{pq},$$

где S_{pq} – интеграл перекрывания АО χ_p и χ_q ; коэффициент *k* обычно принимают равным 1.75. Величина $B_{AB}^{(i)}$, введенная таким способом, дает относительную энергию связи между атомами А и В. В этой же работе исследовано влияние возбуждения одного из электронов верхних занятых МО на нижнюю вакантную МО. В результате такого упрощенного рассмотрения возбужденных состояний молекулярного иона сделан вывод о возможности влияния таких состояний не только на вероятность разрыва связей, но даже на пути фрагментации полученного иона.

Рассматривалась также возможность применения РМХ для описания перегруппировки Мак-Лафферти [34] исходя из постулируемой геометрической конфигурации переходного состояния: указано на более высокую вероятность

перегруппировочного процесса в положительном молекулярном ионе, чем в исходной молекуле.

PMX Благодаря своей простоте применялся для теоретического рассмотрения путей фрагментации молекулярного иона такого сложного соединения как эстрон [35]. В этой работе сравниваются два способа расчета распределения электрона фронтальной МО исходной молекулы, как это описано выше, из распределения электронной плотности, полученного для образовавшегося иона. Показано, что «равновесное» распределение заряда, полученное вторым способом, более пригодно для предсказания путей фрагментации молекулярного иона при электронном ударе. Обсуждено также влияние на вероятность разрыва связей возбужденных электронных состояний молекулярного иона, рассматриваемых в приближении одноэлектронного возбуждения с верхней занятой на первую вакантную МО. Сделан вывод о том, что в наибольшей степени, как правило, ослабляется ординарная связь между гетероатомом и атомом углерода.

Ишикава и Огата [36] предложили способ определения осколков, которые должны нести на себе положительный заряд при разрыве связей в молекулярном ионе. Например, если некоторый ион (A–B–C)⁺ может распадаться по двум каналам, а именно:

$$\mathbf{A}^{\bullet} + \left(\mathbf{B} - \mathbf{C}\right)^{+} \leftarrow \left(\mathbf{A} - \mathbf{B} - \mathbf{C}\right)^{+} \rightarrow \mathbf{A}^{+} + \left(\mathbf{B} - \mathbf{C}\right)^{\bullet},$$

то в процессе распада реализуется тот канал, сумма энергий продуктов распада которого будет наименьшей, что согласуется с принципом Бэлла [2], Эванса и Поляньи [37] (БЭП). В работе [36] методом ППДП/2 рассчитывалась энергия катионов И радикалов, которые могут образовываться при масс-спектрометрическом распаде молекулярных ИОНОВ некоторых алкиламинов и 1-бутена. Комбинируя энергии этих фрагментов с учетом заряда распадающейся системы, сохранения спина и можно вполне удовлетворительно предсказать состав масс-спектра исследуемого соединения. Такой требует известной подход, однако, осторожности, поскольку геометрическое строение исходного молекулярного иона и его возможных фрагментов не известны. Кроме того, радикалы и ионы, образующиеся при таких разрывах, могут находиться в различных спиновых состояниях, разность энергий которых может быть того же порядка, что и выигрыш в энергии по двум исследуемым каналам. Такой способ определения заряженных осколков в масс-спектрометрических реакциях требует доказательств возможности применения принципа БЭП. Развиваемый Ишикавой и Огата подход был применен исследованию фрагментации молекулярных К ИОНОВ

гетероароматических соединений [38]. Электронная структура исходных молекул, промежуточных продуктов и конечных ионов рассчитывалась методом ППДП/2. В качестве величины, характеризующей степень ослабления связи при ионизации молекулы, рассматривался ее двухцентровый вклад в полную энергию системы. Теоретически рассчитанный состав масс-спектра удовлетворительно воспроизвел экспериментальные данные.

Рассмотренные методы изучения масс-спектров на основе теории МО связаны с интерпретацией простых разрывов в молекулярных ионах. Однако, некоторые линии в экспериментальных масс-спектрах невозможно объяснить, рассматривая только такие простые разрывы. Для интерпретации этих линий необходимо вводить ряд допущений о различного рода перегруппировках. Одной из самых распространенных среди них является перегруппировка Мак-Лафферти [34], заключающаяся в переносе водорода, связанного с у-углеродным атомом, к атому кислорода в алифатических кетонах и их аналогах. Мак-Лафферти *et al* [39] неэмпирическим методом МО [40] исследовали электронную структуру шестичленного циклического переходного состояния в некоторых таких перегруппировках. Была внесена ясность в механизм этой перегруппировки, в частности, показано, что перенос атома водорода к кислороду, по-видимому, предшествует удалению молекулы олефина из молекулярного иона. Ионизация молекулы кетона приводит к резкому понижению энергии активации процесса перегруппировки в результате удаления одного ИЗ электронов с верхней разрыхляющей орбитали, локализованной в основном на у-углероде, кислороде и переносимом атоме водорода. Реакция может протекать при небольших изменениях положений трех атомов – водорода, кислорода и у-углерода. Водород, связанный вначале с γ -углеродом σ -связью, а затем с углеродом и кислородом трехцентровой связью, в конце перегруппировки образует σ -связь с кислородом. Неспаренный электрон переносится непосредственно от атома кислорода к у-углероду, что способствует образованию и удалению молекулы олефина.

Кроме перегруппировки Мак-Лафферти в ряде случаев наблюдаются перегруппировки совсем иного типа, в частности, наблюдается так называемый внутримолекулярный изотопный обмен. Суть этого явления заключается в том, что масс-спектр дейтерированного этана CH_3 – CD_3 помимо линий ионов CH_3^+ и CD_3^+ содержит также линии «смешанных» ионов CH_2D^+ и CD_2H^+ . Методом ЧПДП был выполнен расчет ряда возможных структур активированного комплекса молекулярного иона этана, объясняющих этот внутримолекулярный изотопный обмен [41]. В результате оптимизации геометрического строения таких комплексов авторы пришли к выводу, что структура типа диборана $(CH_3-CD_3)^+$ наиболее стабильна по сравнению с остальными изученными

структурами. Взяв этот вывод за основу, можно объяснить причину появления в масс-спектре дейтерированного этана линий «смешанных» ионов.

В работе [42] методом ЧПДП рассчитывалось оптимальное геометрическое строение некоторых молекулярных положительных ионов и изучался вопрос об ортоэффекте в масс-спектрах. Было обнаружено, что для ионов фенилацетата и его орто-фторзамещенных наиболее энергетически выгодной оказывается конформация, способствующая образованию связи между карбонильным кислородом и орто-галогеном. Такая внутриионная связь приводит К дополнительной стабилизации молекулярного иона и к уменьшению константы скорости реакции потери кетона при электронном ударе 43 Для аналогичных иона фенетола замещенных наиболее молекулярного И приводят выгодные конформации образованию энергетически не к дополнительной связи между орто-заместителем и атомами боковой цепи. В результате масс-спектры этих соединений содержат интенсивные линии ионов, образованные путем удаления этилена из молекулярных ионов фенетола и его замещенных [44].

Кроме КРТ и различных вариантов метода МО при теоретической интерпретации масс-спектров широко используется опыт, накопленный физической органической химией по механизмам реакций. Однако, из-за специфических условий масс-спектрометрические процессы распада объясняются иначе по сравнению с химическими реакциями при обычных условиях. Например, из-за низкого давления паров исследуемого соединения в камере масс-спектрометра, как уже упоминалось ранее, вряд ли можно говорить о межмолекулярных взаимодействиях в процессах фрагментации. Также не приходится говорить и о том, что реагент атакует какую-то группу или связь, как это принято в обычных химических процессах, поскольку атака электрона может быть направлена в любое место молекулы. Тем не менее имеющееся некоторое сходство между мономолекулярным разложением при нагревании, фотохимическом, электронном и радиационном ударах позволяет физико-органической использовать основные принципы химии при Мак-Лафферти [45] рассмотрении масс-спектров. при интерпретации органических соединений основывается масс-спектров на следующих предположениях:

а) состав масс-спектра зависит от относительной прочности связей в распадающемся молекулярном ионе;

б) стабильность образующихся ионов и нейтральных частиц, возникающих в результате конкурирующих процессов распада, оказывает определяющее влияние на пути фрагментации молекулярного иона;

в) состав масс-спектра в значительной мере зависит от вероятности процессов перегруппировки.

Такой физико-органический подход к интерпретации масс-спектров привлекателен своей простотой и возможностью применения к широкому кругу соединений. Однако он совершенно непригоден для количественного расчета масс-спектров и значительно уступает в точности предсказания путей фрагментации и интенсивности линий как КРТ, так и подходу, основанному на молекулярно-орбитальной теории.

8.2. Фрагментация электрическим полем

Наряду с традиционной масс-спектрометрией электронного удара значительное развитие получила полевая масс-спектрометрия, в которой положительные молекулярные ионы образуются в результате ионизации молекул исследуемого вещества электрическим полем довольно большой напряженности в области 1-3 *В/Å*. В результате воздействия поля на образовавшийся ион время его пребывания в ионном источнике намного меньше (около 10⁻¹¹-10⁻¹³ с), чем в случае масс-спектрометрии электронного удара. Это обстоятельство позволяет исследовать очень быстрые распады и превращения, происходящие сразу же после ионизации молекул в ионном источнике [46], т. е. изучать процессы первичной фрагментации молекулярных ионов, что собственно является одним из главных достоинств полевой масс-спектрометрии в отличие от масс-спектрометрии электронного удара.

Одним из главных факторов, влияющих на формирование масс-спектра, является избыток внутренней энергии, получаемый молекулярным ионом при материнской молекулы. Так, при бомбардировке н-гексана ионизации электронами с энергией 70 эВ образующийся молекулярный ион обладает внутренней энергией свыше 6 эВ, в то время как при ионизации полем этот избыток составляет всего около 0.5 эВ [47]. Такое различие приводит к тому, что В полевых масс-спектрах относительные интенсивности линий молекулярных ионов выше, чем в случае электронного удара. Более того, линия молекулярного иона в полевых масс-спектрах наблюдается даже тогда, когда она отсутствует в спектрах электронного удара, снятых при низких энергиях бомбардирующих электронов.

Полевые масс-спектры дают обширную информацию о механизме и путях фрагментации молекулярных ионов в электрическом поле. Данные, накопленные при их расшифровке, могут быть использованы для объяснения превращений, происходящих с ионами в обыкновенных химических реакциях, а также для идентификации неизвестных соединений с помощью полевой масс-спектрометрии, т. е. для аналитических целей.

Экспериментально крайне затруднительно или даже невозможно факторы (ионизирующее электрическое поле, все исследовать природа материала эмиттера, состояние его поверхности и др.), влияющие на формирование масс-спектра. Поэтому рассмотреть актуально полевые масс-спектры методами квантовой химии.

Впервые методы квантовой ХИМИИ для интерпретации полевых масс-спектров применили Лорке и Холл [48]. Методом ЭМО они рассчитали электронную структуру ряда однократно ионизированных молекул парафинов в отсутствие поля и при наличии его. Поскольку распределение заряда в ионе сильно зависит от его ориентации в поле, то авторы предположили, что все молекулярные ионы, подвергающиеся фрагментации, ориентированы своей длинной осью вдоль вектора поля. Это предположение они обосновали тем, что такое расположение молекулярного иона парафина, находящегося в вытянутой конформации, приводит к значительному выигрышу в поляризационной энергии по сравнению с ориентацией иона, при которой его длинная ось перпендикулярна к вектору поля. Однако, как показал Бекки [49], выигрыш в поляризационной энергии слишком И объяснить мал ИМ нельзя препочтительную ориентацию ионов вдоль силовых линий поля.

Используя предположение Томпсона о корреляции между плотностью положительного заряда на связи и вероятностью ее разрыва в положительном молекулярном ионе [5], Лорке и Холл качественно объяснили наличие специфичной для полевых масс-спектров парафинов линии иона $C_2H_5^+$. Расчеты показали, что при поле 0.3 *B/Å* бо́льшая часть положительного заряда локализована на второй от конца иона связи С–С и, следовательно, ее разрыв более предпочтителен по сравнению с разрывами других скелетных связей. При увеличении поля до 1 *B/Å* самой слабой становится наиболее удаленная от эмиттера концевая связь С–С, что также находится в соответствии с экспериментальными данными [47, 50], согласно которым при высоких полях линия иона CH₃⁺ становится преобладающей в полевых масс-спектрах низших парафинов от *н*-пропана до *н*-октана.

8.3. Цикл киевских исследований по полевой фрагментации

В серии наших работ [51 – 62] по изучению поведения молекул и ионов во внешнем электрическом поле с целью выяснения возможных путей их диссоциации в полевом масс-спектрометре использовался гамильтониан ППДП/2.

8.3.1. Метод расчета

Внешнее электрическое поле учитывалось в явном виде путем введения соответствующих членов взаимодействия ядер и валентных электронов с полем в гамильтониан молекулярной системы, а именно:

$$\hat{H} = \hat{H}_0 + eF \sum_i z_i - eF \sum_{\alpha} Z_{\alpha} z_{\alpha},$$

где \hat{H}_0 – гамильтониан системы, z_i и z_{α} – проекции на ось z радиус-векторов электрона *i* и остова α в системе координат, в которой рассчитывается молекула (молекулярная система координат), F – вектор поля, направленный вдоль положительной полуоси z, в приближении ППДП/2 Z_{α} – заряд остова атома α , суммирование ведется по всем электронам и о́стовным ядрам молекулярной системы.

При учете внешнего электрического поля матричные элементы фокиана дополняются произведением напряженности поля F на одно- и двухцентровые матричные элементы оператора z_i. Добавочные одноцентровые матричные элементы вычислялись в сферической системе координат, центрированной на рассматриваемом атоме. Для вычисления двухцентровых матричных элементов $\langle \chi_{\mu} | z_M | \chi_{\nu} \rangle$, где $z_M - z$ -проекция радиус-вектора r электрона в молекулярной системе координат, а базисные орбитали χ_{μ} и χ_{ν} центрированы на атомах А и В, соответственно, удобно перейти к промежуточной системе координат, оси которой параллельны молекулярной системы координат, а начало ее расположено в точке z_c — середине отрезка АВ, соединяющего рассматриваемые атомы A и B. Между проекцией z_o вектора r на ось z промежуточной системы и проекцией z_M имеет место соотношение $z_M = z_C + z_O$. Для матричных элементов операторов этих проекций справедливо аналогичное равенство:

$$\langle \chi_{\mu} | z_{M} | \chi_{\nu} \rangle = \langle \chi_{\mu} | z_{C} + z_{O} | \chi_{\nu} \rangle.$$

Учитывая, что для данной пары атомов A и B $z_c = Const$ и используется приближение ППДП, то

$$\langle \chi_{\mu} | z_{M} | \chi_{\nu} \rangle = z_{C} \delta_{\mu\nu} + \langle \chi_{\mu} | z_{O} | \chi_{\nu} \rangle,$$

так что при вычислении матричных элементов оператора z_{M} при учете внешнего электрического поля в схеме метода ППДП соблюдается

инвариантность результатов расчета относительно выбора начала молекулярной системы координат.

Для вычисления полной энергии молекулярной системы необходимо к электронной энергии, полученной для самосогласованного решения, добавить энергию отталкивания остовов и энергию взаимодействия с полем

$$E_F = -eF \sum_{\alpha} Z_{\alpha} Z_{\alpha}.$$

Упомянутая инвариантность нарушается в случае заряженных молекулярных систем. Энергия таких систем зависит от выбора начала молекулярной системы координат, что, однако, не сказывается на таких важных физических характеристиках как распределение электронной и спиновой плотности.

Далее рассмотрим результаты расчета поведения в электрическом поле следующих молекул: этаналь, пропаналь, бутаналь,

8.3.2. Фрагментация альдегидов: этаналь, пропаналь и бутаналь

Полевая фрагментация этаналя (ацетальдегида) рассматривалась в работах [52 – 54, 60, 63]. У молекулы в электрическом поле изменяется ее электронная структура и пространственное строение. Оптимальная конформация молекулы ацетальдегида (А) в поле и вне его, как и в случае всех других изученных молекулярных систем, находилась методом прямого поиска экстремума Хука и зарекомендовавшим Дживса [64], хорошо себя при решении самых разнообразных задач, предполагающих поиск экстремума на сложной многомерной поверхности [65 – 67]. При учете внешнего поля молекула предварительно ориентировалась по отношению к вектору поля под углом, соответствующим минимуму полной энергии, рассчитанной при оптимальном пространственном строении в отсутствии поля (рис. 1).

Рис. 1. Нумерация атомов в молекуле этаналя и ее ориентация в однородном электрическом поле.

Оптимальная конформация в отсутствии поля определялась следующим образом. Первоначально молекула этаналя бралась в своей экспериментально определенной конформации, приведенной в табл. 1.

Таблица 1

	F =	0	F eq 0			
Свойство	Конфор	мация	Оптимизир	ованные ко	нформации	
	Эксп. [68]	Оптим.	F = 0.010	F = 0.020	F = 0.025	
R(C–C), Å	1.501	1.448	1.441	1.435	1.431	
R(C–O), Å	1.216	1.260	1.264	1.267	1.269	
$R(C_2-H_3), Å$	1.086	1.118	1.120	1.121	1.122	
$R(C_1-H_6), Å$	1.114	1.121	1.119	1.117	1.116	
∠CCO	123° 55′	124 ° 46′	126 ° 16′	126 ° 34′	127 ° 39′	
$\angle \text{CCH}_6$	117° 29′	118°28′	116°49′	114 ° 24′	112 ° 52′	
$\angleH_3C_2H_4$	108° 16′	106°00′	105 ° 50′	105 ° 40′	105 ° 35′	
–Е, ат. ед.	35.5411	35.5584	35.5796	35.6048	35.6189	

Геометрия молекулы этаналя в отсутствии поля и в различных электрических полях, *ат. ед.**

* $R(C_2-H_3) = R(C_2-H_4) = R(C_2-H_5); \angle H_3C_2H_4 = \angle H_3C_2H_5 = \angle H_4C_2H_5.$ 1 *ат. ед.* электрического поля = 5.1436·10⁹ *B/см*.

На первом этапе оптимизации фиксировалась геометрия групп CH_3 и CHO, а энергия молекулы минимизировалась по длине связи C-C. На втором этапе при найденной фиксированной длине связи C-C энергия минимизировалась по межатомным расстояниям в группах CH_3 и CHO. Найденная геометрия этих групп фиксировалась, и снова определялось расстояние C-C и так далее до получения оптимальной конформации, которой соответствует минимальная энергия.

Определение оптимальных конформаций молекулы этаналя в электрических полях выполнялось следующим образом. Молекула этаналя бралась в своей экспериментальной геометрии, задавалось значение поля и по минимуму энергии молекулы в заданном поле определялся угол α между направлением вектора поля вдоль положительной полуоси *z* и связью С–С. Результаты такого расчета для поля *F* = 0.02 *am. ed.* показаны на рис. 2. Определенный таким образом угол α первоначально фиксировался при дальнейшей оптимизации геометрии молекулы этаналя в электрическом поле. Для поля *F* = 0.02 *am. ed.* угол α равен 144 ° [52] (рис. 1).

Предварительная ориентация молекулы относительно вектора поля в процессе поиска ее оптимальной конформации в ненулевом поле позволяет избежать попадания в локальный минимум, что оказывается неизбежным, если

мы стартуем при произвольном угле *α*. При окончательной оптимизации геометрии молекулы в поле угол *α* «размораживается».

Окончательные результаты расчета пространственного строения молекулы этаналя в различных электрических полях, представленные в табл. 1, показывают, что наложение таких внешних однородных полей приводит лишь к незначительному изменению длин связей и валентных углов в молекуле по сравнению со свободной молекулой. При расчете более сложных молекул такими изменениями вполне можно пренебречь.

В молекуле этаналя связи С–С и С₁–H₆ с ростом поля укорачиваются, а связи С–О и С–Н метильной группы удлиняются (табл. 1). Такой характер изменения длин связей можно объяснить исходя из распределения зарядов на атомах в молекуле (табл. 2) с учетом ее ориентации в поле.

Таблица 2

	F	= 0	$F \neq 0$					
Атом	Конфо	рмация	Оптимизир	Оптимизированные конформации				
	Эксп. Оптим.		F = 0.010	F = 0.020	F = 0.025			
C ₁	0.251	0.244	0.264	0.284	0.294			
C ₂	-0.068	-0.055	-0.068	-0.086	-0.096			
H ₃	0.038	0.040	0.048	0.059	0.064			
H ₅	0.017	0.015	0.031	0.046	0.055			
H ₆	-0.042	-0.036	-0.038	-0.039	-0.040			
0	-0.233	-0.248	-0.285	-0.323	-0.341			

Распределение зарядов на атомах в молекуле этаналя в свободном состоянии и в электрических полях, *ат. ед.**

*1 *ат. ед.* электрического поля = $5.1436 \cdot 10^9 B/cm$.

Связь C_1-C_2 при оптимальной ориентации молекулы в поле расположена относительно вектора поля так, что со стороны поля на атом C_1 , несущий значительный положительный заряд, и на атом C_2 , заряженный отрицательно, действуют силы, смещающие их друг к другу, что и приводит к укорачиванию связи. Аналогичным образом объясняется уменьшение длины связи C_1-H_6 . Расположение связей C=O и C-H метильной группы относительно вектора поля и заряды на этих атомах способствуют удлинению этих связей. Расчеты показывают также (табл. 1), что валентные углы более чувствительны к полю, чем длины связей.

С ростом электрического поля дипольный момент этаналя изменяет как свое значение, так и направление (табл. 3).

Таблица 3

Ориентация вектора дипольного момента $\vec{\mu}$

moner juli standin								
Конф	Угол между <i>й</i> и							
Конф.	$C_1 - C_2$	осью \vec{z}						
Экспер.	136 °13′	—						
Оптим.	137 °23′	_						
F = 0.010	138 °46′	5°36′						
F = 0.020	140°18′	4 °24′						
F = 0.025	141 °58′	2°57′						

молекулы этаналя

Расчеты показывают, что величина дипольного момента, рассчитанная с учетом изменения геометрии молекулы под влиянием поля, растет с ростом поля сильнее чем при выборе фиксированной экспериментально наблюдаемой конформации молекулы этаналя. Угол между векторами дипольного момента и поля, хотя и не нулевой при этих слабых полях, уменьшается с ростом поля (табл. 3).

При расчете электронной структуры свойств ионов И этаналя конфигурация ядерных остовов предполагалась такой же как и у исходной молекулы. При определении ориентации ионов в поле следует учесть, что независимо от природы сил, действующих на жесткую конформацию молекулы свободное вращение происходит вокруг центра масс. Расчеты, проведенные в системе центра масс, показывают, что ориентация молекулярных ионов в поле совпадает с ориентацией исходной молекулы. Это означает, что в результате ионизации материнской молекулы образуется ион в оптимальной ориентации по отношению к вектору поля. Будем считать, что отсутствует избыток энергии, которым мог бы обладать молекулярный ион в результате того, что его ориентация в момент образования не соответствует ориентации исходной молекулы.

Потенциал ионизации для экспериментальной конформации и для оптимальной в отсутствии поля вычислялся по теореме Купманса и как разность между энергиями основного состояния иона E_I^+ и исходной молекулы E_M в одной и той же конформации. В присутствии поля второй метод, естественно, не использовался.

Аналогичным образом вычислялось сродство к электрону. В обоих случаях энергия ионов вычислялась методом НХФ. Результаты представлены в табл. 4.

Таблица 4 Потенциал ионизации и сродство к электрону молекулы этаналя в электрическом поле и в свободном состоянии, э*B*

	Потенциал и	онизации	Сродство к электрону		
Конф.	Теорема	$F^+ - F$	Теорема	F F^-	
	Купманса	$L_I - L_M$	Купманса	$E_M - E_I$	
Экспер.	13.8	11.5*	4.0_{4}	2.3_{2}	
Оптим.	14.0	11.3	3.4	2.4	
F = 0.010	14.6	_	2.7	_	
F = 0.020	15.2	_	2.1	_	
F = 0.025	15.4	_	1.8	_	

*Экспериментальное значение $10.2_2 \ \Im B$.

Хорошо видно, что электрическое поле стабилизирует ВЗМО и дестабилизирует НПМО.

После ионизации все связи в образовавшемся положительном ионе, как правило, ослабевают, но в различной мере. Критерием для оценки степени ослабления связи может служить разность двухцентровых вкладов E_{AB} в полные энергии молекулы и иона, а именно:

$$\Delta_{\rm AB} = E_{\rm AB}^{mol} - E_{\rm AB}^{ion}.$$

Как известно, полную энергию молекулярной системы в приближении ППДП/2 можно представить в виде суммы одноцентровых и двухцентровых вкладов [69]:

$$E = \sum_{\mathbf{A}} E_{\mathbf{A}} + \sum_{\mathbf{A} < \mathbf{B}} E_{\mathbf{A}\mathbf{B}},$$

где суммирование проводится по всем атомам молекулы. Для системы с открытой оболочкой одноцентровый вклад можно записать в виде

$$E_{\rm A} = \sum_{\mu \in {\rm A}} P_{\mu\mu} H_{\mu\mu} + \frac{1}{2} \sum_{\mu \in {\rm A}} \sum_{\nu \in {\rm B}} \left\{ P_{\mu\mu} P_{\nu\nu} - \left[\left(P_{\mu\nu}^{\alpha} \right)^2 + \left(P_{\mu\nu}^{\beta} \right)^2 \right] \right\} \gamma_{\rm AA},$$

а двухцентровый вклад

$$E_{AB} = \sum_{\mu \in A} \sum_{\nu \in B} \left\{ 2P_{\mu\nu} H_{\mu\nu} - \left[\left(P_{\mu\nu}^{\alpha} \right)^{2} + \left(P_{\mu\nu}^{\beta} \right)^{2} \right] \gamma_{AB} \right\} + \frac{Z_{A} Z_{B}}{R_{AB}} - P_{AA} V_{AB} - P_{BB} V_{BA} + P_{AA} P_{BB} \gamma_{AB},$$

где суммирование по μ выполняется по всем орбиталям, центрированным на атоме A, по v – на атоме B; $P^{\alpha}_{\mu\nu}$ и $P^{\beta}_{\mu\nu}$ – элементы матриц порядков связи для электронов со спином α и β ; γ_{AA} и γ_{AB} – одно- и двухцентровый кулоновские интегралы межэлектронного отталкивания; $P_{AA} = \sum_{\mu \in A} P_{\mu\mu}$ – заселенность атома A;

 $H_{\mu\mu}$ и $H_{\mu\nu}$ – диагональный и недиагональный элементы гамильтониана остова; R_{AB} – расстояние между атомами A и B; параметр V_{AB} , описывающий взаимодействие между валентными электронами атома A с остовом атома B, вычисляется по формуле

$$V_{\rm AB} = Z_{\rm B} \, \gamma_{\rm AB}.$$

Корректность вкладов E_A и E_{AB} в системах с открытой оболочкой обсуждалась в работах [70 – 72].

По мере того как поле растет, связи С–С и С₂–H₅ в молекуле этаналя упрочняются (табл. 5), в то время как связь С–О ослабевает. Остальные связи углерода с водородом подвержены влиянию поля в меньшей степени.

Таблица 5

Двухцентровые вклады	<i>Е</i> _{АВ} в полную энергию молекулы этаналя
в свободном состоя	нии и в электрических полях, <i>ат. ед.</i> *

	F =	= 0	F eq 0					
Связь	Конфој	омация	Оптимизированные конформации					
	Эксп.	Оптим.	F = 0.010	F = 0.020	F = 0.025			
C–C	-1.1422	-1.2165	-1.2392	-1.2611	-1.2684			
C–O	-1.6324	-1.5957	-1.5847	-1.5736	-1.5690			
C_1-H_6	-0.7444	-0.7435	-0.7437	-0.7445	-0.7443			
C ₂ –H ₅	-0.7427	-0.7338	-0.7318	-0.7319	-0.7321			
C ₂ –H ₃	-0.7524	-0.7495	-0.7551	-0.7580	-0.7605			

*1 *ат. ед.* электрического поля = $5.1436 \cdot 10^9 B/см$.

При расчете электронной структуры и физических свойств заряженной молекулы ацетальдегида A⁺ предполагалось, что конформация и ориентация иона A⁺ в поле остаются неизменными по сравнению с исходной молекулой. Это следует не только из упомянутых выше расчетов в системе центра масс, но и вытекает из условий эксперимента в камере полевого масс-спектрометра, время нахождения иона в которой сильно ограничено, в результате чего

образовавшийся ион сохраняет конфигурацию и ориентацию исходной молекулы. Из данных по распределению заряда в A^+ (табл. 6) следует, что положительный заряд в ионе распределен по иону более или менее однородно с преимущественной локализацией в области альдегидной группы.

Таблица 6

	F	= 0	$F \neq 0$				
Атом	Конфо	рмация	Оптимизированные конформации				
	Эксп.	Оптим.	F = 0.010	F = 0.020	F = 0.025		
C ₁	0.396	0.414	0.422	0.428	0.430		
C ₂	-0.074	-0.095	-0.108	-0.123	-0.131		
H ₃	0.143	0.158	0.168	0.181	0.186		
H ₅	0.106	0.111	0.126	0.138	0.145		
H ₆	0.162	0.154	0.153	0.152	0.154		
0	0.124	0.100	0.071	0.043	0.030		

Распределение зарядов на атомах в однократно ионизированной молекуле этаналя в свободном состоянии и в электрических полях, *ат. ед.**

*1 *ат. ед.* электрического поля = $5.1436 \cdot 10^9 B/cm$.

По мере роста поля распределение заряда в ионе A^+ становится все более неоднородным. Сравнивая распределение атомных зарядов в ионе (табл. 6) и в исходной молекуле этаналя (табл. 2), приходим к выводу, что ионизация молекулы A проявляется прежде всего в виде потери электронной плотности альдегидной группой. Этот вывод подтверждается также характером распределения спиновой плотности в ионе A^+ (табл. 7): неспаренный электрон локализуется в основном на атомах O и H альдегидной группы.

Таблица 7

	F =	= 0	F eq 0					
Атом	Конфо	рмация	Оптимизированные конформации					
	Эксп.	Оптим.	F = 0.010	F = 0.020	F = 0.025			
C ₁	-0.047	-0.044	-0.043	-0.041	-0.041			
C ₂	0.068	0.049	0.048	0.047	0.048			
H ₃	0.000	0.000	0.000	0.000	0.001			
H_5	-0.001	-0.001	-0.002	-0.002	-0.002			
H ₆	0.137	0.116	0.118	0.122	0.126			
0	0.844	0.881	0.878	0.873	0.868			
H_6	0.137	0.116	0.118	0.122	0.12			

Распределение спиновой плотности в положительно заряженной молекуле этаналя в свободном состоянии и в электрических полях, *ат. ед.**

*1 *ат. ед.* электрического поля = $5.1436 \cdot 10^9 B/cm$.

После ионизации остающиеся электроны перераспределяются, что ведет к одновременному изменению прочности всех связей. Если сравнить

двухцентровые вклады в ионизированной молекуле (табл. 8) и в исходной (табл. 5), то мы видим ослабление всех связей, как в присутствии поля, так и в отсутствии его, правда, в разной степени.

Таблица 8 Двухцентровые вклады *E*_{АВ} в полную энергию ионизированной молекулы этаналя в свободном состоянии и в электрических полях, *ат. ед.**

	F =	= 0	$F \neq 0$					
Связь	Конфој	рмация	Оптимизированные конформации					
	Эксп.	Оптим.	F = 0.010	F = 0.020	F = 0.025			
C–C	-1.1372	-1.1903	-1.2078	-1.2253	-1.2321			
C–O	-1.5065	-1.4372	-1.4219	-1.4009	-1.4078			
C_1-H_6	-0.6782	-0.6857	-0.6848	-0.6837	-0.6809			
C_2-H_5	-0.7264	-0.7137	-0.7097	-0.7076	-0.7070			
C_2-H_3	-0.7528	-0.7497	-0.7537	-0.7554	-0.7570			
	.1.4	``````````````````````````````````````	-	140 (10 ⁹ D/				

*1 *ат. ед.* электрического поля = $5.1436 \cdot 10^9 B/cm$.

Связь C_1-H_6 ослабевает в большей степени по сравнению с другими связями, а разность величины E_{C1-H6} для исходной молекулы A и иона A⁺ растет по абсолютной величине по мере роста поля. Таким образом, можно предположить, что разрыв связи C_1-H_6 наиболее вероятен в сравнении с разрывом других связей в молекулярном ионе A⁺. В результате разрыва этой связи оставшийся фрагмент может реализоваться либо в виде заряженного иона (CH₃CO)⁺, либо в виде радикала CH₃CO⁻. Чтобы предсказать ионную или радикальную природу остающегося фрагмента, выполнялись две серии расчетов с разными траекториями удаления альдегидного водорода – связь C_1-H_6 просто удлинялась или же атом двигался по направлению вектора поля (рис. 3).

Обе траектории приводят к одному и тому же результату – удалению альдегидного атома водорода из иона этаналя с образованием положительно заряженного иона $(CH_3CO)^+$. Этот же вывод подтверждается расчетом спиновой плотности, уносимой из иона этаналя (рис. 4). В полевом массспектре этаналя линия иона (М–1)⁺, казалось бы, должна быть самой интенсивной. Однако, В экспериментальном масс-спектре эта линия отсутствует. Это связано с тем обстоятельством, что только те связи молекулы в электрическом поле оказываются способными к диссоциации, которые ориентированы вдоль вектора поля. Связь же C₁-H₆ в оптимальной конформации молекулы этаналя в поле расположена практически нормально к вектору поля (рис. 1), так что диссоциация ее полем весьма затруднена.

Рис. 3. Изменение заряда на атоме водорода альдегидной группы иона этаналя в поле $F = 0.02 \ am$. ед. и в отсутствие поля при удлинении связи C₁–H₆ (кривые 1 и 2) и при движении атома H₆ вдоль поля (кривые 3 и 4).

Рис 4. Изменение спиновой плотности на атоме водорода альдегидной группы иона этаналя в поле *F* = 0.02 *ат. ед.* и в отсутствии поля при движении атома H₆ вдоль поля; практически аналогичные кривые имеют место при простом удлинении связи C₁–H₆ [52].

В отсутствии же поля эта связь может рваться, что приводит к появлению в спектре линий, соответствующих распаду метастабильных ионов. Такие линии

обнаруживаются в спектре многих альдегидов, однако, как правило, их интенсивность мала и появляются они в сильных полях.

Переходя от молекулы этаналя к иону, в присутствии поля или в отсутствии его, изменение двухцентрового вклада E_{C-C} указывает на возможность ослабления этой связи при ионизации молекулы с дальнейшим распадом. Природа образующихся при распаде фрагментов методически определялась так же, как и при распаде связи C_1-H_6 : удлинялась связь C-C и отслеживались заряд и спиновая плотность на фрагменте CH_3 (рис. 5).

Рис. 5. Изменение заряда (а) и спиновой плотности (б) фрагмента CH₃ при удлинении связи С–С в ионе этаналя в поле разной величины и в отсутствии поля.

На начальном этапе удлинения связи С–С все кривые независимо от величины поля ведут себя одинаково вплоть до удлинения $\Delta R(C-C) \sim 0.8 \text{ Å}$. Далее ход кривых зависит от величины приложенного поля. В отсутствии поля

и при F = 0.001 *ат. ед.* поначалу растущий заряд фрагмента CH₃ меняет градиент хода на противоположный и однозначно устремляется к нулю; спиновая плотность при этом стремится к единице. В этих условиях положительный заряд локализуется на группе CHO⁺, а неспаренный электрон уходит с метильной группой. С ростом поля положительный заряд все определеннее стремится удалиться от источника поля и оказывается на метильной группе, образуется ион CH₃⁺; соответственно неспаренный электрон локализуется на фрагменте CHO⁺.

Экспериментальный масс-спектр полевой этаналя, кроме пика, соответствующего молекулярному иону, содержит пики, отвечающие массам 15 и 19.1 а. е. м. Интенсивность пика при 15 а. е. м., соответствующего иону CH_3^+ , растет с ростом поля, что находит свое естественное объяснение в приведенных выше результатах расчета. Метастабильный пик при 19.1 а. е. м. соответствует иону с реальной массой 29 а. е. м., т. е. иону СНО⁺, образующемуся в бесполевом пространстве. Таким образом, разрыв иона А⁺ по связи С-С в отсутствии поля ведет к образованию пары СНО⁺ и СН₃⁺. Таким образом, теперь очевидно, что внешнее приложенное электрическое поле существенно определяет природу фрагментов, образующихся при полевой диссоциации молекул, и стало быть состав полевых масс-спектров.

Связи С–Н метильной группы также ослабевают при ионизации молекулы этаналя. Особенно это касается связи C_2 – H_5 (таблицы 5 и 8), атом водорода которой расположен в той же плоскости, что и тяжелые атомы этаналя (рис. 1). Характер изменения электронной плотности на атоме H_5 при удлинении этой связи (рис. 6) такой же, как и в случае распада иона этаналя по связи C_1 – H_6 (рис. 3). В результате образуется положительно заряженный ион (CH₂CHO)⁺ и атом водорода. Связь C_2 – H_5 в ионе этаналя рвется гомолитически независимо от того есть поле или поле отсутствует.

Характер же изменения спиновой плотности на уходящем атоме водорода в этих двух случаях весьма различный (рисунки 4 и 6) и обращает на себя внимание. В случае связи C_2 – H_5 спиновая плотность на удаляющемся атоме водорода все еще нулевая вплоть до удлинения этой связи на 0.6 Å, затем скачкообразно возрастает в интервале удлинения 0.6 – 0.9 Å и электрон окончательно локализуется на уходящем атоме водорода со спиновой плотностью противоположенного знака в зависимости от наличия поля или его отсутствия.

Далее наряду с молекулой этаналя удобно рассматривать также молекулы пропаналя и бутаналя. В табл. 9 приведены значения определенных выше разностных величин Δ_{AB} для уксусного (таблицы 5 и 8), пропионового [51] и масляного [63] альдегидов. Нумерация атомов углерода в молекулах пропаналя

(см. далее рисунки 7 и 9) и бутаналя (см. далее рис. 11) ведется от атома углерода карбонильной группы, как и в случае молекулы этаналя (рис. 1).

Рис. 6. Изменение заряда (слева) и спиновой плотности (справа) на атоме H₅ метильной группы по мере удлинения связи C₂–H₅ в ионе этаналя под влиянием поля и в его отсутствии.

Таблица 9

Разности Δ_{AB} двухцентровых вкладов E_{AB} для молекул альдегидов и их положительных ионов, *ат. ед*.

	Эта	наль	Γ	Іропанал	Б	Бутаналь			
Связь	F = 0	E = 0 $E = 0.02$	F = 0	F =	0.02	F = 0	F =	0.02	
	I' = 0	T = 0.02	I' = 0	цис	транс	I' = 0	Ι	II	
$C_1 - C_2$	-0.026	-0.036	-0.026	-0.028	-0.030	-0.023	-0.026	-0.029	
$C_2 - C_3$			-0.012	-0.044	-0.042	-0.043	-0.048	-0.056	
$C_3 - C_4$						-0.053	-0.056	-0.061	
C–O	-0.158	-0.173	-0.139	-0.170	-0.172	-0.134	-0.180	-0.184	
C ₁ –H	-0.058	-0.061	-0.043	-0.040	-0.045	-0.071	-0.079	-0.081	
С2-Н	-0.020	-0.024	-0.008	-0.009	-0.009	-0.007	-0.008	-0.008	
С ₃ –Н	_	_	-0.006	-0.008	-0.008	-0.002	-0.002	-0.006	
C ₄ –H	_		_	_	_	-0.007	-0.011	-0.004	

Во всех альдегидах при ионизации в наибольшей степени ослабляется связь С–О, однако, ввиду ее ненасыщенного характера вероятность разрыва этой связи по сравнению с остальными связями мала. Из одинарных связей в наибольшей степени ослабляется связь C_1 –H, причем, как показывают расчеты, абсолютные значения разности Δ_{C2-H} по мере роста поля увеличиваются.

Резонно предположить, что во всех этих альдегидах разрыв связи С₁-Н наиболее вероятен. При ее диссоциации образуется частица массы M - 1 с зарядом +1 или нулевым. Как и в случае с ионом молекулы этаналя, независимо от того, отводим ли мы водород от иона вдоль связи C₁-H или вдоль вектора поля, всякий раз образуется заряженный осколок $(M - 1)^+$ и атом водорода. Электрическое поле в этом случае не оказывает влияния на характер диссоциации связи C₁–H. Графики типа рис. 3 получаются для всех изученных альдегидов. Однако, в полевом масс-спектре этаналя линия иона M - 1 вовсе отсутствует, а в спектрах других альдегидов эта линия соответствует распаду метастабильных молекулярных ионов в бесполевом пространстве. Это связано, по-видимому, с тем, что в электрическом поле, как уже упоминалось выше, способны к диссоциации лишь те связи, которые ориентированы вдоль вектора поля либо близки к такому расположению в оптимальной конформации молекулярного иона. Как мы уже видели на примере иона молекулы этаналя (рис. 1), связь C_1 –H при оптимальной ориентации иона почти перпендикулярна к вектору поля и распад по этой связи происходить не может. Для других изученных альдегидов угол между вектором поля и связью C₁-H при оптимальной ориентации молекулярных ионов гораздо меньше по сравнению с ситуацией в случае иона молекулы этаналя. И все-таки разрыв этой связи не происходит, поскольку при таком распаде должно иметь место движение положительного заряда против вектора поля, что энергетически невыгодно. При вылете молекулярного иона в бесполевое пространство масс-спектрометра фактор ориентации исчезает и связь С1-Н может продиссоциировать, что приводит к появлению в спектре линий $(M - 1)^+$, соответствующих распаду метастабильных ионов.

На рассмотренном выше примере распада молекулярного иона этаналя по связи С–С мы убедились в том, что внешнее электрическое поле помимо главной функции, состоящей в ионизации молекул исследуемого вещества, существенным образом влияет на характер осколков, образующихся в условиях полевой масс-спектрометрии.

При изучении полевой фрагментации органических соединений, молекулы которых содержат длинные углеводородные цепи, необходимо учитывать кроме уже рассмотренных и ряд дополнительных факторов, связанных в основном с наличием свободного вращения вокруг простых связей С–С. И все же, конформационные изменения такого рода в молекуле, помещенной в электрическое поле, маловероятны, так как барьеры вращения углеводородных групп значительно повышаются в электрическом поле. Связано это с тем, что поворот какой-либо группы приводит к переориентации всей молекулы в поле. Это же относится и к молекулярному иону. Можно считать, что молекула,

двигаясь к эмиттеру, а ион – к ускоряющему электроду, все время сохраняют одну и ту же конформацию. Таким образом, оказывается возможным исследовать некоторые наиболее вероятные конформации молекул и ионов отдельно, не затрагивая вопроса их взаимного превращения в электрическом поле.

В работе [51] изучалось электронное строение молекулы пропаналя (П) и ее положительного молекулярного иона (П⁺). Использовались экспериментальные значения длин связей и валентных углов [73]. Для определения наиболее оптимальной конформации молекулы П рассчитывалось электронное строение ее различных ротамеров (рис. 7), отличающихся значением угла поворота альдегидной группы вокруг центральной связи C₂–C₃.

Рис. 7. Цис- (А) и транс-ротамеры (В) молекулы пропаналя.

Наиболее стабильной оказалась конформация с плоской *цис*-ориентацией А карбонильной группы относительно связи C_2 – C_3 , энергия которой всего лишь на $E_B - E_A = 0.0029 \ am. \ ed. = 0.08 \ эB$ ниже энергии плоского *транс*-ротамера В (рис. 8), что находится в согласии с неэмпирическими расчетами [74].

В поле $F = 0.02 \ am. \ ed. \sim 1 \ B/Å$ разность между энергиями двух устойчивых ротамеров пропаналя достигает (рис. 8) 0.021 $am. \ ed. = 0.57 \ B$, что примерно раз в двадцать превышает барьер вращения группы CH₃ вокруг связи C₂–C₁ при комнатной температуре.

В положительном ионе Π^+ плоские ротамеры также препочтительнее, причем разность энергий более стабильных *цис-* и *транс*-ориентаций даже меньше, чем для исходной молекулы. Наиболее оптимальные ориентации молекулы Π , а следовательно и ее иона Π^+ в двух рассматриваемых конформациях относительно вектора поля показаны на рис. 9.

Рис. 8. Потенциальные кривые для двух ротамеров А и В молекулы пропаналя в зависимости от угла между вектором поля и связью C₂–C₃ в электрическом поле, *ат. ед*.

Рис. 9. Оптимальные ориентации двух плоских *цис*- (слева) и *транс*-ротамеров молекулы пропаналя в электрическом поле.

Из этого рисунка видно, что связь C_1-C_2 в молекуле П и ее дочернем ионе Π^+ в *цис*-конформации расположена под значительным углом к вектору поля, что затрудняет ее полевую диссоциацию. В *транс*-ротамере этот угол меньше,

что способствует разрыву связи C_1-C_2 . В результате диссоциации этой связи образуются два осколка одинаковой массы – СНО и C_2H_5 . Положительный заряд в этом случае с большой вероятностью может локализоваться на углеводородном фрагменте, поскольку этильная группа в *транс*-ротамере расположена на более удаленном конце связи C_1-C_2 относительно источника положительного заряда. Из рис. 9 также видно, что осколок CH_3 с M = 15 *a. е. м.* может образоваться при разрыве концевой связи C_2-C_3 только в *транс*ротамере. В *цис*-ротамере разрыв этой связи должен приводить к образованию нейтрального метильного радикала CH_3 и иона CH_2CHO^+ с M = 43 *a. е. м.* Расчеты действительно свидетельствуют, что диссоциация по связи C_1-C_2 независимо от наличия или отсутствия электрического поля приводит к образованию иона $(CH_3CH_2)^+$ и нейтрального радикала CHO, причем характер продуктов распада одинаков для обоих ротамеров.

Диссоциация связи C_2-C_3 в *цис*-ротамере ведет к образованию иона $(CH_2CHO)^+$, а в *транс*-ротамере ее разрыв приводит к образованию иона CH_3^+ (рис. 10).

Рис. 10. Изменение заряда на метильной группе при удлинении связи C_2-C_3 в ионе П⁺: кривые 1 (*F* = 0.02) и 2 (*F* = 0) относятся к *цис*-ротамеру, а кривая 3 (*F* = 0.02) – к *транс*-ротамеру.

Линии, соответствующие этим ионам, присутствуют в экспериментальном спектре пропаналя. Такая зависимость характера диссоциации одной и той же связи от конформации и ориентации молекулярного иона еще раз подтверждает вывод о том, что внешнее электрическое поле существенным образом влияет на формирование полевого масс-спектра. По сравнению с масс-спектрометрией

электронного удара при интерпретации полевых экспериментов нужно учитывать ряд дополнительных факторов. Среди них одним из главных видно из изложенного выше, является ориентация факторов, как это молекулярного иона относительно вектора электрического поля. Еще одно косвенное экспериментальное доказательство этого утверждения можно найти в работе [75], в которой исследовались полевые масс-спектры стереоизомеров дигалогеноциклобутанов, 1,2-добромэтиленов И некоторых алкенов. В частности показано, что интенсивности линий одних и тех же осколочных ионов сильно различаются для стереоизомеров одного и того же соединения. Это связано с тем, что исходные молекулы и дочерние молекулярные ионы различных стереоизомеров по-разному ориентируются по отношению к вектору поля. В случае пропаналя и других молекул с простыми связями С-С их различные ротамеры ведут себя в поле как стереоизомеры в результате увеличения барьера свободного вращения вокруг одинарных связей. Такое увеличение барьера, как уже отмечалось выше, связано с переориентацией молекулы или иона при повороте какой-либо группы.

Перейдем к бутаналю (Б) и его положительному иону (Б⁺) [63]. Наиболее стабильными оказались две из четырех исследованных плоских конформаций (рис. 11).

В экспериментальном масс-спектре бутаналя наиболее интенсивной среди линий осколочных ионов при высоких полях является линия иона CH_3^+ . Из табл. 9 видно, что знак и величина изменения двухцентрового вклада, соответствующего связи C_3 – C_4 , указывают на существенное ослабление ее при ионизации молекулы, особенно в случае ротамера II. На характер диссоциации по этой связи сильно влияет величина внешнего электрического поля (рис. 12).

В отсутствии поля разрыв по связи C_3-C_4 происходит преимущественно с образованием нейтрального метильного радикала. Увеличение поля уже до 0.01 *ат. ед.* приводит к изменению продуктов диссоциации – образуется ион CH_3^+ . Отметим, что при поле 0.005 *ат. ед.* не удалось прийти к однозначному выводу о характере диссоциации связи C_3-C_4 , так как при $R_{C3-C4} = 1.8 \text{ Å}$ не удалось получить самосогласованного решения.

Наличие в полевом масс-спектре линии иона с M = 57 *а. е. м.*, соответствующей иону (CH₂CH₂CHO)⁺, можно объяснить разрывом связи C₃–C₄ в ротамере I. Ориентация этой связи по отношению к вектору поля в этом ротамере менее всего способствует ее разрыву с образованием иона CH₃⁺ по сравнению с ротамером II. Поскольку именно наличие поля является причиной образования иона CH₃⁺ при диссоциации по связи C₃–C₄, то можно ожидать, что к ротамеру I следует приложить более высокое поле для получения метильного иона. Такое предположение подтверждается расчетами (рис. 13).

Рис. 11. Оптимальная ориентация плоских ротамеров молекулы бутаналя и его иона по отношению к вектору электрического поля.

Видим, что диссоциация связи C_3-C_4 в ротамере I при поле 0.01 *ат. ед.* происходит с образованием радикала CH₃, как и в отсутствии поля, и только дальнейшее повышение поля до 0.02, а еще лучше до 0.03 *ат. ед.* приводит к разрыву этой связи с локализацией заряда на метильной частице.

Рис. 12. Изменение заряда метильной группы при удлинении связи C₃–C₄ в ротамере II молекулярного иона бутаналя Б⁺.

Рис. 13. Изменение заряда метильной группы при удлинении связи C₃–C₄ в ротамере I молекулярного иона бутаналя Б⁺.

Наличие линии 29 *а. е. м.* в масс-спектре бутаналя может быть обусловлено ионом $C_2H_5^+$, ионом CHO⁺ или тем и другим вместе. Связь C_2-C_3 при ионизации ослабевает в большей степени, чем связь C_1-C_2 (табл. 9), следовательно, и ее разрыв предпочтительнее. Из рис. 14 видно, что независимо от напряженности поля связь C_2-C_3 в ротамере II всякий раз разрывается с образованием иона $C_2H_5^+$, в то время как продуктами ее диссоциации в ротамере I при наложении поля являются ион CH_2CHO^+ с M = 43 *а. е. м.* и нейтральный радикал CH_3CH_2 .

Рис. 14. Изменение заряда этильной группы при удлинении связи C₂–C₃ в ротамерах I и II молекулярного иона бутаналя Б⁺.

Поскольку вероятность разрыва связи C_2-C_3 в ротамере I меньше, чем в ротамере II (табл. 9), то можно ожидать, что интенсивность линии иона с $M = 43 \ a. \ e. \ m.$ будет ниже, чем интенсивность линии иона $C_2H_5^+$, что соответствует экспериментальным данным.

Диссоциация по связи C_1-C_2 при всех исследованных полях происходит с образованием иона (CH₂CH₂CH₃)⁺ и радикала CHO. Это означает, что наличие линии с $M = 29 \ a. \ e. \ m.$ обусловлено ионом $C_2H_5^+$, что подтверждается экспериментальными данными, полученными с помощью изотопной метки.

Далее рассмотрим поведение молекул ацеталей и их дочерних ионов в электрическом поле [58].

8.3.3. Фрагментация молекул ацеталей

При расчете электронной структуры молекулы диметоксиметана (I) длины связей и углы между ними были взяты из экспериментальных данных [76]. Обозначения ацеталей приведены далее в табл. 10. Метильные группы располагались симметрично относительно плоскости трех атомов СО. Расчеты показали, что это наиболее устойчивая конформация молекулы с дипольным 0.87 Д. который удовлетворительно согласуется моментом c экспериментальным значением 0.74 Д [77]. Поскольку экспериментальные данные о пространственном строении других рассматриваемых нами ацеталей отсутствуют, для них конфигурация группы атомов С С принималась такой же, как и у молекулы I, а длины связей С-С, С-Н и валентные углы ∠ССС и ∠ССН взяты наиболее часто встречающимся равными значениям В соединениях с подобной структурой [78].

Наложение внешнего электрического поля наряду с ориентацией молекулы определенным образом по отношению к вектору поля приводит к изменению электронной пространственного структуры, строения И, возможно, конформации молекулы. Как было показано выше на примере альдегидов, искажения геометрического строения при этом незначительны и ими вполне можно пренебречь. Конформационные изменения также мало вероятны, поскольку барьеры вращения углеводородных групп вокруг простых связей в электрическом поле значительно повышаются, что связано с переориентацией молекулы в поле. Расчетным путем найдено, что все исследуемые молекулы в электрическом поле атомами кислорода К поверхности эмиттера, а углеводородные группы максимально удалены от источника положительного заряда. Такую же ориентацию имеют и образующиеся в результате ионизации молекулярные положительные ионы. Пространственное строение этих ионов полагалось таким же, как и у исходных молекул.

Как и прежде, критерием для оценки степени ослабления связи в результате ионизации молекулы принята разность двухцентровых вкладов этой связи E_{AB} в полную энергию молекулы и иона $\Delta_{AB} = E_{AB}^{mol} - E_{AB}^{ion}$.

В табл. 10 приведены массовые числа, типы ионов и экспериментальные интенсивности осколочных ионов, образующихся в результате полевой фрагментации молекулярных ионов ацеталей.

Из табл. 10 видно, что в полевых масс-спектрах ацеталей содержатся ионы, образующиеся при разрыве всех связей С–С, С–О и некоторых связей С–Н. Ток осколочных ионов составляет приблизительно ³/₄ от общего ионного тока.

В табл. 11 приведены величины Δ_{AB} изменения двухцентровых вкладов при переходе от молекулы к иону при наложении поля и при его отсутствии.

В ионе I в наибольшей степени ослабляется связь C_1 –H (табл. 11), разрыв которой может привести либо к образованию иона $[(CH_3O)CH(OCH_3)]^+$ и атома H, либо нейтрального радикала $[(CH_3O)CH(OCH_3)]^-$ этого же состава и H⁺. По распределению заряда в молекулярном ионе невозможно сделать однозначный вывод о характере разрыва этой связи.

Таблица 10

(I), $M = 76$: H ₂ C ₁ (OCH ₃) ₂		(II), $M = 90: \underset{2}{C} H_{3} \underset{1}{C} H(OCH_{3})_{2}$				(III)), <i>M</i> =	$104: C_{3}H_{3}C_{2}$	$H_2 C_1 H(OCH_3)_2$	
m/e	Тип иона	Интен- сивность	m/e	Тип иона	Ин сив	нтен- ность	т	e/e	Тип иона	Интен- сивность
75	М-1	0.4	_	_		_	-	_	_	_
74	М-2	32.9	_	_		_	-	_	_	_
61	<i>M</i> –15	0	75	<i>M</i> –15	2	2.8	8	9	<i>M</i> –15	0
45	<i>M</i> –31	53.8	59	<i>M</i> –31	7	4.6	7	3	<i>M</i> –31	28.4
-	_	_	—	_		_	7	5	М–29	24.2
31	<i>M</i> –45	11.6	31	М–59		2.6	3	1	М–73	3.6
_	_	_	_	_		_	2	9	<i>M</i> –75	36.0
15	М-61	1.3	15	15 <i>M</i> –75		0	1	5	<i>M</i> –89	7.8
	*Под фор	мулой молен	кул ацета	алей привед	дена	нумера	ация	атом	ов основно	ой цепи.
	(IV), <i>M</i> =1	$18: C_{4}H_{3}C_{3}H$	$_{2}CH_{2}CH_{1}C$	$H(OCH_3)_2$		(V)	, M =	118:	$C_2 H_3 C_1 H(C)$	OCH ₂ CH ₃) ₂
m/o		Тип		Интен-		m/	P		Тип	Интен-
mile		иона		сивность		111/	L		иона	сивность
103		<i>M</i> –15		0.4		10	3	1	<i>M</i> –15	6.6
87		<i>M</i> –31		16.8		_			_	_
89		М–29		0		8	9	I	<i>M</i> –29	0
75		<i>M</i> –43		15.9		_			_	_
_		_		—		7	3	1	<i>M</i> –45	13.0
31		<i>M</i> –87		6.2		4	5	Ĩ	M-73	1.9
29		<i>M</i> –89		15.9		2	9	1	M-89	17.1
15		<i>M</i> –103		37.2		1.	5	Ì	<i>M</i> –103	61.4

Масс-спектры осколочных ионов ацеталей*

* Интенсивности линий даны в процентах от общего тока осколочных ионов.

Однако, если провести расчеты при постепенном удлинении связи C₁–H, то, как видно из рис. 15, заряд на атоме H стремится к нулю: разрыв связи C₁–H при наличии поля и в его отсутствии должен происходить с образованием атома H и иона $[(CH_3O)CH(OCH_3)]^+$ с M = 75 a. e. m. независимо от того,

уходит ли атом Н от иона I по направлению поля (рис. 15/кривая 2) или вдоль этой связи (рис. 15/кривые 1, 3 и 4).

Низкую интенсивность линии осколочного иона $(M - 1)^+$ с массовым числом $m/e = 75 \ a. \ e. \ m.$ (табл. 10) можно объяснить тем, что помимо быстрого отрыва атома H от иона I, происходящего сразу же после ионизации молекулы, наблюдается как бы «медленный» разрыв связи C₁–H, в результате которого в масс-спектре появляется линия метастабильного иона с кажущимся массовым числом 74 $a. \ e. \ m.$

Таблица 11

Изменение двухцентровых вкладов Δ_{AB} при переходе от молекул ацеталей к их положительным ионам при наличии и в отсутствии электрического поля*

Cogor	(I): Димет	гоксиметан	(II): 1,1-Ди	метоксиэтан	(III): 1,1-Диметоксипропан				
Связь	F = 0	F = 0.02	F = 0	F = 0.02	F = 0	F = 0.02			
С1-Н	-0.0691	-0.0751	-0.0204	-0.0232	-0.0201	-0.0073			
C ₁ –O	-0.0354	-0.0394	-0.0312	-0.0386	-0.0383	-0.0382			
$C_1 - C_2$	_	_	-0.0731	-0.0802	-0.1283	-0.1697			
C ₂ –C ₃	_	_	_	—	-0.0350	-0.0388			
O–CH ₃	-0.0323	-0.0355	-0.0383	-0.0397	-0.0300	-0.0308			
* Разности Δ _{АВ} и значения электрического поля даны в <i>ат. ед.</i>									

Таблица 11 (продолжение)

F = 0.02
-0.0203
-0.0405
-0.0756
_
_
-0.0503
$-0.0\overline{501}$

* О–С₂Н₅ в V.

Такой разрыв связи происходит как в области действия поля, так и в бесполевом пространстве; в обоих случаях с отрывом атома H (рис. 15/кривые 3 и 4). Так как отрываемый атом H расположен на более удаленной от эмиттера (источника положительного заряда) стороне разрываемой связи, то поле в этом случае препятствует диссоциации. Вследствие этого интенсивность линии иона, получаемого в результате такого разрыва, занижена, тогда как для распада в бесполевом пространстве влияние поля отсутствует, что и приводит к высокой интенсивности линии, отвечающей иону с кажущимся массовым числом 74 *a. е. м.* (табл. 10).

Рис. 15. Изменение заряда атома водорода Q(H) в ионе I при различных значениях поля: 1 и 2 – F = 0.02, 3 – F = 0.01, 4 – F = 0 в зависимости от удлинении связи C₁–H (кривые 1, 3 и 4) или ее *z*-проекции (кривая 2).

В полевых масс-спектрах остальных изученных ацеталей нет линий, отвечающих отрыву атома H от молекулярного иона. Это согласуется с расчетными данными (табл. 11), согласно которым разность Δ_{C_1-H} для этих четырех соединений намного меньше, чем в случае диметоксиметана I и достигает малых значения около 0.02 – 0.01. Для С–H алкильных групп всех исследованных соединений эта разница составляет 0.003 – 0.008, что свидетельствует о малой вероятности их разрыва в условиях полевой масс-спектрометрии.

Связи С₁–О и О–СН₃ при ионизации молекулы I ослабляются почти в одинаковой мере (табл. 11) и отсюда вероятности распада молекулярного иона I⁺ по этим связям должны быть приблизительно одного порядка. Используемая нами методика разведения групп атомов в случае разрыва связи С₁–О не дает возможности однозначно определить место локализации положительного заряда, поскольку при удлинении этой связи более чем на 0.8 Å итерационная процедура самосогласования расходится. Заряд группы CH₃OC₍₁₎H₂ поначалу уменьшается, затем увеличивается до +0.6 (рис. 16), но ход кривой дальше не определен. Остается думать, что разрыв связи С₁–О в I, в отличие от предыдущего случая, может происходить с образованием как иона (OCH₃)⁺ с массовым числом 31 *а. е. м.*, так и иона (CH₃OCH₂)⁺ с массовым числом 45 *а. е. м.*, с некоторым, возможно, преобладанием последнего, что находится в качественном согласии с экспериментальным спектром (табл. 10).

Рис. 16. Зависимость заряда Q (кривая 1) и спиновой плотности ρ (кривая 2) осколка $CH_3OC_{(1)}H_2$ иона I при удлинении связи C_1 –О и поле F = 0.02.

Преобладание в полевых масс-спектрах линии осколка типа M–31над линией иона (OCH₃)⁺ наблюдается для всех исследованных нами соединений, за исключением 1,1-диэтоксиэтана (V), для которого образование метоксильной частицы невозможно в результате простого разрыва связей без перегруппировочных процессов.

Как показывают расчеты, при разрыве связи О–С H_3 в ионе I положительный заряд полностью локализуется на метильной группе (рис. 17/кривая 1), что приводит к образованию иона CH_3^+ с массовым числом 15 *а. е. м.*, линия которого присутствует в экспериментальном масс-спектре диметоксиметана I (табл. 10).

В положительных молекулярных ионах 1,1-диметоксиэтана II, 1,1-диметоксипропана III и 1,1-диметоксибутана IV продуктами диссоциации по связи О–СН₃ являются нейтральный радикал СН₃[•] и заряженный ион типа М–15 (рис. 17/кривая 2). Еще одним источником метильных частиц для таких молекулярных ионов являются основные цепи. Для иона II $\Delta_{C_1-C_2} = -0.0802$ (табл. 11), что указывает на возможность разрыва этой связи.

Рис. 17. Зависимость заряда Q на группе CH₃: 1 – в ионе I, 3 – в ионе II от удлинения связи O–CH₃; 2 – в ионе II от удлинения связи C₁–C₂ при поле F = 0.02.

При диссоциации C_1-C_2 , как видно из рис. 17/кривая 3, образуются также нейтральный метильный радикал CH_3 и ион $[(CH_3O)CH(OCH_3)]^+$, интенсивность которого в экспериментальном масс-спектре достигшает 22.8 % от общего ионного тока осколков.

При распаде молекулярных ионов III и IV, помимо перечисленных выше фрагментов, в результате разрыва связей основных цепей образуются частицы C_2H_5 , C_3H_7 , а также осколки типа M–29 и M–43. У 1,1-диметоксипропана III в наибольшей степени ослабляется связь C_1 – C_2 (табл. 11), разрыв которой, как следует из экспериментального масс-спектра, приводит к практически одинаковой вероятности локализации положительного заряда на образующихся осколках C_2H_5 и HC(OCH₃)₂. Расчет, однако, показывает (рис. 18), что продукты диссоциации в этом случае зависят от приложенного внешнего поля.

При нулевом поле связь C_1-C_2 разрывается с предпочтительным образованием иона $[HC(OCH_3)_2]^+$. Наложение поля приводит к тому, что положительный заряд локализуется на другом осколке, который расположен дальше от источника положительного электричества (эмиттера), т. е. на группе C_2H_5 и в полевом масс-спектре 1, 1-диметоксипропана III линия иона $C_2H_5^+$ с массовым числом 29 *а. е. м.* становится преобладающей.

Рис. 18. Изменение заряда Q этильной группы C_2H_5 в ионе III в зависимости от удлинения связи C_1-C_2 в различных электрических полях: 1 - F = 0; 2 - F = 0.01; 3 - F = 0.02.

Этот пример наглядно показывает, что внешнее электрическое поле помимо главной функции, состоящей в ионизации молекул, существенным образом влияет на формирование полевого масс-спектра.

Связь C_2-C_3 в ионе III также заметно ослабляется в результате ионизации (табл. 11). На рис. 19 показана зависимость заряда Q и спиновой плотности ρ метильной группы от удлинения этой связи.

Видно, что разрыв связи С2-С3 независимо от величины поля приводит к образованию одних И тех же продуктов _ нейтрального радикала CH_{3}^{+} , $CH_2CH(OCH_3)_2$ иона интенсивность линий которого И В экспериментальном масс-спектре составляет 7.8%. Отсутствие в масс-спектре III линии иона M-15, образующегося в результате разрыва метоксильной связи О-СН₃ можно, по-видимому, объяснить относительно небольшим ослаблением ее при ионизации молекулы.

Рис. 19. Зависимость заряда Q (кривые a и a') и спиновой плотности ρ (кривые δ и δ') группы CH₃ в ионе III от удлинения связи C₂–C₃: a и δ – при наличии электрического поля F = 0.02, a'и δ' – в отсутствии электрического поля F = 0.

Спектр 1,1-диметоксибутана IV наиболее богат линиями осколочных ионов. Самой интенсивной является линия иона с массовым числом 15 а. е. м. Этот ион образуется в результате разрыва связи С₃–С₄ в основной цепи. При ее разрыве положительный заряд локализуется, как и в предыдущем случае, независимо от наличия или присутствия электрического поля на группе CH₃ (рис. 20). В наибольшей степени (табл. 11) в ионе IV ослабляется связь C_1-C_2 , что можно находится противоречии считать В некотором С экспериментальными данными. Расчет показывает, что при удлинении этой связи продукты диссоциации иона различны в зависимости от величины поля 20). Это свидетельствует о том, ЧТО вероятность (рис. локализации положительного заряда на каком-либо из осколков зависит от поля, а так как в эксперименте весьма трудно добиться определенного значения поля, то в массспектре, как правило, появляются линии ионов, отвечающие обоим возможным фрагментам.

Рис. 20. Зависимость заряда Q в ионе IV: 1 – на группе CH₃ от удлинения связи C_3-C_4 : a - при F = 0.02, b - при F = 0; 2 – на группе C_3H_7 от удлинения связи C_1-C_2 : a - при F = 0.02, b - при F = 0.

Диссоциация связи C_2-C_3 в ионе IV независимо от величины поля, происходит с образованием иона $C_2H_5^+$, что отвечает линии с массовым числом 29 *а. е. м.* в экспериментальном масс-спектре.

Фрагментация положительного иона V несколько отличается OT предыдущих случаев, что связано с усложнением строения боковых цепей. В отличие от 1,1-диметоксиэтана ион V диссоциирует по ослабевающейся при ионизации в наибольшей степени связи C1-C2 на ион CH3+ и нейтральный радикал 'CH(OCH₂CH₃)₂ (рис. 21/кривая 2). Отрыв метильного радикала CH₃' от боковых цепей, как видно из того же рисунка, происходит с образованием иона типа $(M-15)^+$ (кривая 3). При распаде молекулярного иона 1,1-диэтоксиэтана V по связи О-С₂H₅ положительный заряд полностью локализуется на группе С₂H₅ (кривая 1), что приводит к появлению в полевом масс-спектре линии с массовым числом 29 а. е. м. Удлинение связи С1-О в отличие от ряда диметоксиалканов позволяет сделать однозначный вывод о том, что ее разрыв приводит к образованию иона [CH₃CH(OCH₂CH₃)]⁺ и нейтральной частицы OC₂H₅ (кривая 4).

Рис. 21. Изменение заряда Q в ионе V при F = 0.02:

- 1 на группе С₂H₅ в результате удлинения связи О–С₂H₅,
- 2 на группе CH_3 в результате удлинения связи C_1-C_2 ,
- 3 на группе CH₃ в результате удлинения связи CH₂–CH₃,
- 4 на группе OC_2H_5 в результате удлинения связи C_1 –O.

На основании результатов исследования ацеталей приходим к выводу, что предлагаемый подход применим лишь для качественной интерпретации той части полевого масс-спектра, которая обусловлена осколочными ионами. Для рассмотрения количественных зависимостей в полевых масс-спектрах необходимо привлекать более тонкие механизмы фрагментации, в частности, теорию колебательных возбуждений молекулярных ионов [79, 80].

Далее мы перейдем к рассмотрению поведения в поле метиламина и его водородной перегруппировки [57, 59, 61].

8.3.4. Фрагментация и водородная перегруппировка метиламина

Масс-спектры электронного удара многих органических соединений часто содержат линии, происхождение которых можно объяснить перегруппировкой атомов в момент ионизации или после нее [81]. Линии перегруппировочных ионов усложняют интерпретацию масс-спектров особенно в тех случаях, когда интенсивность этих линий превышает интенсивность линий молекулярного

иона и его осколков. Первые экспериментальные данные по полевым масс-спектрам простейших органических соединений [82] позволили сделать вывод, что в условиях полевой ионизации доминирующую роль должны играть процессы простого разрыва связей в молекулярных катион-радикалах [49]. Однако по мере развития техники эксперимента, увеличения поля и повышения чувствительности и в полевых масс-спектрах стали обнаруживаться линии перегруппировочных ионов несмотря на относительно небольшой запас внутренней энергии, приобретаемый молекулярным ИОНОМ при его образовании. Относительная интенсивность этих линий обычно ниже, чем в случае электронного удара, однако, наличие некоторых из них типично для данного класса соединений.

В [83] показано, что в полевых масс-спектрах алифатических аминов присутствуют линии, отвечающие ионам NH_3^+ для первичных аминов, RNH_2^+ для вторичных и $R_1R_2NH^+$ для третичных. Детальное экспериментальное исследование позволило установить, что образование этих ионов не связано с ионно-молекулярными реакциями и с влиянием поверхности эмиттера, а обусловлено внутримолекулярным перемещением водорода. Линия иона NH₃⁺ 17 а. е. м. не обнаружена ни в масс-спектрах электронного удара [84], когда молекулярные ионы обладают большим запасом внутренней энергии, ни при фотоионизации аминов [85], когда молекулярные ионы образуются с минимальным запасом внутренней энергии. Можно предположить, что в условиях полевой ионизации ответственным за образование такого перегруппировочного иона является внешнее электрическое поле. Это предположение изучается далее на примере образования перегруппировочного иона NH_3^+ при распаде однократно заряженного молекулярного иона метиламина М⁺.

Для молекулы М использовались следующие экспериментальные данные по ее геометрии [86]: R(C-N) = 1.474, R(C-H) = 1.093, R(N-H) = 1.014 Å; $\angle HNH = 105^{\circ}50'$, $\angle CNH = 112^{\circ}10'$. Такая же геометрия предполагалась для иона M⁺. Для иона же (CH₂NH₃)⁺ длины связей брались такими же как в молекуле, а в отношении углов было естественно предположить, что все $\angle HNH = 109^{\circ}27'$ и $\angle HCH = 120^{\circ}$. Конформация иона M⁺ принималась такой же как и в молекуле М.

Для М и М⁺ описанным ранее методом (§ 8.3.1) рассчитывались две конформации – заслоненная и заторможенная (рис. 22).

Результаты расчета ориентации M и M^+ в поле для обеих конформаций, а также для перегруппировочного иона (CH_2NH_3)⁺ показаны на рис. 23.

Рис. 22. Нумерация атомов и расчетная ориентация заторможенной (слева) и заслоненной (справа) конформаций метиламина во внешнем электрическом поле.

Рис. 23. Зависимость полной энергии M и M⁺ в заторможенной (сплошная) и в заслоненной конформациях (курсив), а также иона $(CH_2NH_3)^+$ от угла α между вектором поля *F* и связью C–N.

Из последнего рисунка видно, что ориентация иона относительно вектора поля совпадает с ориентацией исходной молекулы. На это обстоятельство в полевой масс-спектрометрии уже обращалось нами внимание ранее и оно свидетельствует о том, что молекулярный ион не приобретает дополнительной энергии вследствие несовпадения его ориентации с ориентацией материнской молекулы. Расчет ориентации проводился в системе центра масс. Обоснование выбора такой системы дано в [87]. Для заторможенной конформации оптимальный угол $\alpha = 105^{\circ}$, а для заслоненной $\alpha = 70^{\circ}$ (рисунки 1 и 2).

Как и ожидалось, энергия заторможенной конформации М ниже энергии заслоненной конформации. Согласно расчету, на 1.51 *ккал/моль*. Экспериментальное значение высоты барьера внутреннего вращения в М составляет 1.98 *ккал/моль* [88]. Неэмпирический расчет дает значение 2.13 *ккал/моль* [89]. В ионе М⁺ заторможенная конформация также более устойчива. Высота барьера внутреннего вращения в ионе, согласно нашим расчетам, равна 0.44 *ккал/моль*.

Вопрос о влиянии внешнего электрического поля на барьер внутреннего вращения нами не рассматривался.

Экспериментальный полевой масс-спектр метиламина [83] приведен в табл. 12.

Таблица 12

		110010	2011 11000 0110111		
	m/e	ŀ	Ион		
		Низкое поле	Среднее поле	Высокое поле	ИОН
	31	100	100	100	$(CH_3NH_2)^+$
	17	0.2	0.25	0.3	$\mathrm{NH_3}^+$
	15	0.2	0.50	0.6	$\mathrm{CH_3}^+$

Полевой масс-спектр метиламина

Распад иона M^+ по связи C–N идет по двум каналам. При простом разрыве этой связи в спектре наблюдается линия 15 *а. е. м.*, что свидетельствует об образовании иона CH_3^+ и нейтрального радикала NH₂:

$$(CH_3NH_2)^+ \rightarrow CH_3^+ + NH_2.$$
(1)

Если же диссоциация связи С–N сопровождается миграцией водорода от метильной группы к аминогруппе, то в спектре наблюдается линия 17 *а. е. м.*, отвечающая иону NH_3^+ , и распад идет по схеме

$$(CH_3NH_2)^+ \rightarrow NH_3^+ + CH_2.$$
⁽²⁾

Внешнее электрическое поле в наших расчетах моделировалось полем бесконечно длинного плоского конденсатора, положительно заряженная обкладка которого расположена слева от рассматриваемой молекулы (рис. 22).

Вследствие этого ориентация молекулярного иона заторможенной В конформации благоприятствует локализации положительного заряда на метильной группе при разрыве связи С–N. Именно к этому результату приводят и прямые расчеты заряда Q группы NH₂, выполненные для различных значений R(C-N) при условии оптимальной и неизменной ориентации иона M^+ в ходе всего процесса диссоциации. Из рис. 24 видно, что внешнее электрическое поле в данном случае не влияет на продукты диссоциации: как в отсутствии поля, так и в поле ион M^+ распадается по схеме (1).

Рис. 24. Изменение заряда *Q* группы NH₂ в зависимости от удлинения связи С–N в ионе M⁺ по сравнению с ее равновесным значением для заторможенной конформации при оптимальной ориентации во внешнем поле. Ориентация иона М⁺ в заслоненной конформации при наличии электрического поля, казалось бы (рис. 22) благоприятствует распаду

$$(CH_3NH_2)^+ \rightarrow CH_3 + NH_2^+.$$
(3)

Тем не менее, при поле F = 0.02 *ат. ед.* заряд, как и в рассмотренном выше случае, локализуется на группе CH₃ (рис. 25).

Рис. 25. Изменение заряда *Q* группы NH₂ в зависимости от удлинения связи С–N в заслоненной конформации иона M⁺ при его оптимальной ориентации во внешнем поле.

Только увеличение поля в два раза приводит к локализации заряда на группе NH_2 и реализуется схема распада (3). Однако, в эксперименте такие поля, как правило, не достижимы и поэтому линия иона NH_2^+ (16 *a. е. м.*) отсутствует в полевом масс-спектре метиламина.

Распад иона M^+ в заслоненной конформации с образованием частицы CH_3^+

при поле 0.02 *ат. ед.* отвечает движению положительного заряда против вектора поля, т. е. к положительно заряженной обкладке конденсатора, что энергетически невыгодно. Это хорошо видно из рис. 26, на котором приведена зависимость энергии иона М⁺ от удлинения связи С–N при его распаде по схеме (1) для обеих рассматриваемых конформаций.

Рис. 26. Изменение энергии иона М⁺ в зависимости от удлинения связи С–N в поле *F* = 0.02 *ат. ед.*: 1 – заторможенная, 2 – заслоненная конформация.

Такое влияние внешнего поля на характер диссоциации позволяет предположить, что каждому из возможных молекулярных фрагментов можно приписать некоторую способность (аналог потенциала ионизации) удерживать электрон (или положительный заряд) при распаде молекулярных ионов из основного электронного состояния. Эта способность должна также зависеть от расположения исследуемой связи по отношению к вектору поля.

Следует отметить, что проведенное рассмотрение влияния внешнего поля на характер диссоциации не учитывает ряд существенных факторов. Дело в том, что сам процесс диссоциации не мгновенный, а происходит в течение относительно большого промежутка времени, большого в атомной шкале. Наши неопубликованные результаты расчета свидетельствуют о том, что ориентация иона с частично удлиненной связью С–N отличается от ориентации иона в равновесной ядерной конфигурации. Это означает, что одновременно с диссоциацией иона происходит его поворот в электрическом поле. Совмещение этих двух различных движений может в общем случае привести к изменению направления диссоциации.

В отношении иона NH₃⁺ можно предложить три априорных механизма его образования при полевой фрагментации метиламина.

1. В молекуле М под действием приложенного поля или без его влияния происходит перенос водорода от атома углерода к атому азота. Дальнейшая ионизация частицы CH₂NH₃ с последующим разрывом связи C–N может привести к появлению в масс-спектре линии иона NH₃⁺.

2. Миграция водорода происходит после ионизации молекулы, т. е. в ионе M^+ и приводит к образованию перегруппировочного иона $CH_2NH_3^+$, распад которого сопровождается локализацией заряда азотсодержащем осколке, т. е. реализуется последовательный механизм образования иона NH_3^+ .

3. После ионизации молекулы M синхронно происходят два процесса – удлинение связи C–N в ионе M⁺ и перенос водорода на аминогруппу.

Причину невозможности перегруппировки для запуска механизма 1

$$CH_3NH_2 \rightarrow CH_2NH_3 \tag{4}$$

обсудим позже. Третий (синхронный) механизм также маловероятен, поскольку атому водорода необходимо преодолевать все большее расстояние, все время увеличивающееся в процессе диссоциации.

Остановимся на втором (последовательном) механизме образования иона NH₃⁺. Для выяснения причины локализации положительного заряда на азотсодержащем осколке расчет перегруппировки

$$CH_3NH_2^+ \to CH_2NH_3^+ \tag{5}$$

проводился как при наличии поля, так и при его отсутствии. Из рис. 23 видно, что энергия иона M^+ в двух рассматриваемых конформациях практически одинакова. Однако перегруппировку (5) будем исследовать только на примере заслоненной конформации по следующим причинам. Конечный ион в процессе (5) ориентирован связью С–N по вектору поля (рис. 22). Следовательно миграция водорода от атома углерода к атому азота в заслоненной конформации сопровождается поворотом примерно на 70°, в то время как в случае заторможенной конформации поворот необходим примерно на 105°. Место присоединения водорода к атому азота определяется неподеленной парой электронов аминогруппы. Расстояние от мигрирующего атоме H₇ (рис. 22) в заслоненной конформации к месту присоединения у атома азота

намного меньше, чем путь движения атома $H_{5(6)}$ в заторможенной конформации. Так как время пребывания молекулярного иона в ионном источнике ограничено (~ 10^{-12} *сек*), вполне можно считать, что миграция H_7 для заслоненной конформации более предпочтительна, чем перенос водорода, находящегося в *гош*-положении относительно неподеленной пары электронов для заторможенной конформации.

При расчете перегруппировки (5) оптимизировались расстояние от мигрирующей частицы до связи С–N и длина этой связи. Координаты остальных атомов водорода менялись с постоянным шагом между начальными (в ионе $CH_3NH_2^+$) и конечными (в ионе $CH_2NH_3^+$) значениями. При учете внешнего поля для каждой рассматриваемой точки вдоль координаты реакции находилась оптимальная ориентация иона (рис. 27), в которой происходит миграция водорода.

Рис. 27. Зависимость полной энергии ионов CH₃NH₂⁺ и CH₂NH₃⁺ и промежуточных состояний I, II, III и IV от угла α между вектором поля и связью C–N.

Как видно из рис. 28, по мере приближения переносимой частицы к атому азота внешнее поле поворачивает ион таким образом, что связь C–N располагается вдоль вектора поля. Это означает, что при рассмотрении миграции водорода в присутствии поля в качестве еще одного параметра реакционного пути следует ввести угол, определяющий ориентацию иона в поле.

Рис. 28. Изменение расположения атомов вдоль координаты реакции перегруппировки (5) во внешнем электрическом поле.

Влияние поля на состав продуктов диссоциации иона $CH_2NH_3^+$ по связи C–N показано на рис. 29.

Рис. 29. Изменение заряда Q группы NH_3 в зависимости от удлинения связи C–N в ионе $CH_2NH_3^+$ при его оптимальной ориентации во внешнем поле.

В отсутствии поля связь C–N рвется с образованием иона CH_2^+ и радикала 'NH₃, который образуется при весьма больших значениях расстояния C–N (удлинение более чем на 2 Å). Наложение поля приводит к локализации избыточного заряда на азотсодержащем осколке и к последующему образованию перегруппировочного иона NH_3^+ .

При изучении любой перегруппировочной реакции важно знать заряд и спиновую мультиплетность частицы, переносимой с одной части молекулы или иона на другую их часть. Из таблиц 13 и 14 видно, что заряд на мигрирующей частице не превышает по ходу реакции величины 0.4, а спиновая плотность (таблицы 15 и 16) практически не изменяется, колеблясь около нуля.

Таблица 13

Распределение заряда на атомах при движении вдоль координаты реакции перегруппировки (5) в отсутствии электрического поля

Атом	$CH_3NH_2^+$	Ι	II	III	IV	$CH_2NH_3^+$		
N	0.119	0.098	-0.005	-0.085	-0.029	0.006		
С	0.032	0.029	0.057	-0.002	0.011	0.029		
H(N)	0.243	0.246	0.236	0.242	0.249	0.242		
H(C)	0.110	0.118	0.128	0.124	0.119	0.118		
H*	0.144	0.145	0.220	0.355	0.280	0.246		
* Переносимая частица								

Таблица 14

Распределение заряда на атомах при движении вдоль координаты реакции перегруппировки (5) в электрическом поле F = 0.02 *ат. ед.*

Атом	$CH_3NH_2^+$	Ι	II	III	IV	$CH_2NH_3^+$		
N	0.102	0.093	0.008	-0.078	-0.030	-0.004		
С	0.037	0.032	0.046	-0.011	0.014	0.032		
H(N)	0.260	0.266	0.260	0.265	0.269	0.262		
H(C)	0.115	0.113	0.119	0.108	0.098	0.096		
H*	0.111	0.118	0.188	0.343	0.282	0.256		
* Переносимая частица								

Подобное распределение заряда Q и спиновой плотности ρ не позволяют определить переносимую частицу в таких понятиях классической структурной химии как протон (Q = +1, $\rho = 0$), атом водорода (Q = 0, $\rho = 1$) или гидрид-ион (Q = -1, $\rho = 0$). Из данных таблиц 13 – 16 можно сделать вывод, что перестройка электронной структуры при переходе от иона CH₃NH₂⁺ к иону CH₂NH₃⁺ происходит не путем переноса заряда и спиновой плотности

мигрирующей частицей, а в результате глубокого перераспределения электронов во всем ансамбле атомов.

Таблица 15

Распределение спиновой плотности на атомах при движении вдоль координаты реакции перегруппировки (5) в отсутствии электрического поля

Атом	$CH_3NH_2^+$	Ι	II	III	IV	$CH_2NH_3^+$	
Ν	0.817	0.778	0.520	0.211	0.022	-0.025	
С	-0.006	0.015	0.257	0.772	0.932	0.943	
H(N)	0.026	0.039	0.052	0.031	0.013	0.013	
H(C)	0.026	0.020	0.011	0.007	0.002	0.000	
H*	0.075	0.089	0.097	-0.058	0.015	0.055	
* Переносимая частица							

Таблица 16

Распределение спиновой плотности на атомах при движении вдоль координаты реакции перегруппировки (5) в электрическом поле *F* = 0.02 *am. ед*.

Атом	$\mathrm{CH_3NH_2}^+$	Ι	II	III	IV	$CH_2NH_3^+$	
N	0.819	0.800	0.590	0.249	0.033	-0.014	
С	-0.013	0.000	0.196	0.747	0.923	0.941	
H(N)	0.026	0.035	0.047	0.027	0.011	0.037	
H(C)	0.031	0.021	0.014	0.010	0.003	0.000	
H*	0.081	0.087	0.091	-0.071	0.015	0.000	
* Переносимая частица							

Возможно, что такой вывод справедлив для всех реакций внутримолекулярной (внутриионной) водородной перегруппировки, а также для перегруппировочных реакций с участием легких мигрирующих частиц.

Из данных о распределении заряда в исходном ионе $CH_3NH_2^+$ (табл. 13) представляется энергетически невыгодным движение положительно подзаряженного водорода (Q = 0.144) к атому азота, который тоже подзаряжен положительно (Q = 0.119). В исходной нейтральной молекуле CH_3NH_2 заряд на атоме азота отрицательный (табл. 17), однако сведения о таких подобных перегруппировочных процессах отсутствуют.

Для выяснения причины перегруппировки в ионе $CH_3NH_2^+$ рассмотрим изменение энергии ε_i молекулярных орбиталей вдоль координаты реакции (4).

Из рис. 30 видно, что энергия низшей занятой МО в исходной молекуле М равна –1.520 *ат. ед.* и, понижаясь вдоль координаты реакции, достигает значения –1.642 *ат. ед.* в переходном состоянии, которому соответствует точка IV (рис. 28).

Таблица 17

Распределение заряда на атомах при движении вдоль координаты реакции перегруппировки (5) в отсутствии поля

Атом	CH ₃ NH ₂	Ι	II	III	IV	CH ₂ NH ₃	
N	-0.202	-0.196	-0.179	-0.152	0.035	0.121	
C	0.077	0.043	-0.055	-0.304	-0.490	-0.469	
H(N)	0.076	0.070	0.063	0.085	0.132	0.131	
H(C)	-0.010	-0.002	0.006	0.000	-0.010	-0.003	
H*	-0.008	0.017	0.095	0.286	0.211	0.093	
* Переносимая частица							

Рис. 30. Изменение энергии ε_i одноэлектронных состояний вдоль координаты реакции перегруппировки (4), *ат. ед.*

Энергия ВЗМО, наоборот, растет вдоль координаты реакции и равна – 0.523 am. ed. для исходной молекулы М и -0.298 am. ed. для точки переходного состояния IV. Энергия остальных занятых орбиталей в ходе перегруппировки (4) изменяется незначительно. Следовательно, если ВЗМО заселена двумя электронами, что имеет место в исходной молекуле М, то переходное состояние энергетически менее выгодно, чем в случае иона М⁺: перегруппировка в нейтральной молекуле менее вероятна. При удалении одного электрона с барьера перегруппировочной ВЗМО величина энергетического реакции значительно понижается. Как следует из рис. 31а, энергия активации ионной перегруппировки равна 0.052 ат. ед.=32.6 ккал/моль. Внешнее поле не приводит к заметному понижению энергетического барьера, но вся кривая изменения полной энергии системы вдоль координаты реакции сдвигается вниз, что обусловлено несовпадением центра тяжести заряда с центром масс. Для перегруппировки же (4) энергия активации оказалась равной 0.26 *ат. ед.*, что в 5 раз превышает энергию активации ионной перегруппировки (рис. 31б).

Рис. 31. Изменение полной энергии вдоль координаты реакции: *а* – перегруппировки (5); б – перегруппировки (4).

В предыдущих параграфах этой главы было показано, что внешнее электрическое поле, помимо своей основной функции – ионизации молекулы, существенным образом влияет на состав диссоциативных полевых масс-спектров. Наши настоящие расчеты показывают, что электрическое поле ионного источника оказывает также сильное влияние на образование перегруппировочных ионов. Роль поля в данном конкретном случае сводится как к ориентации иона CH₂NH₃⁺ благоприятным образом для разрыва связи C-N (параллельность вектора поля и этой связи) с локализацией заряда на группе NH₃, так и к изменению направления диссоциации иона CH₂NH₃⁺ в зависимости от величины приложенного поля.

В заключение этой главы рассмотрим поведение молекулы диоксана в электрическом поле [56, 62].

8.3.5. Конформационный анализ молекулы диоксана во внешнем однородном электрическом поле

В предыдущих параграфах показано, что вероятность образования того или иного заряженного осколка при полевой фрагментации молекул, наряду с многими другими факторами, определяется конформацией материнской молекулы. Предполагалось, что молекула, перемещаясь в область ионизации, сохраняла первоначальную конформацию. В этой же конформации оказывается и образовавшийся молекулярный ион. Это предположение позволило исследовать наиболее стабильные конформации молекул и ионов отдельно, не затрагивая сложного вопроса об их взаимном превращении в сильном электрическом поле (~1–3 B/Å) ионного источника полевого масс-спектрометра.

как следует из экспериментальных данных по Однако. полевым масс-спектрам, в некоторых случаях внешнее электрическое поле может существенным образом влиять на конформационные превращения молекул. В качестве примера рассмотрим две возможные конформации молекулы 1,4-диоксана (Д) – кресло и ванну. В первой из них атомы кислорода расположены симметрично по обе стороны плоскости четырех углеродных атомов, что приводит к нулевому дипольному моменту [90]. Диоксан в форме ванны должен обладать заметным дипольным моментом. Следовательно, можно ожидать, что энергия взаимодействия Д в форме ванны с внешним электрическим полем будет значительно больше, чем в случае кресла. Это обстоятельство к относительной стабильности приведет изменению конформаций Д в электрическом поле, что и послужило предметом дальнейшего исследования.

416

Расчеты проводились методом ППДП/2. Длины связей и валентные углы полагались одними и теми же для молекулы Д и его молекулярного иона Д⁺ и были выбраны на основании экспериментальных данных [91].

На рисунках 1 и 2 показаны изменения полной энергии E и дипольного момента μ молекулы диоксана в форме ванны и кресла в зависимости от угла α между вектором поля F и плоскостью четырех атомов углерода.

Рис. 32. Изменение дипольного момента μ (пунктир) и полной энергии *E*, *am*. *e*∂. (сплошная) молекулы диоксана в форме ванны в зависимости от угла α между вектором поля *F* и плоскостью углеродных атомов при *F* = 0.02 *am*. *e*∂.

Рис. 33. Изменение дипольного момента μ (пунктир) и полной энергии *E*, *am*. *ed*. (сплошная) молекулы диоксана в форме кресла в зависимости от угла α между вектором поля *F* и плоскостью углеродных атомов при *F* = 0.02 *am*. *ed*.

Видно, что энергия Д в форме ванны сильно зависит от угла *α*, в то время как в форме кресла практически одна и та же для всех ориентаций. Кроме того, кривая зависимости энергии в форме ванны расположена по обе стороны от уровня энергии в отсутствии поля, тогда как аналогичная кривая для формы кресла целиком лежит ниже энергии при нулевом поле. Это свидетельствует о наличии у молекулы Д в форме кресла, находящейся во внешнем

электрическом поле, индуцированного дипольного момента $\vec{\mu}_{\kappa}$. Направление вектора этого момента практически всегда совпадает с направлением вектора поля \vec{F} . Отклонение от коллинеарности не превышает $\pm 2^{\circ}$ в зависимости от угла α . Эта неколлинеарность возникает вследствие неучета изменения ядерной конфигурации молекулы под действием внешнего поля. Небольшая величина неколлинеарности свидетельствует о незначительной ядерной поляризуемости молекулы диоксана, т. е. о незначительном искажении ядерной конфигурации под действием электрического поля.

Дипольный момент диоксана в форме ванны $\vec{\mu}_{B}$, состоящего из постоянного и наведенного диполей, направлен под различными углами к вектору поля в зависимости от угла α . В области 20° < α < 180° ванна более устойчива чем кресло, в то время как для 180° < α < 380° более устойчиво кресло.

Обращает на себя внимание наличие двух минимумов на кривой зависимости энергии кресла от угла, что является следствием существования двух тождественных ориентаций молекулы в поле, отличающихся друг от друга поворотом на 180°. Минимумы разделены небольшим барьером. Следовательно, если для ванны существует одна наиболее устойчивая ориентация в поле при $\alpha = 90^{\circ}$ (рис. 32), то для кресла таких ориентаций две: $\alpha_1 = 60^{\circ}$ и $\alpha_2 = 240^{\circ}$ (рис. 33). При изучении в дальнейшем превращения кресло \leftrightarrow ванна будем предполагать, что все молекулы в форме кресла ориентированы под углом 60°.

Известно, что в свободном состоянии энергия лабильной формы (ванна) 1,4-диоксана на 2.2 ккал/моль выше энергии кресла [92]. Во внешнем же электрическом поле $F = 0.02 \ am$. ед. ванна оказывается на 30.1 *ккал/моль* более устойчивой чем кресло (рисунки 32 и 33).Следовательно, при попадании молекул диоксана, находящихся в бесполевом пространстве преимущественно в форме кресла, в область высокого электрического поля ионного источника происходит их превращение в форму ванны с одновременным изменением угла α от 60° до 90°. В связи с таким изменением устойчивости конформаций проследить поля представляется важным влияние электрического на конформационное превращение кресло \leftrightarrow ванна. В качестве координаты реакции выберем двугранный угол между плоскостью углеродных атомов и одной из плоскостей СОС, изменение которого сопровождается изменением углов поворота вокруг связей С-С.

Согласно нашим расчетным данным энергия формы кресла на 2.96 *ккал/моль* (рис. 34) ниже энергии формы ванны, что находится в хорошем согласии с приведенной выше полуэмпирической оценкой в 2.2 *ккал/моль*.

419

Рис. 34. Энергетические профили (*am. ed.*) вдоль координаты превращения ванна (В) ↔ кресло (К) для молекулы диоксана без учета и с учетом внешнего электрического поля (кривые 1 и 3). Разностные энергетические величины справа указаны в *ккал/моль*.

Кривая 3, представляющая изменение энергии вдоль координаты реакции превращения ванны в кресло в электрическом поле расположена значительно ниже бесполевой кривой 1 и имеет локальный минимум. Происхождение его можно объяснить следующим образом. При переходе от конформации кресло К к ближайшей конформации 9 вдоль координаты превращения у последней появляется постоянный дипольный момент, что приводи к резкому увеличению энергии взаимодействия с полем по сравнению с энергией кресла, так как взаимодействие молекулы диоксана в форме кресла обусловлено только индуцированным дипольным моментом. С другой стороны, для конформации 9 энергия угловых напряжений еще незначительна. В результате конформация 9 становится более устойчивой, чем форма кресла. В дальнейшем по ходу координаты реакции превращения рост угловых напряжений становится преобладающим и на кривой в поле появляется максимум, отвечающий конформации 6. Для конформаций 1 – 4 оба атома кислорода расположены по одну сторону от плоскости атомов углерода. В результате появления значительного дипольного момента увеличивается энергия взаимодействия этих конфомаций 1 – 4 с полем, что вместе с уменьшением энергии угловых напряжений и приводит к резкому понижению энергии вдоль координаты конверсии кресла в ванну.

Несколько пояснений о способе построения кривой 3. Для каждой из рассмотренных конформаций находился оптимальный угол α , отвечающий минимуму энергии молекулы в поле. По этим минимальным значениям энергии и построена кривая 3. Как и ожидалось, все оптимальные углы α находятся в интервале 60° – 90°. Таким образом, исследуя реакцию превращения кресло \leftrightarrow ванна в электрическом поле необходимо к выбранной координате реакции добавить еще угол α . Кривая 2 на рис. 34 показывает зависимость суммы $E^0 + \mu F$, где μ теперь полный дипольный момент данной конформации, являющийся суммой постоянного момента и индуцированного. Ход этой кривой подтверждает справедливость приведенных выше рассуждений о причине появления локального минимума, отвечающего конформации 9.

Таким образом, как показывают наши расчеты, молекула диоксана в момент ионизации имеет форму ванны и ориентирована так, что обе связи С–С расположены перпендикулярно к вектору поля. При этом поле практически не возмущает эти связи. Экспериментальный полевой масс-спектр диоксана содержит линию осколочного иона в 44 *a. е. м.*, что отвечает распаду кольца на два одинаковых фрагмента. Если ион $Д^+$ распадается по связям С–С, то осколочный ион имеет структуру (CH₂OCH₂)⁺, в случае же распада по связям С–О его структура иная - (OCH₂CH₂)⁺. Проведенное выше рассмотрение позволяет предположить, что фрагментация молекулярного иона $Д^+$ в условиях ионизации полем должна осуществляться по связям С–О. Экспериментальную проверку этого предположения можно провести с использованием изотопных меток.

Подведем итоги работам, посвященных квантовохимическому изучению фрагментации молекул и ионов в условиях полевой масс-спектрометрии.

Методами квантовой химии качественно, а в некоторых случаях и количественно можно описать пути фрагментации молекулярных ионов в электрическом поле, а также учесть влияние величины поля на характер и природу образующихся осколков. На основании расчетов можно предсказать вероятность разрыва определенных связей в молекулярных ионах, находящихся под воздействием поля, а также определить места локализации положительного заряда при этих разрывах.

Внешнее электрическое поле кроме своей главной функции, состоящей в ионизации молекул исследуемого вещества, существенно влияет на характер полевых масс-спектров.

Ориентация определенной связи по отношению к вектору поля существенным образом влияет на вероятность ее разрыва по механизму полевой диссоциации. Это является одним из главных факторов, определяющих отличие полевых масс-спектров от масс-спектров электронного удара.

Опираясь только на распределение положительного заряда в образовавшемся молекулярном ионе даже с учетом влияния электрического поля, невозможно правильно предсказать продукты диссоциации по той или иной связи. Необходимо исследовать зависимость заряда рассматриваемой группы атомов при удлинении разрываемой связи.

Наконец, наш подход, основанный на сравнении распределении заряда в исходной молекуле и в образующемся молекулярном ионе, применим только для качественной интерпретации полевого масс-спектра, обусловленной только осколочными ионами. Для квантовохимического объяснения образования перегруппировочных и ассоциативных ионов необходимо привлечение дополнительных сведений о механизме соответствующих процессов. Для рассмотрения количественных зависимостей в полевых масс-спектрах следует учитывать более тонкие механизмы фрагментации, в частности, использовать подход, основанный на изучении колебательных возбуждений молекулярных ионов.

Литература

- 1. H. M. Rosenstock, M. B. Wallenstein, A. L. Wahrhaftig, H. Eyring. Absolute rate theory for isolated systems and the mass-spectra of polyatomic molecules, *Proc. Nat. Acad. Sci. USA*, v. 38, 667 (1952).
- 2. С. Глесстон, К. Лейдлер, Г. Эйринг. *Теория абсолютных скоростей реакций*. Москва: ИЛ, 1948.
- 3. H. M. Rosenstock. On the classical approximation in the statistical theory of mass-spectra, *J. Chem. Phys.*, v. 34, 2182 (1961).
- 4. Э. Н. Король, В. В. Лобанов, В. А. Назаренко, В. А. Покровський. Физические основы полевой масс-спектрометрии. Киев: Наукова думка, 1978.
- 5. R. Thompson. Applied mass spectrometry. London: Institute of Petroleum, 1953.
- 6. R. D. Brown. A quantum-mechanical treatment of aliphatic compounds. Part 1. Paraffines, *J. Chem. Soc.*, 2615 2621 (1953).
- 7. J. L. Franklin. Calculation of ionization potentials, J. Chem. Phys., v. 22, 1304 (1954).
- Ю. А. Кругляк, В. С. Квакуш, Г. Г. Дядюша, В. И. Хильченко. Методы вычислений в квантовой химии. Расчет π-электронной структуры молекул простыми методами молекулярных орбиталей. Киев: Наукова думка, 1967.

- 9. J. Lennard-Jones, G. G. Hall. The ionization of paraffin molecules, *Trans. Faraday Soc.*, v. 48, 581 (1952).
- 10. K. Fueki, K. Hirota. About the correlation between the dissociation for *n*-paraffin by electron impact and distribution its abundance positive charge, *J. Chem. Soc. Japan*, v. 81, 212 (1960).
- 11. H. D. Coggeshall. Ionization of *n*-paraffin molecules, J. Chem. Phys., v. 30, 595 (1959).
- 12. V. Santaro, G. Spadaccini. Charge distribution in some alkanes and their mass-spectra, *J. Phys.* Chem., v. 73, 462 (1969).
- 13. R. D. Finney, G. G. Hall. The healing effect in the dissociation of the paraffin hydrocarbons, *Intern. J. Mass Spectrum Ion Phys.*, v. 4, 489 (1970).
- 14. S. Meyerson. Organic ions in the gas phase. XV. Decomposition of *n*-alkanes under electron impact, *J. Chem. Phys.*, v. 42, 2181 (1965).
- 15. J. C. Lorquet. The electronic structure of ionized molecules. II. Alkanes, *Mol. Phys.*, v. 9, 101 (1965).
- 16. K. Hirota, Y. Niwa. The fragmentation of skeletal bonds of cyclic alkanes in mass spectra, *J. Phys.* Chem., v. 72, 5 (1968).
- M. Hatada, K. Hirota. The ionization and dissociation of methylbutylketones under electron impact. I. Methyl-*n*-butylketone and isobutylketone, *Bull. Chem. Soc. Japan*, v. 38, 599 (1965).
- M. Hatada, K. Hirota. The ionization and dissociation of aliphatic ketones under electron impact. II. Methyl-sec-butylketone and methyl-tert-butylketone, *Z. phys. Chem.*, v. 44, 328 (1965).
- 19. K. Hirota, M. Iton. The application of molecular orbital theory to the bond dissociation of aliphatic amines, *Bull. Chem. Soc. Japan*, v. 39, 1406 (1966).
- 20. J. C. Lorquet, A. J. Lorquet, J. C. Leclerc. Adv. Mass Spectrometry, v. 4, 569 573 (1968).
- 21. K. Hirota, L. Fujita, M. Yamamoto, Y. Niwa. Electron distribution of electron-bombarded alkylamines and its correlation with the probability of bond dissociation in their mass spectra, *J. Phys. Chem.*, v. 74, 410 (1970).
- 22. M. Yamamoto, L. Fujita, M. Iton, K. Hirota. Positive charge distribution of secondary alkylamines and its correlation with the bond dissociation probability appearing in their mass spectra, *Bull. Chem. Soc. Japan*, v. 45, 3520 (1972).
- 23. D. P. Stevenson. Ionization and dissociation by electron impact of normal alkanes $C_4 C_8$. The dissociation energies of $D(n-C_3H_7-H)$ and $D(n-C_4H_9-H)$ and the ionization potential of *n*-propyl radical, *Trans. Faraday Soc.*, v. 49, 867 – 878 (1953).
- 24. M. Sato, I. Fujita, K. Hirota. Prediction on the mass spectra of normal alkanes with the molecular orbital theory, *J. Phys. Chem.*, v. 74, 3174 (1970).
- 25. J. C. Leclerc, J. C. Lorquet. The electronic structure of ionized molecules. VI. *n*-Alkylamines, *J. Phys. Chem.*, v. 71: 4, 787 791 (1967).
- 26. J. C. Lorquet. The electronic structure of ionized molecules. IV. Vibrationally induced dissociation, *Mol. Phys.*, v. 10: 15, 489 492 (1966).
- 27. K. Hirota, J. Takezaki. Dissociation probabilities of the skeletal bond of aliphatic ethers by electron impact, *Bull. Chem. Soc. Japan*, v. 41, 76 (1968).
- 28. S. Ikuta, K. Yoshikara, T. Shiokawa. Studies on fragment ion distribution and reaction with a charge spectrometer. V. Applicability of the MO theory to the fragmentation of alkanes by charge exchange, *Bull. Chem. Soc. Japan*, v. 46, 3648 (1973).
- 29. Y. Hatano. Excitation from superexcitation of hydrocarbons. Estimation of their yields by optical approximation, *Bull. Chem. Soc. Japan*, v. 41: 5, 1126 1129 (1968).
- 30. G. Spiteller. Strukturuntersuchung organischer verbindungen mit hilfe der massenspektrometrie, J. Analyt. Chem., v. 197, 1 (1963).
- S. Tajama, Y. Niwa, N. Wasada, T. Tsuchiyat. An interpretation of mass spectra by simple LCAO MO calculation. II. Derivatives of benzene and chlorbenzene, *Bull. Chem. Soc. Japan*, v. 45, 1250 (1972).

- M. Ogata, H. Ichikawa. An MO approach to the interpretation of organic mass spectra.
 I. Relative bond energy of molecule ion by the extended Huckel method, *Bull. Chem. Soc. Japan*, v. 45, 3231 (1972).
- 33. M. Zerner, M. Gouterman. Porphyrins. IV. Extended Huckel calculations on transition metal complexes, *Theor. chim. Acta*, v. 5, 44 (1966).
- 34. F. W. McLafferty. Mass spectrometric analysis. Molecular rearrangements. *Anal. Chem.*, v. 31: 1, 82 87 (1959).
- 35. G. Loew, M. Chadwick, D. H. Smith. Application of molecular orbital theory to the interpretation of mass spectra. Prediction of primary fragmentation sites in organic molecules, *Org. Mass Spectrom.*, v. 7, 1241 (1973).
- 36. H. Ichikawa, M. A. Ogata. Theoretical treatment of the fragmentation rules in the mass spectrometry of organic compounds, *Bull. Chem. Soc. Japan*, v. 46, 1873 (1973).
- 37. M. G. Evans, M. Polanyi. Further considerations on the thermodynamics of chemical equilibria and reaction rates. *Trans. Faraday Soc.*, v. 32, 1333 1360 (1936).
- 38. H. Ichikawa, V. A. Ogata. Determination of intermediate ion structure in the mass spectrometry of heteroaromatic compounds, *J. Amer. Chem. Soc.*, v. 95, 806 (1973).
- F. P. Boer, T. W. Shannon, F. W. MaLafferty. The electronic structure of the sixmembered cyclic transition state in some γ-hydrogen rearrangements, *J. Amer. Chem. Soc.*, v. 90, 7239 (1968).
- M. D. Newton, F. P. Boer, W. N. Lipscomb. Molecular orbital theory for large molecules. Approximation of the SCF LCAO Hamiltonian matrix, *J. Amer. Chem. Soc.*, v. 88, 2333 (1966).
- 41. C. E. Parker, M. M. Bursey, L. G. Pedersen. Scrambling in ethane molecular ion: an INDO model for hydrogen exchange before mass spectral fragmentation, *Org. Mass Spectrom.*, v. 7, 1077 (1973).
- 42. C. E. Parker, J. R. Hass, M. M. Bursey, L. G. Pedersen. The ortho effect in mass spectra. Insight into tightening of activated complexes for the loss of ketene from phenyl acetates and ethylene from Phenetoles from INDO molecular orbital calculations, *Org. Mass Spectrom.*, v. 7, 1189 (1973).
- 43. S. A. Benezra, M. M. Bursey. Ortho-effects in mass spectra. Alteration of the molecular-ion energy distribution in disubstituted acetanilides, *Z. Naturforsch.* v. 27a, 670 (1972).
- 44. M. M. Bursey, C. E. Parker. The mass spectral fragmentation of halogenated phenetoles. Absence of an ortho effect, *Tetrahedron Lett.*, v. 13: 5, 2211 2214 (1972).
- 45. F. W. McLafferty, T. Wachs, C. Lifshitz *et al.* Substituent effects in unimolecular ion decompositions. XV. Mechanistic interpretations and quasi-equilibrium theory, *J. Amer. Chem. Soc.*, v. 92, 6867 (1970).
- 46. A. M. Falick, P. J. Derick, A. L. Burlingame. The use of a double focusing field ionization mass spectrometer for the study of gas phase ion decomposition kinetics at 10⁻¹¹ to 10⁻⁵ sec., *Intern. J. Mass. Spectrom. Ion Phys.*, v. 12, 101 (1973).
- 47. H. D. Beckey, Feldionisation Massenspektren Organischer Molecule.
 I. n-Paraffine von C₁ bis C₉, Z. Naturforsch. v. 17a: 9, 1103 1111 (1962).
- 48. J. C. Lorquet, G. G. Hall. The electronic structure of ionized molecules. III. Field ionization. *Mol. Phys.*, v. 9, 29 (1965).
- 49. H. D. Beckey. Field Ionization Mass Spectrometry. Berlin: Akademie Verlag, 1971.
- H. D. Beckey, P. Schulze. Feldionisation Massenspektren Organischer Molecule. III. n-Paraffine bis zum C₁₆ und verzweigte Paraffine, *Z. Naturforsch.* v. 20a, 1329 – 1335 (1965).
- M. M. Aleksankin, V. V. Lobanov. Quantum chemical investigation of the behaviour of molecules and their ions in an electric field, *Intern. J. Mass. Spectrom. Ion Phys.*, v. 15, 1–8 (1974).

- 52. V. V. Lobanov, M. M. Aleksankin, Yu. A. Kruglyak. Quantum-chemical investigation of molecule and ion behaviour in an electric field. II. Acetaldehyde, *Preprint ITP AS USSR, n. 15E.* Kiev: 1974.
- 53. М. М. Алексанкин, В. В. Лобанов, Ю. А. Кругляк. Диссоциация ацетальдегида в электрическом поле, *ДАН СССР*, т. 222: 1, 132 135 (1975).
- V. V. Lobanov, M. M. Aleksankin, Yu. A. Kruglyak. Quantum chemical investigation of molecule and ion behaviour in an electric field. II. Ethanal, *Intern. J. Mass. Spectrom. Ion Phys.*, v. 18, 275 – 288 (1975).
- 55. М. М. Алексанкин, В. В. Лобанов, Ю. А. Кругляк. Применение теории молекулярных орбиталей для объяснения фрагментации положительных молекулярных ионов, *Препринт ИТФ АН УССР*, № 126. Киев, 1976.
- 56. В. В. Лобанов, М. М. Алексанкин, Ю. А. Кругляк. Влияние внешнего электрического поля на конформации органических молекул. І. Диоксан, *Препринт ИТФ АН УССР*, № 141. Киев, 1976.
- 57. В. В. Лобанов, М. М. Алексанкин, Ю. А. Кругляк. Квантовохимическое исследование поведения молекул и ионов в электрическом поле. IV. Метиламин, *Препринт ИТФ АН УССР*, № 146. Киев, 1976.
- В. В. Лобанов, Ю. А. Кругляк, М. М. Алексанкин. Квантовохимическое исследование свойств молекул и ионов ацеталей в сильном электрическом поле, *Teop. экспер. хим.*, т. 12: 1, 48 – 55 (1976).
- 59. М. М. Алексанкин, В. В. Лобанов, Ю. А. Кругляк. К теории водородной перегруппировки при диссоциации химических связей в условиях полевой масс-спектрометрии, *ДАН СССР*, т. 231: 3, 637 640 (1976).
- 60. М. М. Алексанкин, В. В. Лобанов, Ю. А. Кругляк. Применение метода молекулярных орбиталей для объяснения фрагментации положительных молекулярных ионов, *Физика молекул*, № 4, 26 – 46 (1977).
- 61. В. В. Лобанов, М. М. Алексанкин, Ю. А. Кругляк. Полевая фрагментация молекулярного иона метиламина, *Теор. экспер. хим.*, т. 14: 3, 337 345 (1978).
- 62. В. В. Лобанов, М. М. Алексанкин, Ю. А. Кругляк. Конформационный анализ молекулы диоксана во внешнем электрическом поле, *Ж. структ. хим.*, т. 20: 1, 181 185 (1979).
- 63. В. В. Лобанов. Изучение поведения органических молекул и ионов в сильном электрическом поле, Канд. дисс., ИФХ АН УССР, 1974.
- 64. R. Hook, T. A. Jeeves. Direct search solution of numerical and statistical problems. *J. Assoc. Comp. Mach.*, v. 8: 2, 212 229 (1961).
- 65. М. Д. Долгушин, И. С. Ященко, Ю. А. Кругляк. О выборе оптимальных параметров в разложении атомних функций по гауссовым на примере функции 1*s* атома водовода, *Teop.* экспер. хим., т. 7, 528 (1971).
- 66. Yu. I. Gorlov, I. I. Ukrainsky, V. V. Penkovsky. The UHF-CNDO/2 study of tetraatomic radicals containing Silicon and Phosphorus, *Theor. chim. Acta*, v. 34, 31 (1974).
- 67. И. И. Украинский, Ю. А. Кругляк. Определение оптимальных параметров спектров ЭПР свободных радикалов с изотропным сверхтонким взаимодействием, Сб. Строение молекул и квантовая химия, ред. А. И. Бродский. Киев: Наукова думка, 1970.
- R. W. Kilb, C. C. Lin, E. B. Wilson. Calculation of energy levels for internal torsion and over-all rotation. II. CH₃CHO type molecules: acetaldehyde spectra, *J. Chem. Phys.*, v. 26, 1695 – 1703 (1957).
- 69. J. A. Pople, A. L. Beveridge. *Approximate molecular orbital theory*. New York: McGraw-Hill, 1970.
- 70. S. Ehrenson, S. Seltzer. On CNDO bond indices and relations to molecular energies, *Theor. chim. Acta*, v. 20, 17 (1971).
- 71. H. Fischer, H. Kollman. Energy partitioning with the CNDO method, *Theor. chim. Acta*, v. 16, 163 (1970).

- 72. M. S. Gordon. A molecular orbital study of internal rotation, J. Amer. Chem. Soc., v. 91, 3122 (1969).
- 73. S. S. Butcher, E. B. Wilson. Microwave Spectrum of Propionaldehyde, *J. Chem. Phys.*, v. 40: 6, 1671 (1964).
- 74. L. N. Allinger, M. S. Hickey. Propionaldehyde: *ab initio* and semiempirical calculations, *J. Mol. Struct.*, v. 17, 233 (1973).
- W. D. Lehmann, H. D. Beckey. Field ionization mass spectra of stereoisomeric dihalogencyclobutanes, 1,2-dibromoethylenes, and some alkenes, *Org. Mass. Spectrom.*, v. 9, 1086 (1974).
- 76. P. W. Allen, L. E. Sutton. Tables of interatomic distances and molecular configurations obtained by electron diffraction in the gas phase, *Acta Crystallogr.*, v. 3, 46 72 (1950).
- 77. G. T. O. Martin, J. R. Partington. Studies in dielectric polarisation. Part XVII. The dipole moments of some aromatic acid halides, *J. Chem. Soc.*, 1175 1178 (1936).
- Tables of interatomic distances and configuration in molecules & ions, (Supplement 1956 – 1959), Special Publication No.18, L.E. Sutton (Ed.), v. 1. Burlington House: The Chemical Soc., 1965.
- 79. Э. Н. Король, В. В. Лобанов, В. А. Покровский. Диссоциация молекулярного водорода электрическим полем, *Препринт ИТФ АН УССР*, № 167. Киев, 1973.
- E. N. Korol, V. V. Lobanov, V. A. Pokrovsky. Field dissociation of molecules. I. Diatomic molecules, *Intern. J. Mass. Spectrom. Ion Phys.*, v. 18, 229 (1975).
- 81. Дж. Бейнон. *Масс-спектрометрия и ее применение в органической химии*. Москва: Мир, 1964.
- 82. H. D. Beckey. Mass-spectrometry. New York: Academy Press, 1965.
- 83. М. М. Алексанкин, И. П. Самченко, И. З. Коростышевский *et al. Каталог полевых масс-спектров органических веществ.* Киев: Наукова думка, 1976.
- 84. R. S. Gohlke, F. W. MaLafferty. Mass Spectrometric Analysis. Aliphatic Amines, *Analyt. Chem.*, v. 34, 1281 1290 (1962).
- 85. В. К. Потапов, Л. И. Искаков. Фотоионизация и распад алифатических аминов, *Химия высок. энергий*, т. 4: 4, 354 – 355 (1970).
- Tables of Interatomic Distances and Configuration in Molecules and Ions, herausgeg. von A. D. Mitchell und L. C. Cross. Special Publication No. 11. Wiss. Herausgeber: L. E. Sutton. London: The Chemical Society, 1958.
- L. Radom, W. J. Hehre, J. A. Pople. Molecular orbital theory of the electronic structure of organic compounds. XIII. Fourier component analysis of internal rotation potential functions in saturated molecules, *J. Amer. Chem. Soc.*, v. 94: 7, 2371 – 2381 (1972).
- 88. T. Nishikawa, T. Itoh, K. Shimoda. Molecular structure of methylamine from its microwave spectrum, *J. Chem. Phys.*, v. 23: 6, 1735 (1955).
- 89. D. R. Lide. Structure of the methylamine molecule. I. Microwave spectrum of CD₃ND₂. *J. Chem. Phys.*, v. 27: 2, 343 348 (1957).
- 90. R. Walker, D. W. Davidson. The dielectric constant and dipole moment of 1,3-dioxane, *Can. J. Chem.*, v. 37, 492 (1959).
- 91. M. Davis, O. Hassel. Electron diffraction investigation of molecules containing a cyclohexane type six-membered ring., *Acta Chem. Scand.*, v. 17: 4, 1181 (1963).
- 92. Э. Илиел, Н. Аллинжер, С. Энжиал, Г. Моррисон. *Конформационный анализ*. Москва: Мир, 1969.

Chapter 9. Quantum-chemical Studies of Quasi-one-dimensional Electron Systems

9.1. Introduction

This chapter gives detailed results and thorough discussion of basic results in quantum theory of quasi-one-dimensional electron systems like Polyenes and Cumulenes, including partly Polyacetylenes, Polydiacetylenes, and some organic crystalline conductors obtained by Kiev quantum chemistry group with my direct and consultive participation in some of the research topics below.

We begin with local electronic states in long polyene chains in the simple tight-binding approximation [1 - 4]. Then will give condensed review of the Generalized Hartree – Fock method and its different versions with some demonstrative applications to atoms, molecules, and carbon polymers [5]. Further we turn to theory of electronic structure of long polyene neutral alternant radicals based on the different orbital for different spins SCF method [6]. Then we come back to local electronic states in polyene chains with an impurity atom using unrestricted Hartree – Fock approach [7]. Further we turn to cumulenes.

Here we begin with basics of the π -electronic theory of cumulenes [8, 9]. Then long cumulene chains are treated by extended and unrestricted Hartree – Fock approaches [10]. Thus, we come close to the basic problem in quantum theory of quasi-one-dimensional electron systems – physical origin of their forbidden zone.

In connection with this basic and most intriguing problem two results will be described in details. In one case using unrestricted Hartree – Fock treatment of the Hubbard-type Hamiltonian for long one-dimensional chains two possible effects – Peierls instability (bond alternation) and Mott-type electron correlation spin ordering leading to energy gap formation are mutually exclusive [11]. On the other hand, it was recently shown that quite sophisticated theory based on the varying localized geminals approach predicts coexistence of the Mott and Peierls instabilities in real one-dimensional systems [12]. Moreover, it is stated that this approach permits to give the answer to the question what mechanism of the forbidden gap formation is more essential – the electron correlation (Mott instability) or dimerization (Peierls instability). Both treatments despite their contradictions each other will be presented in details. Finally, the summary with conclusions and perspectives is given [13].

9.2. Review of Local Electronic States in Long Polyene Chains in the Tight-binding Model

It is well known that the energy spectrum of π -electrons in the long polyene chains has two bands for allowed states – valence and conduction bands separated by the forbidden zone of width ΔE (see *e.g.* [14]). According to the Peierls theorem on

nonstability of a 1d-metal with respect to nuclear displacement [15], the value ΔE must be different from zero. It was shown [8, 9, 16, 17] that the electronic interaction plays an important role in this effect.

It is reasonable to ask the following question: how would the energy picture change with the introduction of defects into the polyene chain? The defects may appear to be due to the heterogeneous atoms in the carbon chain, to the substituents of the hydrogen atoms, to the space distortion, etc. In all quantum-mechanical models based on the π -electron approximation which take account of the interaction of a limited number of the nearest neighbors the appearance of the defects is described by the change of certain parameters in the effective π -electron Hamiltonian. For the justification of the latter statement see *e.g.* [18, 19]. For a long chain this change might be considered as a local perturbation. In particular, the following problem is of interest. How much should the parameters be changed in order to obtain the local states? These are the electronic states located outside the allowed bands in the forbidden zone, above and below the allowed bands.

A general method for solving problems of this type has been worked out by Lifshits [20 - 23] in application to vibrations in defective crystals and by Koster and Slater [24] in a study of the impurity levels in crystals. The method gives a possibility of getting expressions in closed form for the energy and wave functions of the local states through the property of unperturbed systems and has at least the following three important aspects. 1) It permits a study of the local states without determination of the band state properties. 2) One must solve the system of equations which has an order not higher than the number of perturbed atoms. 3) In certain cases the method opens up the possibility of finding exact solutions. In quantum-chemical applications the method was successfully used by Koutecky in his work on the theory of chemisorbtion [25, 26].

In the present chapter this method is applied to the study of the local states in long polyene chains. Wishing to obtain mainly qualitative results in terms of simple analytical formulae we restrict ourselves to the nearest neighbor orthogonal tightbinding model, known in quantum chemistry also as Hückel approximation, taking into account bond alternation.

2.1. General Relations

If one is looking for the wave function of the local state as an expansion over AOs, χ_n , then we have the following system of equations with the expansion coefficients U_n : $\sum_{n'} H_{nn'} U_{n'} - EU_n = -\sum_{n'} V_{nn'} U_{n'}$, (1) where $H_{nn'}$ and $V_{nn'}$ are matrix elements of the Hamiltonian of the unperturbed problem and of the perturbation in the AO's representation, respectively. Following the procedure developed in [27] for the study of the local vibrations in crystals let us introduce the Green function of the Eq. (1)

$$g_{mn}(E) = \sum_{i} \frac{\varphi_i^*(m)\varphi_i(n)}{E - E_i},$$
(2)

where E_i and $\varphi_i(m)$ are the solutions of the unperturbed problem. Considering the right-hand side of (1) as a nonhomogenity one concludes that the coefficients U_n are the solutions of the following system of equations:

$$U_{l} = -\sum_{p,s} g_{lp}(E) V_{ps} U_{s} \,. \tag{3}$$

It is obvious that the sum of the right-hand side of (3) contains U_s only in the case when atom *s* is perturbed. Therefore, if one substitutes *l* in the left-hand side of (3) by the numbers of the perturbed atoms, one obtains a system of linear homogeneous equations, the order of which is equal to the rank of the perturbed matrix, whereas the order of the initial system (1) was equal to the number of atoms in the chain. The condition of solvability of the new system gives us an equation for finding energy of the local states. Thus, our first step is to calculate the Green function (2) which we obtain for a long polyene chain with and without bond alternation.

As it is well known, the wave functions ψ_k and energies E_k of the states of the unperturbed chains without bond alternation are (see *e.g.* [28])

$$\psi_k = \sqrt{\frac{2}{N+1}} \sum_n \chi_n \sin kn, \quad E_k = E_0 + 2\beta \cos k,$$
 (4)

where N is the number of atoms in the chain, β is the resonance bond integrals, and

$$k = \frac{\pi s}{N+1}$$
. (s=1,2,...,N)

For the corresponding Green function (2) one has

$$g_{mn}^{0}(E) = \frac{2}{N+1} \sum_{k} \frac{\sin kn \cdot \sin km}{E - E_0 - 2\beta \cos k}.$$
 (5')

Changing the summation in (5') to integration, which for the long chain produces an error of the order $\sim 1/N$, and calculating the corresponding integral we have

$$g_{mn}^{0}(E) = \frac{\operatorname{sh} n\kappa e^{-m\kappa}}{\beta \operatorname{sh} \kappa} [(-1)^{m-n} Q(E) - Q(-E)],$$
(5)

where a step-function

$$Q(E) = \begin{cases} 1, & \text{if } E > 0 \\ 0 & \text{if } E < 0 \end{cases}$$

has been used. Here we introduced a change in notation

$$E - E_0 = \pm 2\beta \operatorname{ch} \kappa$$

and without a loss in generality it is assumed that $m \ge n$.

Let us consider the polyene chain with 2*N* atoms and alternating bonds described by the resonance integrals β_1 and β_2 and assume that $|\beta_1| > |\beta_2|$. Then the wave functions $\psi_k^{(1)}$ and $\psi_k^{(2)}$, and corresponding energies $E_1(k)$ and $E_2(k)$ are

$$\psi_{k}^{(1)} = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} \left[\chi_{2n} \sin kn - \chi_{2n-1} \frac{\beta_{1} \sin kn + \beta_{2} \sin k(n-1)}{\sqrt{\beta_{1}^{2} + \beta_{2}^{2} + 2\beta_{1}\beta_{2} \cos k}} \right], \tag{6'}$$
$$E_{1}(k) = E_{0} - \sqrt{\beta_{1}^{2} + \beta_{2}^{2} + 2\beta_{1}\beta_{2} \cos k},$$

$$\psi_{k}^{(2)} = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} \left[\chi_{2n} \sin kn + \chi_{2n-1} \frac{\beta_{1} \sin kn + \beta_{2} \sin k(n-1)}{\sqrt{\beta_{1}^{2} + \beta_{2}^{2} + 2\beta_{1}\beta_{2} \cos k}} \right], \tag{6"}$$

$$E_{2}(k) = E_{0} + \sqrt{\beta_{1}^{2} + \beta_{2}^{2} + 2\beta_{1}\beta_{2} \cos k}.$$

The values of k are determined as solutions of the following transcendental equation

$$\sin kN + \frac{\beta_1}{\beta_2} \sin k(N+1) = 0.$$
 (7)

The functions $\psi_k^{(1)}$ and their energies $E_1(k)$ describe the states of the lower filled (valence) band, and $\psi_k^{(2)}$ and $E_2(k)$ – the upper empty (conduction) band. Both bands have a width $2|\beta_2|$ and are separated by the forbidden zone

$$\Delta E = 2 \left| \beta_1 - \beta_2 \right|.$$

Inserting the corresponding coefficients $\varphi_k(m)$ from (6') and (6") into (2), changing the summation over *k* to integration, and summing up over both allowed bands, one obtains the following expressions for those Green functions which will be used later:

$$g_{2m,2n}(E) = (-1)^{n-m} \frac{E' \operatorname{sh} m \kappa e^{-\kappa n}}{\beta_1 \beta_2 \operatorname{sh} \kappa},$$
(8a)

$$g_{2m-1,2n}(E) = (-1)^{n-m+1} [\beta_1 \operatorname{sh} m\kappa - \beta_2 \operatorname{sh} (m-1)\kappa] \frac{e^{-\kappa n}}{\beta_1 \beta_2 \operatorname{sh} \kappa},$$
(8b)

$$g_{2n+1,2n}(E) = \frac{\beta_2 - \beta_1 e^{-\kappa}}{2\beta_1 \beta_2 \operatorname{sh} \kappa},$$
(8c)

$$g_{2m-1,2m-1}(E) = \frac{E'}{2\beta_1\beta_2 \operatorname{sh}\kappa} \left[1 - \frac{e^{-(2m-1)\kappa}}{E'^2} \left(\beta_2 e^{\kappa/2} - \beta_1 e^{-\kappa/2}\right)^2 \right],$$
(8d)

where

$$E' = E - E_0 = \pm \sqrt{\beta_1^2 + \beta_2^2 - 2\beta_1\beta_2 \mathrm{ch}\kappa}.$$

We shall mainly consider the local states in the forbidden zone because this case is the most physically interesting. Therefore, we have written down only Green functions for $|E'| < |\beta_1 - \beta_2|$.

It is obvious that any real defect is connected with a simultaneous change of certain Coulomb and resonance integrals of the chain. However, wishing to obtain an analytical description of the local states we shall consider certain models, namely: change of one Coulomb integral (single substitution), simultaneous identical change of two Coulomb integrals (double substitution), and change of one resonance integral (perturbed bond). We may hope that a qualitative description of the real situation can be realized by the combination of the present results.

2.2. Single Substitution

Let the perturbation be described by the change $\Delta \alpha$ of the Coulomb integral of an atom *n*

$$V_{ps} = \Delta \alpha \, \delta_{pn} \, \delta_{sn}$$

Then Eq. (3) becomes

$$U_n = -\Delta \alpha g_{nn}(E) U_n,$$

the condition of solvability of which

$$1 + \Delta \alpha g_{nn}(E) = 0 \tag{9}$$

determines the energies of the local states.
We first consider the chain without bond alternation. Substituting the function $g_{nn}^{0}(E)$ from (5) into (9), one obtains

$$1 + \Delta \alpha \frac{1 - e^{-2n\kappa}}{2\beta \operatorname{sh} \kappa} [Q(E) - Q(-E)] = 0.$$
⁽¹⁰⁾

Equation (10) can be solved analytically for two limiting cases: 1) when $n \to \infty$ that is the substitution is made far away from the edge of the chain, and 2) when n = 1 (surface state). When $n \to \infty$, neglecting in Eq. (10) the term $\sim e^{-n\kappa}$ and solving the corresponding equation, one obtains the known expression for the energy of the state localized in the middle of the chain [24]

$$E = E_0 + \operatorname{sign}(\Delta \alpha) \sqrt{(\Delta \alpha)^2 + 4\beta^2} \,. \tag{11}$$

Putting n = 1 into (10) one also obtains the known expression for the energy of the surface state

$$E = E_0 + \operatorname{sign}(\beta / \Delta \alpha)(\Delta \alpha + \beta^2 / \Delta \alpha).$$
(12)

It is easy to show that the state with an energy given by (12) exists only when

$$|\Delta \alpha / \beta| > 1$$
,

whereas in the case of the removal of the local level in the middle of the chain, as it follows from (11), the perturbation $\Delta \alpha$ might be infinitely small.

For $n \neq 1$ and $n \neq \infty$ Eq. (10) can be solved only numerically. Nevertheless, the asymptotic result can be found for the exact value of the minimum perturbation needed for removing the local state as a function of the value *n*. It follows from (5) that the minimal distance of the local level from the band edge corresponds to $\kappa \rightarrow 0$ (or $|E - E_0| \rightarrow |2\beta|$). Substituting $\kappa \rightarrow 0$ into (10) one concludes that perturbation of the *n*-th atom leads to the appearance of the local level only when

$$|\frac{\Delta\alpha}{\beta}| > \frac{1}{n}.$$
(13)

Now we shall consider the chain with alternating bonds. It follows from (8a) and (8d) that the results should be different for even and odd perturbed atoms. However, for $n \to \infty$ these differences are exponentially small and equations of the type (9) should be the same for the states localized in the middle of the chain. Substituting $n \to \infty$ into (8a) and (8d) and putting a corresponding expression into (9), one obtain an equation for the energy of the local states in the forbidden zone. An analogous equation could be obtained for the levels located above and below both allowed bands. We have not written down the Green functions which correspond to

 $|E| > |\beta_1 + \beta_2|$. A solution of these equations gives the energy of the local states E_{∞} for a single substitution in the middle of the chain, namely:

$$E_{\infty} = \pm \operatorname{sign}(\Delta \alpha) \sqrt{\beta_1^2 + \beta_2^2 + \frac{(\Delta \alpha)^2}{2}} \pm \left[(\beta_1^2 + \beta_2^2) (\Delta \alpha)^2 + \frac{(\Delta \alpha)^4}{4} + 4\beta_1^2 \beta_2^2 \right]^{1/2}}.$$
 (14)

The positive sign here corresponds to the level located above or below both allowed bands, and the negative sign corresponds to the level in the forbidden zone. It follows from (14) that even an infinitely small perturbation of the distant atom leads to two local levels. One of them is located outside of the bands, and the other in the forbidden zone. When $\Delta \alpha > 0$, the level in the forbidden zone is filled, and the other is empty. When $\Delta \alpha < 0$, the substitution is reserved. If $\Delta \alpha$ is small, the energy of both levels depends quadratically upon the perturbation. When $|\Delta \alpha| > |\beta_1|$ and $|\Delta \alpha| > |\beta_2|$, the energy of the out-of-band level depends linearly on $\Delta \alpha$; whereas, the energy of the other level is approximately proportional to $1/\Delta \alpha$. The latter means that one must apply an infinitely large perturbation in order for the local level to reach the middle of the forbidden zone. Thus, the level removed from the edge of the valence band cannot be transferred to the district E > 0 by any single substitution, and *vice versa*.

Now we shall consider the dependence of the minimal value of the perturbation needed for an appearance of the local level, on the number of the perturbed atom. Subsituting (8a) for the even atoms into (9), one obtains

$$1 + \Delta \alpha \frac{E' \mathrm{sh} m \kappa e^{-m\kappa}}{\beta_1 \beta_2 \mathrm{sh} \kappa} = 0, \qquad (15)$$

where $2m \equiv l$ is the number of the perturbed atom. Approaching $E \rightarrow \pm |\beta_1 - \beta_2|$ in Eq. (15), one concludes that the minimal perturbation by its absolute value needed for removing the level in the forbidden zone is

$$\Delta \alpha_{\min}^{in}(l) = -\operatorname{sign}(E) \left| \frac{2\beta_1 \beta_2}{\beta_1 - \beta_2} \right| \frac{1}{l},$$
(16)

and for the out-of-band levels

$$\Delta \alpha_{\min}^{out}(l) = \operatorname{sign}(E) \left| \frac{2\beta_1 \beta_2}{\beta_1 + \beta_2} \right| \frac{1}{l}.$$
(17)

Thus, if a perturbation is such that $|\Delta \alpha| > |2\beta_1\beta_2/(\beta_1 - \beta_2)|/l$, then this leads to an appearance of two local states.

When

$$\left|\frac{2\beta_1\beta_2}{\beta_1+\beta_2}\right| \frac{1}{l} < |\Delta\alpha| < \left|\frac{2\beta_1\beta_2}{\beta_1-\beta_2}\right| \frac{1}{l},$$

only one out-of-band level appears. If

$$\left|\frac{2\beta_1\beta_2}{\beta_1+\beta_2}\right|\frac{1}{l} > |\Delta\alpha|,$$

the local states do not appear at all.

Following the same procedure for the case when the perturbation is localized on an odd atom with the number l = 2m-1, one obtains the following condition for removing the local level into the forbidden zone

$$\Delta \alpha_{\min}^{in}(l) = -\operatorname{sign}(E) \left| \frac{\beta_1 - \beta_2}{2\beta_1 \beta_2} l + \frac{\beta_1 + \beta_2}{2\beta_1 \beta_2} \right|^{-1},$$
(18)

and for the out-of-band level

$$\Delta \alpha_{\min}^{out}(l) = \operatorname{sign}(E) \left| \frac{\beta_1 + \beta_2}{2\beta_1 \beta_2} l + \frac{\beta_1 - \beta_2}{2\beta_1 \beta_2} \right|^{-1}.$$
 (19)

Comparing (18) and (19) with (16) and (17) one sees that for large values of l the criteria for the appearance of the local states on even and on odd atoms coincide. It is also seen from (18) and (19) that the appearance conditions for the surface level (l = 1) outside the bands and in the forbidden zone are the same, namely:

$$\Delta \alpha_{\min}^{in}(1) \left| = \right| \Delta \alpha_{\min}^{out}(1) \left| = \right| \beta_2 \left| \right|, \tag{20}$$

that is the surface states always appear in pairs.

Let us now suppose that the polyene chain begins with the weak bond with $|\beta_1| < |\beta_2|$. This may happen, *e.g.*, if an unpaired electron is located at the edge of the chain [29]. We shall see how the results will change. In this case besides volume solutions (6') and (6") of an unperturbed problem (the number of solutions in the even chain is equal to 2N - 2) there are two more surface solutions localized at the edges of the chain. For a long chain when interaction of both surface states could be neglected, their energy is equal to zero, and the wave function of the state localized, say at the left edge of the chain, is

$$\psi^{(3)} = \sum_{l} \varphi_{3}(l) \chi_{l}, \quad \varphi_{3}(l) = \begin{cases} \sqrt{\beta_{2}^{2} - \beta_{1}^{2}} (\beta_{1} / \beta_{2})^{l-1} / \beta_{2} & \text{if} \quad l = 2m+1, \\ 0 & \text{if} \quad l = 2m, \end{cases}$$

and Eq. (9) leads to the following equation for the energy of the local states

$$\frac{2 \cdot \Delta \alpha \cdot E}{\pi} \int_{0}^{\pi} \frac{|\varphi_{1}(k,l)|^{2}}{E^{2} - E_{1}^{2}(k)} dk + \frac{\Delta \alpha}{E} |\varphi_{3}(l)|^{2} = 1, \qquad (21)$$

where *l* is the number of the perturbed atom, and $\varphi_1(k,l)$ are the coefficients of AOs in (6'). For even values of *l*: $\varphi_3(l) = 0$. This means that the formulae (15) – (17) remain valid. For l = 2m + 1 the condition for removing the local level outside of the bands coincides with (19). However, for the existence of the level near the edge of the forbidden zone it is now necessary to have

$$\Delta \alpha = \operatorname{sign}(E) \left(\frac{\beta_2 - \beta_1}{2\beta_1 \beta_2} l - \frac{\beta_1 + \beta_2}{2\beta_1 \beta_2} \right)^{-1}$$
(22)

instead of (18).

Equation (22) gives an appearance condition of the local state only for

$$l > \frac{\beta_1 + \beta_2}{\beta_2 - \beta_1}.$$

In the opposite case it gives a disappearance condition of the local state genetically linked to the surface state of the unperturbed chain. To illustrate the situation let us consider an exact solution of (21) for l = 1 (perturbed surface level). The energy of the level in the forbidden zone

$$E = \operatorname{sign}(\Delta \alpha) \sqrt{\beta_1^2 + \beta_2^2 - 2\beta_1 \beta_2 \operatorname{ch} \kappa} , \qquad (23')$$

where

$$\kappa = \ln \left\{ \frac{1}{2} \left[\frac{\beta_2}{\beta_1} - \frac{(\Delta \alpha)^2}{\beta_1 \beta_2} \right] + \sqrt{\frac{1}{4} \left[\frac{\beta_2}{\beta_1} - \frac{(\Delta \alpha)^2}{\beta_1 \beta_2} \right]^2 + \frac{(\Delta \alpha)^2}{\beta_2^2}} \right\}.$$
 (23")

It is seen from (23) that when $\Delta \alpha = 0$, then E = 0 (level in the center of the forbidden zone). With an increase of $|\Delta \alpha|$ the level is moving to the edge of one of the allowed bands, and if $|\Delta \alpha| \rightarrow |\beta_2|$, then $|E| \rightarrow |\beta_2 - \beta_1|$ which is in agreement with the criteria (22). Further increase of $|\Delta \alpha| > |\beta_2|$ leads to the infusion of the local level into the allowed band. It follows from (19), the surface level appears with an energy $|E| \ge |\beta_1 + \beta_2|$, which means that it is located above or below both allowed bands. In other words for any value of $|\Delta \alpha|$ in the chain with a broken edge-bond there may be one and only one surface state. As it is seen from (22), for

$$l < \frac{\beta_1 + \beta_2}{\beta_2 - \beta_1}$$

an increase of *l* requires an increase of $|\Delta\alpha|$ in order to move the level to the edges of the forbidden zone. It is obviously connected with the exponential decrease of the wave function of the surface state when the distance from the chain edge is increasing. In other words it is difficult to move the level by substitution at the point where the electron density is small. Comparatively larger values of $|\Delta\alpha|$ needed for an appearance of a new (besides the surface level) local level for the smallest *l* satisfied by the inequality

$$l > \frac{\beta_1 + \beta_2}{\beta_2 - \beta_1}$$

is in agreement with the known fact [25, 26] of the difficulty of producing two local states which are situated in the immediate neighborhood of one another. The extent of the chain region in which this effect can be observed is greater if the width of the forbidden zone is smaller.

2.3. Double Substitution

As the simplest example of the mutual influence of two identical defects we shall consider the case where a perturbation consists of an identical change $\Delta \alpha$ of the Coulomb integrals of the chain atoms *m* and *n*. Then

$$V_{ps} = \Delta \alpha (\delta_{mp} \delta_{ms} + \delta_{pn} \delta_{sn})$$

and (3) is reduced to

$$U_{l} + \Delta \alpha [g_{lm}(E)U_{m} + g_{ln}(E)U_{n}] = 0.$$
(24)

Substituting consequently l = m and l = n into (24), one obtains a system of two homogeneous linear equations, the solvability condition of which

$$[1 + \Delta \alpha g_{mn}(E)][1 + \Delta \alpha g_{nn}(E)] - (\Delta \alpha)^2 g_{mn}^2(E) = 0$$
⁽²⁵⁾

gives an equation for the determination of the local level energies.

Let us first consider the chain without bond alternation. Substituting the necessary Green function from (5) into (25), one obtains

$$\left(1 + \frac{\Delta\alpha}{\beta}e^{-m\kappa}\frac{\mathrm{sh}m\kappa}{\mathrm{sh}\kappa}\right)\left(1 + \frac{\Delta\alpha}{\beta}e^{-n\kappa}\frac{\mathrm{sh}n\kappa}{\mathrm{sh}\kappa}\right) = \left(\frac{\Delta\alpha}{\beta}e^{-m\kappa}\frac{\mathrm{sh}n\kappa}{\mathrm{sh}\kappa}\right)^2.$$
 (26)

When |n-m| increases, the right-hand side of (26) decreases approximately as

 $\exp[-(m-n)\kappa]$. So for a large distance between defects it might be assumed equal to zero. Then Eq. (26) is transformed to Eq. (10) for the energy of the local state in the

case of single substitution, and for $m, n \gg 1$ there are two degenerate local states with an energy

$$E = E_0 + \operatorname{sign}(\Delta \alpha) \sqrt{4\beta^2 + (\Delta \alpha)^2}$$
.

For $m, n \gg 1$, but $|m-n| \sim 1$, then neglecting terms like $\sim \exp(-m\kappa), \exp(-n\kappa)$, one obtains from (26)

$$\left|\frac{\Delta\alpha}{\beta}\right|\frac{1\pm e^{-|m-n|\kappa}}{\mathrm{sh}\kappa} = 1.$$
(27)

The solution of (27) with the positive sign exists for any value of $|\Delta \alpha / \beta|$ and $\kappa \to 0$, that is an appearance of the local level corresponds to $|\Delta \alpha / \beta| \to 0$. If one considers the negative sign in (27), then a solution does not always exist. An appearance of solution ($\kappa \to 0$) which corresponds to the second local level is possible only when $|\Delta \alpha / \beta| > 1/(m-n)$. Thus, if in the case of infinitely distant impurities located in the middle of a chain, there are always two (degenerate) local states, but when defects approaching one another, degeneracy is removed, and if the perturbation is not large enough, *i.e.*,

$$\left|\frac{\Delta\alpha}{\beta}\right| < \frac{1}{m-n},$$

mutual repulsion of the two split levels leads to the situation where one of them flows back into the band. There are two local states only when

$$\left|\frac{\Delta\alpha}{\beta}\right| > \frac{1}{m-n}.$$
(28)

If condition (28) is fulfilled and the splitting of two local states is small, then Eq. (27) can be solved by the iteration method. For the zero approximation one can take the solution when $|m-n| \rightarrow \infty$, namely:

$$\mathrm{ch}\kappa_0 = \sqrt{1 + \left(\frac{\Delta\alpha}{2\beta}\right)^2}$$

The corresponding value of κ_0 is substituted into (27), then κ_1 is found, *etc*. After the first iteration the solution is as follows:

$$E = E_0 + \sqrt{4\beta^2 + (\Delta\alpha)^2} \left\{ 1 \pm \frac{1}{2} \frac{(\Delta\alpha)^2}{4\beta^2 + (\Delta\alpha)^2} \left[\sqrt{1 + \left(\frac{\Delta\alpha}{2\beta}\right)^2} - \left|\frac{\Delta\alpha}{2\beta}\right| \right]^{m-n} \right\} \operatorname{sign}(\Delta\alpha).$$
(29)

To analyse the appearance conditions of the local states when both perturbed atoms are located not far from the chain edge, we should return to (26). Letting $\kappa \rightarrow 0$, one obtains the following appearance conditions for one

$$\left|\frac{\Delta\alpha}{\beta}\right| \ge \frac{m+n-\sqrt{(m+n)^2-4n(m-n)}}{2n(m-n)} \tag{30'}$$

and for two local levels

$$\left|\frac{\Delta\alpha}{\beta}\right| \ge \frac{m+n+\sqrt{(m+n)^2-4n(m-n)}}{2n(m-n)}.$$
(30")

It is easy to see that the right-hand side of (30') is smaller than 1/m but that of (30'') is larger than 1/n. Thus, the perturbation needed for an appearance of one local level in the case of two interacting impurities is smaller, but for the appearance of two levels is larger than the perturbation needed for an appearance of one local level on any of the two (*n* and *m*) single impurities.

Considering the chain with bond alternation we restrict ourselves to the physically interesting case of local states in the forbidden zone. We shall consider separately the interaction of even perturbed atoms and the mutual interaction of even and odd perturbed atoms. The interaction of odd atoms is qualitatively the same as for even atoms and will not be considered here.

Let us first consider the interaction of two even atoms. Substituting (8a) into (25) one obtains an equation for the determination of local state energies, namely:

$$\left(1 + \frac{\Delta \alpha E'}{\beta_1 \beta_2} e^{-m\kappa} \frac{\mathrm{sh}m\kappa}{\mathrm{sh}\kappa}\right) \left(1 + \frac{\Delta \alpha E'}{\beta_1 \beta_2} e^{-n\kappa} \frac{\mathrm{sh}n\kappa}{\mathrm{sh}\kappa}\right) = \left(\frac{\Delta \alpha E'}{\beta_1 \beta_2} e^{-m\kappa} \frac{\mathrm{sh}n\kappa}{\mathrm{sh}\kappa}\right)^2.$$
(31)

Analysis of the appearance conditions having one or two solutions of (31) is analogous to the analysis of Eqs. (26) and (27). In fact, this analysis was based on the consideration of these equations in the limiting case where $\kappa \to 0$ which in the present case corresponds to an approach up to the edges of the allowed bands, that is $|E| \to |\beta_1 - \beta_2|$. Comparing asymptotic expressions for (26) and (27) we see that they become the same if $1/\beta$ is changed to $(\beta_1 - \beta_2)/(\beta_1\beta_2)$. Thus, by analogy with (28) – (30) we have the following conclusions. The value of the perturbation $|\Delta \alpha|$ needed for an appearance of one local state in the forbidden zone is

$$|\Delta \alpha_{1}| \geq \left| \frac{\beta_{1}\beta_{2}}{\beta_{1} - \beta_{2}} \right| \frac{m + n - \sqrt{(m+n)^{2} - 4n(m-n)}}{2n(m-n)},$$
(32)

and for a perturbation which leads to the two local states

$$|\Delta \alpha_{2}| \ge \left| \frac{\beta_{1}\beta_{2}}{\beta_{1} - \beta_{2}} \right| \frac{m + n + \sqrt{(m+n)^{2} - 4n(m-n)}}{2n(m-n)}.$$
(33)

In the case when $m, n \gg 1$, but $|m-n| \sim 1$, Eqs (32) and (33) give

$$|\Delta \alpha_1| \ge 0, \quad |\Delta \alpha_2| \ge \left| \frac{\beta_1 \beta_2}{\beta_1 - \beta_2} \right| \frac{1}{m - n}.$$
(34)

In the latter case Eq. (31) is simplified to

$$\frac{\Delta\alpha}{2\beta_1\beta_2}\frac{E'}{\mathrm{sh}\kappa}(1\pm e^{-|m-n|\kappa}) = -1 \tag{35}$$

and can be solved by the iteration method if the second term of the left-hand side of (35) is small enough. As a zero approximation, we may take the values of E' and κ_0 for infinitely distant impurities given by (14). The solution after the first iteration is

$$E = -\operatorname{sign}(\Delta \alpha) \sqrt{\beta_1^2 + \beta_2^2 + \frac{(\Delta \alpha')^2}{2} - \sqrt{\frac{(\Delta \alpha')^4}{4} + (\beta_1^2 + \beta_2^2)(\Delta \alpha')^2 + 4\beta_1^2 \beta_2^2}}, \quad (36)$$

where

$$(\Delta \alpha')^2 = (\Delta \alpha)^2 (1 \mp 2e^{-(m-n)\kappa_0}).$$

It should be noted that perturbed atoms in the formulae (31) - (36) have numbers 2m and 2n.

Finally considering the interaction of two even defects we note, as is seen from (31), that the local level cannot be shifted to the center of the forbidden zone (E'=0) by any finite perturbation $\Delta \alpha$.

Now we shall consider the behavior of the local states in the case of the interaction of even and odd defects. Substituting (8c) - (8d) into (25), one obtains the following equation for the energies of the local states:

$$\left(1 + \frac{\Delta \alpha E'}{\beta_1 \beta_2} e^{-m\kappa} \frac{\mathrm{sh}m\kappa}{\mathrm{sh}\kappa}\right) \left\{1 + \frac{\Delta \alpha E'}{2\beta_1 \beta_2} \left[1 - \frac{e^{-(2m-1)\kappa}}{E'^2} (\beta_2 e^{-\kappa/2} - \beta_1 e^{\kappa/2})^2\right]\right\} = \left(\frac{\Delta \alpha}{\beta_1 \beta_2}\right)^2 \frac{[\beta_1 \mathrm{sh}m\kappa - \beta_2 \mathrm{sh}(m-1)\kappa]^2}{\mathrm{sh}^2 \kappa} e^{-2n\kappa}.$$
(37)

It is seen from (37) that unlike to the interaction of even impurities, an increase of $|\Delta \alpha|$ may shift the local level to the center of the forbidden zone and one may even pass through the whole forbidden zone from the bottom to the top. However, it may be shown that the perturbation needed for this increases exponentially with the increase of the distance between the impurities. Therefore, an analysis of (37) when $\kappa \rightarrow 0$ should be carried out with care for here we meet cases of not only the

appearance of the local states (removing from the bands) but also disappearance of the local states when for large $|\Delta \alpha|$ they are removed from one of the allowed bands, going through the whole of the forbidden zone, and flow into another band.

It is obvious for physical reasons (see also results for single substitution), that when approaching the lower edge of the upper band $(E' \rightarrow -(\beta_1 - \beta_2))$ the perturbation $\Delta \alpha < 0$ corresponds to an appearance of the local level and a $\Delta \alpha > 0$ to an infusion of the previously existing level into the band. The situation is reversed when approaching the upper edge of the lower band. Substituting $\kappa \rightarrow 0$ and $E \rightarrow (\beta_1 - \beta_2)$ into (37), one obtains a quadratic equation with respect to $\Delta \alpha$, namely:

$$\left(\frac{\Delta\alpha}{\beta_1\beta_2}\right)^2 [m(\beta_1 - \beta_2) + \beta_2][(\beta_1 - \beta_2)(n - m) - \beta_2] + \frac{\Delta\alpha}{\beta_1\beta_2}[(n + m)(\beta_1 - \beta_2) + \beta_2] - 1 = 0. (38)$$

As it is seen from (38), for $|n-m| > \beta_2 / (\beta_1 - \beta_2)$ both roots are positive. This means that for sufficiently large $\Delta \alpha$ two local levels may be removed from the lower band. The value of $\Delta \alpha$ needed for removing one or two levels should satisfy the inequalities $\Delta \alpha \ge \alpha_1$ and $\Delta \alpha \ge \alpha_2$, where α_1 and α_2 are the larger and smaller roots of (38) in the absolute sense.

If $|m-n| < \beta_2 / (\beta_1 - \beta_2)$, then one solution of (38) is positive, and the other which is larger in the absolute sense is negative. The value $\Delta \alpha \ge \alpha_1$ leads to an appearance of one local level, and any further increase in $\Delta \alpha$ cannot lead to removing the second level. The value $\alpha_2 < \Delta \alpha < -\alpha_1$ corresponds to the local level which is removed from the lower edge of the upper band when $\Delta \alpha = -\alpha_1$ and shifted to the upper edge of the lower band when $\Delta \alpha \rightarrow \alpha_2$. Thus, if the perturbed even and odd atoms are located sufficiently close to one another so that their numbers 2n and 2m-1 satisfy the inequality

$$|n-m| < \frac{\beta_2}{\beta_1 - \beta_2},\tag{39}$$

then any identical perturbation of both atoms cannot lead to an appearance of more than one local level in the forbidden zone. In particular, as it follows from (39), two neighboring perturbed atoms (n = m) linked by a stronger bond for any values of β_1 and β_2 can give only one local level in the forbidden zone. It may also be shown that there is another situation for the levels located above and below the edges of both bands, namely: it is always possible to find such a value $|\Delta \alpha|$ that two levels will be removed.

2.4. Perturbed bond

Let the perturbation be described by changing the resonance integral between the atoms n and n + 1

$$V_{ps} = \Delta \beta (\delta_{pn} \delta_{s,n+1} + \delta_{p,n+1} \delta_{sn})$$

Then Eq. (3) is transformed to

$$U_{l} = -\Delta\beta [g_{ln}(E)U_{n+1} + g_{l,n+1}(E)U_{n}].$$
(40)

Following the same procedure used for the derivation of Eq. (25), one obtains from (40) an equation determining the energy of the local states

$$[1 + \Delta\beta g_{n,n+1}(E)]^2 - (\Delta\beta)^2 g_{n,n}(E) g_{n+1,n+1}(E) = 0.$$
(41)

It follows from (5) and (8a) - (8d) that Eq. (41) has the same pattern for both signs of the energy. It means that the present local states always appear in pairs and that their energies differ only in the sign.

We shall first consider the chain without bond alternation. Substituting the necessary Green functions from (5) into (41), one obtains

$$\left[1 - \frac{\Delta\beta}{\beta} \frac{\mathrm{sh}n\kappa}{\mathrm{sh}\kappa} e^{-(n+1)\kappa}\right]^2 - \left(\frac{\Delta\beta}{\beta}\right)^2 \frac{\mathrm{sh}n\kappa \cdot \mathrm{sh}(n+1)\kappa}{\mathrm{sh}^2\kappa} e^{-(2n+1)\kappa} = 0.$$
(42)

If the perturbation is localized in the middle of the chain, then neglecting terms like $exp(-n\kappa)$ in (42) and solving the corresponding equation, one obtains

$$E = E_0 \pm \left(\beta' + \frac{\beta^2}{\beta'}\right), \quad \beta' = \beta e^{\kappa}.$$
(43)

It follows from (43) that an appearance of a pair of local states is possible only when the bond is strengthened.

An analytical solution can also be found if the perturbed bond is located at the end of the chain. Substituting n = 1 into (42) and solving the corresponding equation, one obtains

$$E = E_0 \pm \frac{\left(1 + \frac{\Delta\beta}{\beta}\right)^2}{\sqrt{\left(\frac{\Delta\beta}{\beta}\right)^2 + 2\frac{\Delta\beta}{\beta}}}, \quad e^{\kappa} = \sqrt{\left(\frac{\Delta\beta}{\beta}\right)^2 + 2\frac{\Delta\beta}{\beta}}.$$
(44)

It follows from (44) that the local states exist only when the end-bond is sufficiently strengthened, namely, when $|\beta'/\beta| > \sqrt{2}$.

It should be noted that an analytical expression for the energy of the surface states can also be derived for a more general case when besides changing the resonance integral of the end-bond one also changes the Coulomb integral of the endatom. In this case

$$V_{ps} = \Delta \alpha \,\delta_{p1} \delta_{s2} + \Delta \beta (\delta_{p1} \delta_{s2} + \delta_{p2} \delta_{s1}). \tag{45}$$

Substituting (45) into (3) and following the same standard procedure as before, one obtains

$$E_{\pm} = E_0 \pm 2\beta \mathrm{ch}\kappa\,,\tag{46}$$

where

$$e^{\kappa} = \pm \frac{\Delta \alpha}{2\beta} + \sqrt{\left(\frac{\Delta \alpha}{2\beta}\right)^2 + \left(\frac{\Delta \beta}{\beta}\right)^2 + 2\frac{\Delta \beta}{\beta}}.$$

It follows from (46) that an appearance of the local state with an energy E_{-} located above the valence band is possible when

$$\left(\frac{\beta'}{\beta}\right)^2 - \frac{\Delta\alpha}{\beta} > 2,$$

and for the level E_+ located below the same band

$$\left(\frac{\beta'}{\beta}\right)^2 + \frac{\Delta\alpha}{\beta} > 2.$$

It means that there are two local levels if

$$\left(\frac{\beta'}{\beta}\right)^2 > 2 + \left|\frac{\Delta\alpha}{\beta}\right|,$$

and only one if

$$2 - \left| \frac{\Delta \alpha}{\beta} \right| < \left(\frac{\beta'}{\beta} \right)^2 < 2 + \left| \frac{\Delta \alpha}{\beta} \right|.$$

The Eq. (42) permits the derivation of a relationship between the minimum perturbation needed for the appearance of paired local states and the number n of the perturbed bond. Letting

 $\kappa \rightarrow 0$ in (42) we see that the local states appear only if

$$\left|\frac{\beta'}{\beta}\right| \ge \sqrt{1 + \frac{1}{n}} \,. \tag{47}$$

Now we shall turn to the local states in the forbidden zone of the alternating chain and shall consider two cases: perturbation of weaker and stronger bonds.

Substituting corresponding Green functions from (8a) - (8d) into (41), the following equation is obtained for the local levels appearing under the perturbation of the weaker bond

$$\left[1 + \frac{\Delta\beta}{\beta_1\beta_2}(\beta_2 - \beta_1 e^{-\kappa})\frac{\mathrm{shn}\kappa e^{-n\kappa}}{\mathrm{sh}\kappa}\right]^2 = \frac{(\Delta\beta)^2 E'^2 \mathrm{shn}\kappa}{2\beta_1^2 \beta_2^2 \mathrm{sh}^2 \kappa} e^{-n\kappa} \left[1 - \frac{e^{-(2n+1)\kappa}}{E'^2}(\beta_2 e^{\kappa/2} - \beta_1 e^{-\kappa/2})^2\right], (48)$$

where 2n is the number of the perturbed bond. This equation can be solved exactly for the limiting case $n \gg 1$. Letting $n \rightarrow \infty$ in (48) and solving the corresponding equation, one obtain the energies of the two states localized far away from the chain edge

$$E' = \pm \sqrt{\beta_1^2 + \beta_2^2 - 2\beta_1 \beta_2 \mathrm{ch}\kappa} , \qquad (49)$$

where

$$e^{\kappa} = -\frac{\alpha'\beta_2}{2} + \sqrt{1 + \alpha'\beta_1 + \left(\frac{\alpha'\beta_2}{2}\right)^2},$$
$$\alpha' = \frac{2\Delta\beta}{\beta_1\beta_2} \left(1 + \frac{\Delta\beta}{2\beta_2}\right), \quad \Delta\beta = \beta'_2 - \beta_2.$$

An analysis of (49) shows that this solution exists only when $|\beta'_2| > |\beta_2|$. This means that any small strengthening of the weaker bond in the middle of the chain always leads to the appearance of two local states in the forbidden zone.

Equation (48) also permits the derivation of the dependence of the perturbation needed for an appearance of paired local states on the number of the perturbed bond. Letting $\kappa \rightarrow 0$ in (48), the following condition for their appearance is obtained

$$\left|\frac{\beta_2'}{\beta_2}\right| > \sqrt{1 + \frac{2\beta_1}{l(\beta_1 - \beta_2)}},\tag{50}$$

where l is the number of the perturbed bond.

An analogous consideration can be carried out for the perturbation of the stronger bond. Using corresponding Green functions, one obtains the following equation for the energies of the local states

$$\left\{1 + \frac{\Delta\beta}{\beta_1\beta_2} \frac{e^{-m\kappa}}{\mathrm{sh}\kappa} [\beta_1 \mathrm{sh}m\kappa - \beta_2 \mathrm{sh}(m-1)\kappa]\right\}^2 = \frac{1}{2} \left(\frac{\Delta\beta}{\beta_1\beta_2 \mathrm{sh}\kappa}\right)^2 e^{-m\kappa} \mathrm{sh}m\kappa [E^2 - e^{-2m\kappa}(\beta_2 e^{-\kappa} - \beta_1)^2], (51)$$

which can be solved exactly in two limiting cases: when $m \to \infty$ (change of a bond in the middle of the chain) and when m=1 (surface level). In the first case setting $m \to \infty$ and solving the corresponding equation, one obtains

$$E_{\pm} = \pm \sqrt{\beta_1^2 + \beta_2^2 - 2\beta_1 \beta_2 \mathrm{ch}\kappa} , \qquad (52)$$

where

$$e^{\kappa} = \frac{\alpha\beta_1}{2} + \sqrt{1 + \alpha\beta_2 + \left(\frac{\alpha\beta_1}{2}\right)^2},$$
$$\alpha = \frac{2\Delta\beta}{\beta_1\beta_2} \left(1 + \frac{\Delta\beta}{2\beta_1}\right), \quad \Delta\beta = \beta_1' - \beta_1.$$

An analysis of (52) shows that any small weakening of the stronger bond located far away from the chain edge is sufficient for an appearance of the local levels.

Substituting m = 1 into (51) one obtains for the surface state

$$E_{surf} = \pm \sqrt{\beta_1^2 + \beta_2^2 - 2\beta_1 \beta_2 \mathrm{ch}\kappa} , \qquad (53)$$

where

$$e^{\kappa} = -\left[2\frac{\Delta\beta}{\beta_2} + \frac{(\Delta\beta)^2}{\beta_1\beta_2}\right]$$

It is easy to see that the solution of (53) as well as the surface state exists only when the first bond is sufficiently relaxed, namely, when

$$\left|\frac{\beta'}{\beta_1}\right| \leq \sqrt{1 - \frac{\beta_2}{\beta_1}}.$$

From Eq. (51) the relationship of a perturbation needed for the appearance of the local states on the number m of the perturbed bond can be obtained. It follows from (51) that the local states appear only if

$$\left|\frac{\beta'}{\beta_1}\right| < \sqrt{1 - \frac{2\beta_2}{\beta_1 + \beta_2 + m(\beta_1 - \beta_2)}}.$$
(54)

The characteristic nontrivial property of polymers with conjugated bonds is the presence of paramagnetic centers. This was repeatedly proved experimentally by the ESR method [30 - 32]. A satisfactory explanation of the general regularities of this phenomena is possible in terms of the local defect centers and the charge transfer between macromolecules [29, 33 - 37]. In particular it was suggested [29] that an experimentally observed ESR signal in long conjugated systems may be connected with an appearance of a pair of defects of the type

These defects have been interpreted [29] as radicals. The energy of the unpaired electrons localized on the defects situated at large distance from one another is equal to zero (Fig. 1).

Figure 1. Energy pattern of electrons when defects are infinitely distant from one another.

Pople and Walmsley [29] noted that when defects approach each other, due to vibrations of the nuclear core, the zero degenerate level is split and both electrons should drop to the lower level. The following valence scheme is obtained when the defects approach one another as closely as possible

This state is not a triplet state. In fact this defect may originate simply by the weakening of one of the double bonds so that its resonance integral becomes equal to β_2 instead of β_1 . This could be obtained, *e.g.*, by a distortion of the chain coplanarity. The energies of these local states thus obtained, are given by formulae (52) with $\beta' = \beta_2$. The picture of the energy levels is given in Fig. 2a.

Transition to the lowest excited state (Fig. 2b) requires an energy $E_+ - E_-$. If one assumes that spontaneous (thermal) appearance of such states is possible only for the scheme 2b, then it is obvious that within the framework of the method used here and by the authors of [29] the energies of the states pictured in Fig. 1 and Fig. 2 are the same and are equal to the energy of the transition of one electron from the valence band to the conduction band.

Figure 2. Energy pattern of electrons when defects are close to each other: a) ground state, b) excited state.

This simply means that a consideration of such defects without accounting for the deformation of the σ -core [38, 39] and the electronic interaction would not be correct. All next paragraphs are devoted to different methods for accounting of interaction between electrons.

3. The Generalized Hartree – Fock Method and Its Versions

Exact solution of the Schrodinger equation is known for only a few problems, mostly model ones. In practical molecular calculations different approximation methods are used. We shall review only those approximation approaches to solve molecular Schrodinger equations which permit obvious one-particle interpretation of many-electron wave function and at the same time account for the most of the electronic interactions. These approaches are known as the self-consistent field (SCF) methods based on pioneering works of Hartree and Fock [40 – 42]. The SCF methods revised below are mostly known as Generalized Hartree – Fock (GHF) approach with several different computational schemes having their own traditional names.

The wave function of the system of interacting electrons in general case must possess the following symmetry properties. First of all, in order the theory to be in agreement with the experimental facts the wave function must be antisymmetric relative to interchange of any pair of electrons. When molecular Hamiltonian

$$\hat{H} = -\frac{1}{2} \sum_{i=1}^{N} \Delta_{i} + \sum_{i=1}^{N} V(\vec{r_{i}}) + \sum_{i>j=1}^{N} \frac{1}{|\vec{r_{i}} - \vec{r_{j}}|}$$

does not depend on spin variables the many-electron wave function must be an eigenfunction of \hat{S}^2 and \hat{S}_2 operators.

One of the methods for constructing many-electron wave functions that possess the required symmetry conditions is based on mathematical apparatus of the symmetric group S_N [43 – 45]. Irreducible representations of S_N are classified by Young schemes and are numbered by symbol $[\lambda] = [\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n]$ of corresponding Young schemes [43], where λ_i is the length of the *i*-th row of the Young scheme under condition that $\lambda_{i+1} \le \lambda_i$. Dimensionality of irreducible representation $[\lambda]$ is defined by a number of standard Young tables possible for a given Young scheme $[\lambda]$ and is equal to [43, 45]

$$f^{[\lambda]} = \frac{N! \prod_{i < j} (h_i - h_j)}{h_1! h_2! h_3! \dots h_m!},$$
(55)

where $h_i = \lambda_i + m - i$, and *m* is the number of rows in the Young scheme [λ].

Let us take a wave function of N electrons in the form

$$\Psi = \hat{G}\Phi X, \tag{56}$$

where Φ is a function of the spatial coordinates of *N* electrons, X – function of the spin coordinates of electrons, and operator \hat{G} is chosen in a way that the function Ψ obey the necessary symmetry properties. In particular, the operator \hat{G} can be chosen as [46-52]

$$\hat{G} \equiv \hat{G}_i^{\mu} = \sum_r \xi_{\hat{\sigma}_{ri}} \hat{O}_{ri}^{\mu} \hat{\omega}_{\bar{r}\bar{i}}^{\bar{\mu}}, \qquad (57)$$

where index μ defines an irreducible representation of the group S_N , index *i* corresponds to the *i*-th standard Young table for the Young scheme μ , $\xi_{\hat{\sigma}_n}$ is the parity of the permutation $\hat{\sigma}_{ri}$, and the Young operators \hat{O}_{ri}^{μ} and $\hat{\omega}_{\bar{r}\bar{i}}^{\bar{\mu}}$ are given by [43 – 45]:

$$\hat{O}_{rs}^{\mu} = \frac{f^{\mu}}{N!} \sum_{\hat{\tau}} U_{rs}^{\mu}(\hat{\tau})\hat{\tau},$$

$$\hat{\omega}_{\bar{r}\bar{s}}^{\bar{\mu}} = \frac{f^{\bar{\mu}}}{N!} \sum_{\hat{\tau}} U_{\bar{r}\bar{s}}^{\bar{\mu}}(\hat{\tau})\hat{\tau},$$
(58)

where $U_{rs}^{\mu}(\hat{\tau})$ are matrix elements of the matrix of the standard orthogonal Young – Yamanouchi representation, and summation in (58) is taken over all *N*! permutations of the group S_N , index $\bar{\mu}$ denotes an irreducible representation conjugative with μ , operators \hat{O}_{ri}^{μ} are acting on the spatial coordinates of the electrons, and $\hat{\omega}_{ri}^{\mu}$ – on the spin coordinates. Since the spin coordinates of the electrons take only two values, then the Young scheme $\bar{\mu}$ can contain not more than two rows, and scheme μ – not more than two columns: $\mu = [2^m, 1^{n-m}], \bar{\mu} = [n,m]$ with $n \ge m, n+m = N$. The dimensionality of this representation according to (55) is equal to:

$$f^{[2^{m},1^{n-m}]} = f^{[n,m]} \equiv f = \frac{N!(2S+1)}{\left(\frac{N}{2} + S + 1\right)!\left(\frac{N}{2} - S\right)!},$$
(59)

where 2S = n - m.

Fig. 3 shows two conjugate standard Young tables $S_f^{[2^m, 1^{n-m}]} \bowtie S_1^{[n,m]}$.

1	n + 1					
2	n+2	1	2	3		22
3	n + 3	-	~			"
		n + 1	n + 2	n + 3	n +	- m
	20 + 20					
n	n · m					

Fig. 3. Standard Young tables $S_f^{[2^m, 1^{n-m}]}$ (left) and $S_1^{[n,m]}$ (right).

Standard tables are numbered in order of deviation of the sequences of numbers in the cells of the Young schemes relative to the natural numbers sequence, if you read row by row from the top to the bottom.

Consider the structure of the operators $\hat{O}_{ff}^{[2^m,1^{n-m}]}$ and $\hat{\omega}_{11}^{[n,m]}$, which will be needed later. Let $\hat{\tau}_a$ be a certain permutation of the first *n* symbols (a subset *a*), $\hat{\tau}_b$ be a certain permutation of the last *m* symbols (a subset *b*). Next, let $\hat{\tau}_r$ be the product of *r* different transpositions, each of which transposes one symbol from the *a* subset with a single symbol from the *b* subset. Any permutation in the group S_N for any $\hat{\tau}_a, \hat{\tau}_b, \hat{\tau}_r$ can be written as

$$\hat{\tau} = \hat{\tau}_a \hat{\tau}_b \hat{\tau}_r. \tag{60}$$

The corresponding matrix elements are given by [46]

$$U_{ff}^{[2^{m},1^{n-m}]}(\hat{\tau}_{a}\hat{\tau}_{b}\hat{\tau}_{r}) = \xi_{\hat{\tau}_{a}}\xi_{\hat{\tau}_{b}}\binom{n}{r}^{-1},$$
(61)

$$U_{11}^{[n,m]}(\hat{\tau}_a \hat{\tau}_b \hat{\tau}_r) = (-1)^r \binom{n}{r}^{-1}, \tag{62}$$

where $\binom{n}{r} \equiv \frac{n!}{(n-r)!r!}$ – binomial coefficients.

As shown by Goddard [46], the function $\hat{G}_i^{\mu} \Phi X$ satisfies the Pauli principle

$$\hat{ au}\hat{G}_{i}^{\mu}\Phi\mathrm{X}{=}\xi_{\hat{ au}}\hat{G}_{i}^{\mu}\Phi\mathrm{X}$$

and is an eigenfunction of \hat{S}^2 , namely:

$$\hat{S}^2 \hat{G}_i^\mu \Phi X = S(S+1) \hat{G}_i^\mu \Phi X$$

Thus it follows that the choice of the Young's scheme is determined by the value of the total spin S. The choice among i = 1, 2, 3, ..., f to construct the function

$$\Psi^{(GI)} = \hat{G}_i^{\mu} \Phi \mathbf{X} \tag{63}$$

is arbitrary to a certain extent; later we shall examine the effect of this choice on the results of calculations.

Note also that the operators \hat{G}_i^{μ} satisfy [46] the following relation

$$\sum_{\mu} \frac{1}{f^{\mu}} \sum_{i} \hat{G}_{i}^{\mu} = \hat{\Omega}_{11}^{[1^{N}]} \equiv \frac{1}{N!} \sum_{\hat{\tau}} \hat{\xi}_{\hat{\tau}} \hat{\tau} , \qquad (64)$$

where antisimmetrizator $\hat{\Omega}_{11}^{[1^N]}$ is the Young operator corresponding to Young scheme of a single column.

Molecular Hamiltonian \hat{H} does not depends on the spins and commutes with all permutations of the electron coordinates. Then, the energy value [47]

$$E = \left\langle \hat{G}_{i}^{\mu} \Phi \mathbf{X} \middle| \hat{H} \middle| \hat{G}_{i}^{\mu} \Phi \mathbf{X} \right\rangle / \left\langle \Psi^{(GI)} \middle| \Psi^{(GI)} \right\rangle = \left\langle \Phi \middle| \hat{H} \middle| \hat{O}_{ii}^{\mu} \Phi \right\rangle / \left\langle \Phi \middle| \hat{O}_{ii}^{\mu} \Phi \right\rangle.$$
(65)

We will be further interested in such an approximation of the functions (9) that functions Φ and X can be written as:

$$\Phi = \varphi_1(\vec{r}_1) \,\varphi_2(\vec{r}_2) \cdots \varphi_N(\vec{r}_N),$$

$$X = \chi_1(s_1) \,\chi_2(s_2) \cdots \chi_N(s_N),$$
(66)

where

$$\chi_i(s_i) = \begin{cases} \alpha(s_i), \\ \beta(s_i). \end{cases}$$

Substituting (66) into (65) and varying the functional

$$I = E - \sum_{j} \varepsilon_{j} \left\langle \varphi_{j} \, | \, \varphi_{j} \right\rangle$$

by φ_i , one obtains an equation for the normalized orbitals minimizing (65), namely:

$$H_k(\vec{r})\varphi_k(\vec{r}) = \varepsilon_k \varphi_k(\vec{r}), \quad (k = 1, 2, \dots, N)$$
(67)

where $\hat{H}_k(\vec{r})$ is rather complicated effective Hamiltonian, which depends on the functions φ_k . Equations (67) is a set of nonlinear integro-differential SCF equations

for variation function (56). In other words, the orbitals $\varphi_k(\vec{r})$ can be considered as eigenfunctions, which describe the state of an electron in the field of the nuclei and a certain averaged field of the remaining N-1 electrons.

It is easy to establish connection between the function (63) and variational Fock function [42] in the form of Slater determinant [53, 54]. Let us select Φ and X in the form

$$\Phi_{0} = \hat{\tau}_{1i} \varphi_{1}(\vec{r}_{1}) \varphi_{1}(\vec{r}_{2}) \cdots \varphi_{m}(\vec{r}_{2m-1}) \varphi_{m}(\vec{r}_{2m}) \varphi_{m+1}(\vec{r}_{2m+1}) \cdots \varphi_{n}(\vec{r}_{N}),$$

$$X_{0} = \hat{\tau}_{fi} \alpha(1) \beta(2) \cdots \alpha(2m-1) \beta(2m) \alpha(2m+1) \cdots \alpha(n+m),$$
(68)

where $\hat{\tau}_{ji}$ is a permutation by which one obtains table *j* from table *i*. The function $\hat{G}_i^{\mu} \Phi_0 X_0$ coincides up to a phase factor with the Slater determinant. Thus, equations (67) are a generalization of the Hartree – Fock approximation, since during transition from (66) to (68) we superimpose additional constraints on the form of the variation function. This implies that

$$E^{(GI)} = \frac{\left\langle \hat{G}_{i}^{\mu} \Phi X \middle| \hat{H} \middle| \hat{G}_{i}^{\mu} \Phi X \right\rangle}{\left\langle \hat{G}_{i}^{\mu} \Phi X \middle| \hat{G}_{i}^{\mu} \Phi X \right\rangle} \leq \frac{\left\langle \Psi^{(HF)} \middle| \hat{H} \middle| \Psi^{(HF)} \right\rangle}{\left\langle \Psi^{(HF)} \middle| \Psi^{(HF)} \right\rangle}.$$
(69)

When solving equations (67) it is convenient to use the Roothaan's method [56]. Let us expand the orbitals φ_k over a certain basis functions χ_{ν} :

$$\varphi_k = \sum_{\nu=1}^M C_{\nu k} \chi_{\nu} \quad (M \ge N).$$
(70)

Then from (67) one obtains the equations for the expansion coefficients $C_{\nu k}$ of the form

$$\sum_{\nu=1}^{M} H_{\mu\nu}^{(k)} C_{\nu k} = \sum_{\nu=1}^{M} \varepsilon_k S_{\mu\nu} C_{\nu k} , \qquad (71)$$

where $S_{\mu\nu}$ are overlap integrals of the basis functions. Equation (71) is solved by the method of successive approximations [55]. It should be noted that in the general case (for any *i* in the formula (63)) the matrices $H_{\mu\nu}^{(k)}$ depend on *k* [47], which considerably complicates the solution of the equations (71) in comparison with the analogous equations for the Fock variational function. However, if i = f, thus a variation function $\hat{G}_{f}^{\mu}\Phi X$ is used, equations (71) take the form [48]

$$\sum_{\nu=1}^{M} H^{(a)}_{\mu\nu} C^{(a)}_{\nu k} = \sum_{\nu=1}^{M} \varepsilon^{(a)}_{k} S_{\mu\nu} C^{(a)}_{\nu k} , \qquad (72)$$

$$\sum_{\nu=1}^{M} H_{\mu\nu}^{(b)} C_{\nu k}^{(b)} = \sum_{\nu=1}^{M} \varepsilon_{k}^{(b)} S_{\mu\nu} C_{\nu k}^{(b)} .$$
(73)

Thus, if one uses the operator \hat{G}_{f}^{μ} for the construction of the wave function (9), then one obtains only two sets of equations for the expansion coefficients $C_{\nu k}$. Solving the system of equations (72) – (73), we obtain two sets of orthonormal vectors $\{C_{\nu k}^{(a)}\}$ and $\{C_{\nu k}^{(b)}\}$. If $i \neq f$, in the general case, these vectors are not orthogonal. Thus the wave function of the GF method is represented in the form

$$\Psi^{(GF)} = \hat{G}^{\mu}_f \Phi_1 X_1, \tag{74}$$

where

$$\Phi_1 = \varphi_{1a}(1) \cdots \varphi_{na}(n) \varphi_{1b}(n+1) \cdots \varphi_{mb}(N), \qquad (75)$$

$$X_1 = \alpha(1) \cdots \alpha(n) \beta(n+1) \cdots \beta(n+m), \qquad (76)$$

$$\varphi_{ia} = \sum_{\nu} C_{\nu i}^{(a)} \chi_{\nu}, \quad \varphi_{ib} = \sum_{\nu} C_{\nu i}^{(b)} \chi_{\nu}.$$
(77)

Expansion vectors of different subsets, in general, are not orthogonal:

$$\left\langle \varphi_{ia} \mid \varphi_{jb} \right\rangle \neq 0 \quad (i, j = 1, 2, ..., M).$$
 (78)

Amos and Hall have shown [56] that it is always possible to make such a unitary transformation of the functions in (75):

$$\varphi_{ia}' = \sum_{l=1}^{n} \varphi_{la} V_{li} \quad (\hat{V}\hat{V}^{+} = \hat{I}),$$
(79)

$$\varphi'_{jb} = \sum_{l=1}^{m} \varphi_{lb} U_{lj} \quad (\hat{U}\hat{U}^{+} = \hat{I}),$$
(80)

that

$$\left\langle \varphi_{ia}^{\prime} \left| \varphi_{jb}^{\prime} \right\rangle = \lambda_{i} \delta_{ij}, \quad \lambda_{i} \leq 1 \quad \begin{pmatrix} i = 1, 2, \dots, n \\ j = 1, 2, \dots, m \end{pmatrix}.$$
(81)

A method to obtain matrices \hat{V} and \hat{U} is explicitly described in [56, 57]. Functions that satisfy equations (81), are usually referred to as the *corresponding orbitals* [58].

Goddard [48] has shown that the function (74) and the matrices of the operators $\hat{H}^{(a)}$ and $\hat{H}^{(b)}$ appearing in the equations (72) and (73) are invariant under the transformation (79) – (80). However, if you require that the self-consistent solutions of the equations (72) and (73) satisfy (81), you'll lose the one-particle interpretation

of the solutions. In other words, the orbitals φ'_{ia} and φ'_{ib} can not be interpreted as a state of an electron in the field of the nuclei and the average field of the other electrons. Moreover, matrices of operators $\hat{H}^{(a)}$ and $\hat{H}^{(b)}$, will depend on k. On the other hand, it is much easier to calculate the matrices of operators $\hat{H}^{(a)}$, $\hat{H}^{(b)}$ and corresponding energies over orbitals φ'_{ia} and φ'_{ib} , rather than over orbitals φ_{ia} and φ_{ib} .

Matrix elements of operator $\hat{H}^{(a)}$ are the following [48]:

$$H_{\mu\nu}^{(a)} \equiv \left\langle \mu | \hat{h} | \nu \right\rangle \wp_{a}^{a} + \sum_{i,\nu} \left[\left\langle \mu | \hat{h} | i \right\rangle \left\langle \nu b | \nu \right\rangle \wp_{i,a}^{a,\nu b} + \left\langle \mu | \nu b \right\rangle \left\langle i | \hat{h} | \nu \right\rangle \wp_{\nu b,a}^{a,i} \right] \right] \\ + \sum_{u,\nu} \left\langle \mu | u b \right\rangle \left\langle \nu b | \nu \right\rangle \sum_{i,j} \left\langle i | \hat{h} | j \right\rangle \wp_{ub,a,j}^{a,\nu b,i} + \sum_{i,j} \left[\left\langle \mu, i | \hat{g} | \nu, j \right\rangle \wp_{a,j}^{a,i} + \left\langle \mu, i | \hat{g} | j, \nu \right\rangle \wp_{j,a}^{a,i} \right] \right] \\ + \sum_{i,j,t;\nu} \left[\left\langle \mu, i | \hat{g} | j, t \right\rangle \left\langle \nu b | \nu \right\rangle \wp_{j,a,t}^{a,\nu b,i} + \left\langle \mu | \nu b \right\rangle \left\langle j, t | \hat{g} | \nu, i \right\rangle \wp_{\nu b,a,i}^{a,j,t} \right] \right] \\ + \sum_{u,\nu} \left\langle \mu | u b \right\rangle \left\langle \nu b | \nu \right\rangle \sum_{i < j; s, t} \left\langle i, j | \hat{g} | s, t \right\rangle \wp_{ub,a,s,t}^{a,\nu b,i,j} - E \sum_{u,\nu} \left\langle \mu | u b \right\rangle \left\langle \nu b | \nu \right\rangle \wp_{ub,a}^{a,\nu b} \right\rangle \left\langle \nu b | \nu \right\rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \nu b | \nu \right\rangle \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \psi | u b \rangle \left\langle \psi | u b \rangle \left\langle \nu b | \nu \right\rangle \left\langle \omega | u b \rangle \left\langle \psi | u b \rangle \left\langle \psi$$

and similarly for $\hat{H}^{(b)}$, where

$$\left\langle \mu \,|\, \hat{A} \,|\, vb \right\rangle \equiv \int d\vec{r} \,\chi_{\mu}^{*}(\vec{r}) \hat{A}(\vec{r}) \varphi_{vb}(\vec{r}) \,,$$

$$\hat{h}(r) = -\frac{1}{2} \Delta + \hat{V}(r) \,,$$

$$\left\langle i, j \,|\, \hat{g} \,|\, t, s \right\rangle = \int d\vec{r}_{1} \,d\vec{r}_{2} \,\varphi_{i}^{*}(\vec{r}_{1}) \varphi_{t}(\vec{r}_{1}) \frac{1}{|\vec{r}_{1} - \vec{r}_{2}|} \varphi_{j}^{*}(\vec{r}_{2}) \varphi_{s}(\vec{r}_{2}) \,.$$

The quantities \wp are quite complicated functions of overlap integrals λ_i defined by (81), for example:

$$\mathscr{O}_{a}^{a} = \sum_{p=0}^{m-1} {\binom{n}{p}}^{-1} A_{p} \equiv T00,$$
$$A_{p} = \sum_{\substack{\{k_{1}, k_{2}, \dots, k_{p}\}\\(k_{i} \neq k_{j})}} x_{k_{1}} x_{k_{2}} \cdots x_{k_{p}}, \quad x_{k} = \lambda_{k}^{2}.$$

It follows from (82) that there are all together 78 matrices of the operators $\hat{\wp}$. Expressions for all matrices given in [48] for Hamiltonians $\hat{H}^{(a)}$ and $\hat{H}^{(b)}$ are based on orbitals satisfying (81).

Normalization integral for the function (74)

$$\left\langle \Psi^{(GF)} | \Psi^{(GF)} \right\rangle = T00.$$
 (83)

With the assumption that the unitary transformations (79) and (80) were performed and $\varphi_i^* = \varphi_i$ the average energy value over the function $\Psi^{(GF)}$ is the following [5]:

$$\begin{split} E^{(GF)} &= \left\langle \Psi^{(GF)} | \hat{H} | \Psi^{(GF)} \right\rangle / T00 = \\ &= \left\{ \left\{ \sum_{i=1}^{m} \left[\left(\left\langle ia | \hat{h} | ia \right\rangle + \left\langle ib | \hat{h} | ib \right\rangle \right) T01(i) + 2\lambda_{i} \left\langle ia | \hat{h} | ib \right\rangle T11(i) \right] \right. \\ &+ \left. \left\{ \sum_{i,j=1}^{m} \left\{ \begin{array}{l} T02(i,j) \left[\left(ia,ia+ib,ib | ja,ja+jb,jb \right) - \left(ia,ja | ja,ia \right) - \left(jb,ib | ib,jb \right) \right] \\ &+ T12(i,j) \left\{ 2\lambda_{i} \left[\left(ia,ib | ja,ja+jb,jb \right) - \left(ja,ia | ib,ja - \left(ia,jb | jb,ib \right) \right] \\ &+ 2\lambda_{j} \left[\left(ia,ia+ib,ib | ja,ja - \left(ia,jb | ja,ia \right) - \left(ib,ja | jb,ib \right) \right] \\ &+ 2\lambda_{i} \lambda_{j} \left(ia,ja | jb,ib \right) + \left(ib,ja | ja,ib \right) + \left(ia,jb | jb,ia \right) \\ &+ 2T22(i,j) \lambda_{i} \lambda_{j} \left[2(ia,ib | ja,jb - \left(ia,jb | ja,ib \right) \right] \\ &+ \sum_{i=1}^{m} \left[T01(i)(ia,ia | ib,ib) + T11(i)(ia,ib | ib,ia) \right] \\ &+ \sum_{l=m+1}^{n} \sum_{i=1}^{m} \left\{ T01(i) \left[\left(ia,ia | l,l \right) + \left(ib,ib | l,l \right) - \left(ia,l | l,ia \right) \right] \\ &+ \sum_{l=m+1}^{n} \left\{ l | \hat{h} | l \right\} + \sum_{k>l=m+1}^{n} \left[\left(l,l | k,k \right) - \left(l,k | k,l \right) \right], \end{split} \right. \end{split}$$

where

$$(i, j | s, t) \equiv \langle i, s | \hat{g} | j, t \rangle,$$

$$TIJ = \sum_{p=0}^{m-J} {\binom{n}{p+I}}^{-1} A_p,$$

$$TIJ(i) = \sum_{p=0}^{m-J} {\binom{n}{p+I}}^{-1} A_p(i),$$

$$TIJ(i, j) = \sum_{p=0}^{m-J} {\binom{n}{p+I}}^{-1} A_p(i, j),$$

$$A_p(i) = A_p - x_i A_{p-1}(i) = A_p |_{x_i=0},$$

$$A_p(i, j) = A_p(i) - x_j A_{p-1}(i, j) = A_p |_{x_i=x_j=0},$$

$$A_0 = A_0(i) = A_0(i, j) = 1.$$
(86)

Iterative procedure for solving equations (72) and (73) is as following. Compute the eigenvectors $C_k^{(a)}(i)$ and $C_k^{(b)}(i)$ of the equations (72) and (73) on the *i*-th iteration. Then, being performed the transformations (79) and (80) and defined the corresponding vectors $C'_k^{(a)}(i)$ and $C'_k^{(b)}(i)$, we build new matrices $H^{(a)}(i+1)$ and $H^{(b)}(i+1)$. Compute the eigenvectors on the (i+1)-th iteration and so on unless the self-consistent vectors $C_k^{(a)}$ μ $C_k^{(b)}$ are obtained. Thus, the procedure for solving the equations (72) and (73) is just similar to the solution of the Hartree – Fock singledeterminant wave function in the algebraic approach [55]. The only difference lies in the fact that it is necessary to solve two coupled equations (72) and (73) and to perform the transformations (79) and (80) at each iteration. Nevertheless note that the matrices of operators $\hat{H}^{(a)}$ and $\hat{H}^{(b)}$ are much more complicated than the corresponding matrix in the Hartree – Fock – Roothaan method [55]. Thus, if the latter contains only three types of the matrix elements: one-electron, Coulomb and exchange ones, the matrices of the operators $\hat{H}^{(a)}$ and $\hat{H}^{(b)}$ in general case contain 2×78 types of matrix elements.

As a final result of the self-consistent procedure described above one obtains the orbitals φ_{ia} and φ_{ib} minimizing the energy expression (84). According to (69) a value of the total energy of the system obtained in this way is always not higher than the energy in the Hartree – Fock – Roothaan approach. Note also that the average values of the electron and spin densities can also be calculated with the function (74) built on corresponding orbitals since the function (74) is invariant under transformations (79) and (80) [56].

The Goddard' GF-functions method relates to other similar methods proposed earlier. Pople and Nesbet [59] proposed to vary the energy over a function of the form

$$\Psi^{(UHF)} = \hat{\Omega}_{11}^{[1^{N}]} \psi_{1\alpha}(1) \cdots \psi_{n\alpha}(n) \psi_{1\beta}(n+1) \cdots \psi_{m\beta}(N) = = \frac{1}{N!} \sum_{i=1}^{N!} \xi_{\hat{\tau}_{i}} [\hat{\tau}_{i} \varphi_{1a}(\vec{r}_{1}) \cdots \varphi_{na}(\vec{r}_{n}) \varphi_{1b}(\vec{r}_{n+1}) \cdots \varphi_{mb}(\vec{r}_{N})] \times, \qquad (87) \times [\hat{\sigma}_{i} \alpha(s_{1}) \cdots \alpha(s_{n}) \beta(s_{n+1}) \cdots \beta(s_{n+m})] = \hat{\Omega}_{11}^{[1^{N}]} \Phi_{1} X_{1}$$

where

$$\psi_{i\alpha}(k) = \varphi_{ia}(\vec{r}_k) \alpha(s_k),$$

$$\psi_{i\beta}(k) = \varphi_{ib}(\vec{r}_k) \beta(s_k), \quad (\varphi_{ia} \neq \varphi_{ib}),$$

 $\hat{\tau}_i$ – permutation operator of electron spatial coordinates, $\hat{\sigma}_i$ – permutation operator of spin coordinates of the electrons, and the summation is taken over all N! permutations of the group S_N , $\xi_{\hat{\tau}_i}$ – parity of the permutation $\hat{\tau}_i$.

Optimizing orbitals φ_{ia} and φ_{ib} , appearing in (87), one can obtain the energy lower than the Hartree – Fock energy value. This method was named as *unrestricted Hartree* – *Fock method* (UHF). However, as it follows from (64), the wave function (87) is a mixture of various multiplets, as a consequence it is not an eigenfunction of the operator \hat{S}^2 . Therefore, the application of the variational function (87) to calculate the electronic structure of molecules in a rigorous approach is not justified. To eliminate this shortcoming Lowdin [60 – 62] proposed to pick out the required spin component from the function (87) by projection operators \hat{O}_l :

$$\Psi_l = \hat{O}_l \Psi^{(UHF)}, \qquad (88)$$

where

$$\hat{O}_{l} = \prod_{k \neq l} \frac{\hat{S}^{2} - k(k+1)}{l(l+1) - k(k+1)}.$$
(89)

It is also possible to vary the orbitals φ_{ia} and φ_{ib} entering the function Ψ_i by minimization the expression

$$E^{(EHF)} = \left\langle \Psi_l | \hat{H} | \Psi_l \right\rangle / \left\langle \Psi_l | \Psi_l \right\rangle.$$
(90)

This approach was named as *extended Hartree – Fock method* (EHF).

The wave function (88) can be represented [62] as

$$\Psi_l^{(EHF)} = \hat{\Omega}_{11}^{[1^N]} \Phi_1 \hat{O}_l \chi_1 = \hat{\Omega}_{11}^{[1^N]} \Phi_1 \sum_{p=0}^m C_p(l, M_s) \chi_1^{(p)}, \qquad (91)$$

where $M_s = (n-m)/2$ is the projection of the total spin of the electrons on a choosen direction,

$$\chi_1^{(p)} = \sum_{\sigma_p} \hat{\sigma}_p \chi_1, \qquad (92)$$

with $\hat{\sigma}_p$ being the operator interchanging *p* indices of the subset *a* with *p* indices of the subset *b*, i.e. $\hat{\sigma}_p$ is similar to $\hat{\tau}_p$ in (60). The explicit form of the coefficients $C_p(l, M_s)$ for different cases was obtained by Lowdin [62], Sasaki and Ohno [63], and Smith [64]. The most general expression of these coefficients is [63]:

$$C_{p}(S,M_{S}) = (2S+1)\frac{(m+S-M_{S}-p)!(S+M_{S})!}{(S-M_{S})!}\sum_{t}\frac{(-1)^{t}}{t!}\frac{[(S-M_{S}+t)!]^{2}}{(S-M_{S}+t-p)!(m-t)!(2S+1)!}$$

There is hold more simple expression for the case $S = M_s$ [63]:

$$C_p(M_S, M_S) \equiv C_p(S) = (-1)^p \frac{2S+1}{n+1} {\binom{n}{p}}^{-1}.$$
(93)

Calculation of average values of operators over wave functions of the form (88) is quite complicated even when the operators are not spin dependent. This is due to

the fact that the summation over the spin variables in expressions such as (90) is a rather cumbersome task.

Nevertheless, there were obtained a number of general expressions for the EHF method – expressions for the electron and the spin density matrices as well as for energy [60, 61, 65 - 67].

As shown by Goddard [47], the wave function (91) for the case $S = M_s$ can be represented as

$$\Psi^{(EHF)} = \hat{O}_{S} \hat{\Omega}_{11}^{[1^{N}]} \Phi_{1} X_{1} = \hat{\Omega}_{11}^{[1^{N}]} \Phi_{1} \hat{\omega}_{11}^{[n,m]} X_{1} = \frac{1}{f} \hat{G}_{f}^{[2^{m}, 1^{n-m}]} \Phi_{1} X_{1} = \frac{1}{f} \Psi^{(GF)}.$$
(94)

This is easily seen by comparing the expressions (58) and (62) for the operators $\hat{\omega}_{ri}^{\mu}$ and matrix elements $U_{11}^{[n,m]}$ with the expression (93) for the coefficients $C_p(S)$ in (91). Thus, the EHF wave function is equivalent to the Goddard GF wave function if $S = M_s$. However, taken into account the expression (65), we note that the calculation of the average values of the spin-independent operators much simpler to perform by Goddard's method due to summation over the spin variables in (65) is taken out of the brackets and canceled. Furthermore, the using of the theory of the permutation group in general facilitates the reduction of the equations for the optimum orbitals φ_{ia} and φ_{ib} , entering in $\Psi^{(EHF)}$, to the eigenvalue equation of the form (72) – (73) [48].

In connection with the difficulties described above in calculating the optimum EHF orbitals for specific calculations of π -electronic molecular structures the simplified EHF version named as the *alternant molecular orbitals* (AMO) method has been used much wider. This method was proposed by Lowdin [60, 68 – 70]. The method consists in the following. Suppose that the orthonormal set of orbitals $\{a_k\}$ that are solutions of the Hartree – Fock – Roothaan equation or even in the worst case of the Huckel equation [71, 72, 28] is known. Suppose further that the ground state of a molecular system is described in this approximation by single determinant wave function which contains *m* doubly filled orbitals $a_1, a_2, a_3, ..., a_m$ and n-m singly occupied orbitals $a_{m+1}, ..., a_n$. Under these assumptions, the wave function of the AMO method is constructed as following. Each of the doubly occupied orbitals $a_k(1 \le k \le m)$ according to a certain rule is matched with one of the vacant orbitals $a_{\bar{k}}(\bar{k} > m)$ and thus two orthonormal AMO sets are constructed:

$$\varphi_{ka} = \cos \theta_k a_k + \sin \theta_k a_{\bar{k}}, \quad (k = 1, 2, 3, ..., m)$$

$$\varphi_{kb} = \cos \theta_k a_k - \sin \theta_k a_{\bar{k}}, \quad (k = 1, 2, 3, ..., m)$$

$$\varphi_{ka} = a_k. \qquad (k = m + 1, ..., n)$$

$$(95)$$

Substituting Φ_1 in (91) as

$$\Phi_1 = \varphi_{1a}(1) \cdots \varphi_{na}(n) \varphi_{1b}(n+1) \cdots \varphi_{mb}(N),$$

one obtains the wave function $\Psi^{(AMO)}$ of the *multi-parameter AMO method*. Since orbitals (95) satisfy (81) due to orthogonality of orbitals a_k , the average energy value

$$E^{(AMO)} = \left\langle \Psi^{(AMO)} | \hat{H} | \Psi^{(AMO)} \right\rangle / \left\langle \Psi^{(AMO)} | \Psi^{(AMO)} \right\rangle$$
(96)

will be determined by the expression (84). Varying $E^{(AMO)}$ over θ_k , one obtains optimal AMO of the form (95). If the above procedure is performed with all θ_k being the same ($\theta_k = \theta$), the corresponding method is called a *single-parameter AMO* method.

Let us consider certain features of the AMO method applied to alternant systems. Molecular systems are called alternant ones if their atoms can be split into two subsets such as the nearest neighbors of an atom of one subset are being only atoms of the other subset [73]. In the case of π -electron system of the alternant hydrocarbons to obtain AMO (41) complementary orbitals a_k and $a_{\bar{k}}$ are pairing in the following way [74]:

$$a_{k} = \sum_{\nu^{*}} C_{\nu k} \chi_{\nu} + \sum_{\nu^{**}} C_{\nu k} \chi_{\nu},$$

$$a_{\bar{k}} = \sum_{\nu^{*}} C_{\nu k} \chi_{\nu} - \sum_{\nu^{**}} C_{\nu k} \chi_{\nu},$$
(97)

where \sum_{v} means that the summation is taken over the atoms of a one subset, and \sum_{v} – over the atoms of another subset. A detailed description of the AMO method and its applications is given in [67].

It is easy to establish a connection between EHF and AMO methods [56, 68]. If the energy (96) is minimized not only over θ_k , but also over the orbitals a_k , one obtains the wave function and energy of the EHF nethod. In fact, the orbitals φ_{ka} and φ_{kb} in (37) can always be transformed in a way as to hold the relation (81). Orbitals that satisfying (81) can be represented in a form of (95) [56] if

$$\begin{array}{l} a_{k} = (\varphi_{ka} + \varphi_{kb})(2 + 2\lambda_{k})^{-1/2}, \quad (k = 1, 2, 3, ..., m) \\ a_{\bar{k}} = (\varphi_{ka} - \varphi_{kb})(2 - 2\lambda_{k})^{-1/2}, \quad (k = 1, 2, 3, ..., m) \\ a_{k} = \varphi_{ka}, \qquad \qquad (k = m + 1, ..., n) \end{array}$$

$$(98)$$

where

$$\lambda_{k} = \left\langle \varphi_{ka} \middle| \varphi_{kb} \right\rangle = \cos 2\theta_{k} \,. \tag{99}$$

Minimization of the expression (96) represents a problem to find an extremum over for many nonlinear parameters. This is as already mentioned above the main shortage of the computational AMO scheme compared to the method proposed by Goddard.

Thus establishing the connection between different approaches of the SCF theory on variational function with "*different orbitals for different spins*/DODS», namely, between AMO, EHF, and GF methods, we proceed further to discuss the properties of the corresponding solutions, as well as some applications of these methods.

3.1. Properties of solutions of the generalized Hartree – Fock equations and their applications

We first consider the properties of the EHF self-consistent solutions and focus mostly on the single-particle interpretation of the EHF wave function (74). Equations (67) or (72) – (73) for orbitals φ_{ka} and φ_{kb} can be transformed [50] to

$$(\hat{h} + \hat{V}_{ka}^{GF})\varphi_{ka} = \varepsilon_k^{(a)}\varphi_{ka},$$

$$(\hat{h} + \hat{V}_{kb}^{GF})\varphi_{kb} = \varepsilon_k^{(b)}\varphi_{kb},$$

$$(100)$$

where \hat{h} – operator of the kinetic energy and potential energy of an electron in the field of the nuclei, \hat{V}^{GF} – effective potential operator of the remaining N-1 electrons. It follows from (100) that the functions φ_{ka} and φ_{kb} can be interpreted as the state of an electron in the field of the nuclei and the average field of the other electrons. In this sense there is a complete analogy with the Hartree – Fock approximation. This important result means the following. Rather than to operate with the Ψ -function of N electrons in the abstract 3N-dimensional space, we can consider certain singleelectron function in a real three-dimensional space. In general case, this is not eligible even if one decomposes many-electron wave function into the one-electron functions. One must have equations of the form (100) in order their solutions obey a singleparticle interpretation. Considering molecules or solids, we are talking, for example, about an electron of the oxygen atom, inner and valence electrons, conductivity electron, localized electron, π - and σ -electrons, d-electron etc. There is always tacitly assumed that there do exist equations of the form (100), since it is impossible to distinguish between the electrons themselves and therefore can not be said that a certain electron is in a particular state that can appear in the expansion of the exact many-electron Ψ -function. Equations (100) as well as the HF equations do not assume the actual assignment of electrons to particular states. These equations are obtained by approximating the exact wave function (74) with further variation of its orbitals in a way as to minimize the energy. Analyzing the corresponding equations, we note that each orbital is an eigenfunction of a certain operator mapping with the Hamiltonian of an electron moving in the field of the nuclei and the average field of the other N - 1 electrons. Naturally, all these arguments, no matter how convincing they are, do not strictly prove that the solutions of the SCF equations are directly related to the physical quantities and, therefore, make sense of themselves. However, it is clear that these solutions have a number of convenient and useful properties.

Goddard has shown [50] that the energy (84) of N-electron system can be represented as a sum of two terms:

$$E^{(GF)} = E(N) = E(N-1) + e_k, \quad e_k = \varepsilon_k / D_k^k, \quad (101)$$

where the term E(N-1) does not depend on the state of the N-th electron. This expression is valid for all orbitals φ_{kb} , *i.e.* orbital energies $\varepsilon_k^{(b)}$ have a meaning of ionization potentials predicted by EHF. This statement is known as Koopmans' theorem [75]. In all fairness, we note that Koopmans' theorem is just approximate: ionization potentials predicted close to the experimental values if an error in the description of N - 1 electrons is compensated by a change of correlation energy passing from N - 1 to N electrons. It is also obvious that the Koopmans' theorem is asymptotically exact.

If one uses the Roothaan method [55], than each of the equations (72) and (73) will have $M \ge N$ solutions φ_{ka} and φ_{kb} , respectively. The question arises as which of these solutions should be used to construct the EHF Ψ -function. It is shown in [50] that there should be selected *n* orbitals φ_{ka} and *m* orbitals φ_{kb} with minimal Lagrange multiplier $\varepsilon_k^{(a)}$ and $\varepsilon_k^{(b)}$, *i.e.* procedure for orbital selection is the same as in the Hartree – Fock – Roothaan method. Exceptions to this rule may be accounted in a case of multiple degeneration of ε_k [50], for example, when treating the heavy atoms.

If one of the orbitals in the EHF wave function (74), for example $\varphi_{ka}(k \le n)$ or $\varphi_{kb}(k \le m)$ is replaced by one of the vacant orbitals $\varphi_{k'a}(k' > n)$ or $\varphi_{k'b}(k' > m)$ respectively, we obtain some kind of the excited configuration $\Psi^{(EHF)}(k,k')$, where k – the number of the orbital replaced, and k' – the number of replacing orbital. Goddard has shown [50] that

$$\left\langle \Psi^{(EHF)}(k,k') \left| \hat{H} \right| \Psi^{(EHF)} \right\rangle = 0.$$
(102)

Thus, the Brillouin theorem [76 - 79] is hold in the frame of the EHF approach, which is simply equivalent to the variational principle. Note also that in the general case

$$\left\langle \Psi^{(EHF)}(k,k') | \Psi^{(EHF)} \right\rangle \neq 0.$$
 (103)

The spatial symmetry of the one-electron orbitals within EHF approach was discussed by Goddard [50] and Popov [80] for the singlet state. It was shown that the requirement of non-degeneracy of the ground state wave function $\Psi^{(EHF)}$ imposes the limitations of one of two possible types on the symmetry properties of the orbitals. The first possibility corresponds to the case when orbitals of each of the sets $\{\varphi_{ka}\}$ and $\{\varphi_{kb}\}$ should be the basis functions of the irreducible representations of the symmetry group *G*. In this case partitioning of sets into irreducible subsets may not be equivalent. Eigenvalues $\varepsilon_k^{(a)}$ and $\varepsilon_k^{(b)}$ in (72) and (73) may also be different.

The second possibility is feasible for symmetry groups having at least one subgroup *g* of index 2. In this case orbitals of each sets must be the basis functions of the irreducible representations of the subgroup *g*, and partitioning of sets into irreducible subsets should be equivalent. Eigenvalues $\varepsilon_k^{(a)}$ and $\varepsilon_k^{(b)}$ in (72) and (73) have to be equal, while the corresponding eigenfunctions φ_{ka} and φ_{kb} may be different. Thus, the restrictions imposed on orbitals in EHF approach by symmetry are less severe than similar restrictions in the Hartree – Fock approximation. This conclusion is valid for all *GI*-methods ($I \neq F$)[47].

To illustrate the methods considered above and the pecularities of their solutions let us consider some typical examples. Different orbitals for different spins φ_{ia} and φ_{ib} have been proposed for the first time by Hylleraas [81] and Eckart [82] for He atom. In this case, the coordinative part of the function (56) for the singlet ground state

$$\Phi(\vec{r}_1, \vec{r}_2) = \frac{1}{\sqrt{2}} [\varphi_a(\vec{r}_1)\varphi_b(\vec{r}_2) + \varphi_b(\vec{r}_1)\varphi_a(\vec{r}_2)],$$

with $\varphi_a = \varphi_b$ corresponds to the traditional method of Hartree – Fock approximation. In the frame of the EHF method with this function it is accounted 93% of the radial correlation energy [83, 84]. Within the UHF method with functions φ in exponential form

$$\varphi_a(\vec{r}_i) \sim \exp(-\alpha \vec{r}_i), \quad \varphi_b(\vec{r}_i) \sim \exp(-\beta \vec{r}_i)$$

80% of the correlation energy is accounted for, and exponents are $\alpha = 2.183$ and $\beta = 1.189$. Calculations in this approximation for the isoelectronic series H⁻, He and Li⁺ are made in [85, 86], and for large values of the nuclear charge Z up to Z = 10 are published in [87]. It was found that orbital splitting is decreased with increasing of Z. The exponents α and β should not be interpreted as the effective charges. In

particular, the assumption that an «effective charge of the outer electron" β will be striving for Z - 1 with increasing Z [85], was not confirmed [87].

Consider the calculation of the H₂ molecule in the framework of GF approach and compare results with similar calculations by the Hartree – Fock – Roothaan method [47]. Function (63) of the ground state of the hydrogen molecule is (m = n = 1)

$$\Psi^{(G1)} = \hat{G}_1^{[2]} \varphi_a(1) \varphi_b(2) \alpha(1) \beta(2).$$
(104)

In this case, the *GF* and *G1* methods are equivalent, since there is only one standard Young's table. Molecular orbitals were expanded over the basis consisted of the Slater atomic orbitals (AO) *1s*, *2s*, and $2p\sigma$ of each of the hydrogen atoms. Table 1 shows the expansion coefficients of the self-consistent orbitals φ_a and φ_b appearing in the expression (104) for the equilibrium internuclear distance R = 1.4 and R = 6 a.u. The letters A and B denote different hydrogen atoms. The second column shows the optimal values of the Slater function exponents.

Table 1

AO	Exponents	φ_a	$arphi_b$			
	$R = 1.4 \ a.u.$					
Als	1.3129	0.775023	0.121577			
A2s	1.1566	0.111130	0.042025			
A2po	1.9549	0.003120	0.037667			
B1s	1.3129	0.121577	0.775023			
B2s	1.1566	0.042025	0.111130			
B2po	1.9549	0.037667	0.003120			
	$R = 6.0 \ a.u.$					
Als	1.0045	0.993720	0.002525			
A2s	0.850	0.007571	0.002730			
A2po	0.820	0.001209	-0.000870			
B1s	1.0045	0.002525	0.993720			
B2s	0.850	0.002730	0.007571			
B2pσ	0.820	-0.000870	0.001209			

EHF orbitals for the hydrogen molecule

As seen from Table. 1, the density $|\varphi_a|^2$ as well as $|\varphi_b|^2$ has different values at different protons even at the equilibrium internuclear distance. When separating nuclei apart molecular orbital φ_a is urging towards the atomic orbital 1s localized on one of the protons, and orbital φ_b – towards an atomic orbital 1s, localized on the other proton. As noted above, such a behavior of self-consistent EHF/GF molecular

orbitals is possible due to the fact that the spatial symmetry (in this case the symmetry of the H_2 molecule) does not impose the requirements

$$|\varphi_i(\vec{r} = \vec{R}_A)|^2 = |\varphi_i(\vec{r} = \vec{R}_B)|^2$$

on the EHF orbital. Therefore, the contribution of ionic configurations into the H_2 ground state wave function tends to zero as the nuclei are moving apart. In the Hartree – Fock approach the H_2 ground state wave function has the form

$$\Psi^{(HF)} = \hat{G}_{11}^{[1^2]} \varphi_1(1) \varphi_1(2) \alpha(1) \beta(2),$$

and due to the symmetry of the H₂ molecule

$$|\varphi_1(\vec{r}=\vec{R}_A)|^2 = |\varphi_1(\vec{r}=\vec{R}_B)|^2.$$

Table 2 shows the energy of H_2 for different internuclear distances obtained by the Hartree – Fock method and the GF approach. Slater atomic basis for both calculations are shown in Table. 1.

Table 2

The energy of the hydrogen molecule for different internuclear distances, *a.u.*

R	Method					
	HF	GF	Exact			
1.4	-1.133449 [88]	-1.151526	-1.174475 [89]			
6.0	-0.82199 [88]	-1.000552				
∞	-0.7154 [61]	-1.000000	-1.000000			

As follows from Table 2, the GF method in contrast to the Hartree – Fock approximation shows the correct asymptotic behavior of the H₂ energy with moving nuclei apart. We shall see below that this result remains valid for N > 2. It gives us a possibility to use the GF method to calculate the interaction of atoms and molecules, and this is one of the advantages of EHF approach.

Consider spin density calculations at the nucleus of a lithium atom [47]:

$$\rho_{z}(\vec{R}) = \left\langle \Psi \right| \sum_{i=1}^{N} \hat{s}_{z}(i) \,\delta(\vec{r}_{i} - \vec{R}) \left| \Psi \right\rangle / S \left\langle \Psi \right| \Psi \right\rangle, \tag{105}$$

where $\hat{s}_{z}(i)$ – spin projection operator of the *i*-th electron, $\delta(\vec{r})$ – threedimensional Dirac δ -function, S – total spin ($S \neq 0$), the nucleus coordinate $\vec{R} = 0$.

Table 3 shows the values of $4\pi \rho_z(0)$ and energy of the ground state ²S of the lithium atom calculated by different methods.

Method	$4\pi\rho_z(0)$	Abs. error,	Energy,	
		%	а.и.	
HF	2.094	28	-7.432725	
UHF	2.825	2.8	-7.432751	
UHF	2.345	19.3	-7.432768	
with projection				
GF/EHF	3.020	3.9	-7.432813	
Experiment	2.906	—	-7.4780	

Table 3 Energy and spin density at the nucleus of a lithium atom

The table shows that in contrast to the Hartree – Fock approach EHF and UHF methods give good results for the $\rho_z(0)$ value. If you select a doublet component from the UHF function (87), then after variation of orbitals (UHF with projection), the result obtained for $\rho_z(0)$ is being much worse than in the traditional UHF method.

Among the various applications of the AMO method to alternant hydrocarbons (AH), we note the paper of Swalen and de Heer [90]. It compares the results obtained by a single-parameter and multi-parameter AMO method to conjugate AH with different numbers of π -electrons. We introduce the notation

$$\Delta \varepsilon = \frac{E^{(HF)} - E^{(AMO)}}{N} \ge 0$$

It is shown in [90] that in the case of single-parameter AMO method $\Delta \varepsilon$ value decreases with increasing *N*, while in the case of multi-parameter AMO approach $\Delta \varepsilon$ value increases with increasing *N* for the same set of molecules. It can be concluded that the single-parameter AMO method should only be used when calculating small molecules and its application to large electronic systems is not efficient.

We turn now to a possibility of further generalizations of the EHF approach. As already noted, when using the expression (63) for constructing the function Ψ of Nelectrons one can choose f different operators \hat{G}_i^{μ} (i = 1, 2, 3, ..., f). The choice of the ivalue can be arbitrary from the physical point of view. This is related to the existence of the so-called spin degeneracy due to the fact that for a given value of the total spin S of the N electron system and its projection S_z one can construct f correct spin functions, where f is defined by (59). Selecting i value one just defines the type of spin-functions [51]. Ladner and Goddard [51] investigated the effect of the choice of the i value to the computational results for the ground state of Li, H₃, and H₄. They were also suggested a generalization of the method which consists in the following – in the expression (63) for the wave function instead of using just one particular operator \hat{G}_i^{μ} a linear combination of these operators is used whose coefficients are being optimized as well as the corresponding one-electron orbitals. This method was named as *spin-optimized GI* method (SOGI). There were obtained equations for optimal orbitals [51], which of course are much more complicated than in the GI methods. This fact makes the practical applications of the SOGI method difficult. The basic results of [51] are the following. Self-consistent energies and orbitals of the different GI methods are weakly dependent on the choice of the *i* values. The most changes occur in the density matrices, in particular, the spin density (105). Table 4 shows the energies and spin and electron densities for the ground state ²S of the lithium atom.

Table 4 The energy, spin and electron densities at the nucleus

Method	$\rho_z(0)$	ho (0)	Energy, a.u.
G1	0.2096	13.8646	-7.447560
G2 (GF/EHF)	0.2406	13.8159	-7.432813
SOGI	0.2265	13.8646	-7.447565
HF	0.1667	13.8160	-7.432725
Exp.	0.2313	_	-7.47807

of Li atom depending on the choice of spin-functions

In the third column of table 4 there are shown the values of the electron density at the nucleus of a lithium atom

$$\rho\left(\vec{R}\right) = \left\langle \Psi \right| \sum_{i=1}^{N} \delta(\vec{r}_{i} - \vec{R}) \left| \Psi \right\rangle / \left\langle \Psi \right| \Psi \right\rangle.$$

As seen from Table 4, the G1 method gives better results for the electron density and energy, whereas the GF method best describes the spin density. The energy dependence of the i value in (63) is connected with the fact that the equations for optimal orbitals (67) in different GI methods are different. However, as it follows from Table 4, these differences are small.

Thus, we can conclude the following. Improving of the results obtained when going from the GI methods to SOGI approach, is not so important as with transition from Hartree – Fock method to GI, in particular, to GF/EHF method. On the other hand, the computational procedure in the SOGI method is much more complicated than in the EHF method. Therefore, to our opinion EHF method in its various versions and modifications will have more broad application in practical calculations of the electronic structure of molecules.

As noted above, the UHF approach is the simplest method to account for electron correlation and is widely used in the calculations of the electronic structure of molecules and radicals [47, 51, 56, 58, 91, 92]. The UHF wave function (87) is not an eigenfunction of the \hat{S}^2 operator. To eliminate this shortage there are usually applying so called total or partial projection of the UHF wave function to the state with the required spin multiplicity [56, 91]. It should be kept in mind that the projected wave function is no longer optimum relative to the variational principle. Therefore, its adequacy to the real situation, in general, is not evident [56]. The next consisting procedure should be further variation of projected wave function to obtain the minimum of the total energy, namely, to use the EHF approach. Nevertheless, the UHF method with partial or complete projection leads often to good agreement with various experimental data, including the hyperfine splittings in the ESR spectra of free radicals. In [58, 91, 92], The results of calculations in the UHF framework with partial projection of the wave function for organic free radicals with a small number of electrons is given in [58, 91, 92].

Benzyl radical $C_6H_5CH_2$ contains already quite a large number of electrons. There are known our results of *ab initio* calculations of benzyl in the basis of Gaussian functions under the UHF framework with full projection on the ground doublet state [57] and without projection [93 – 95]. It is useful to compare the results in both approximations.

The contribution of the doublet component in the non-projected wave function $\Psi^{(UHF)}$ of the benzyl radical [93 – 95] turned out be equal 95.4%, and the remaining 4.6% belongs to the quartet and the higher spin components. Contribution of the doublet component to the $\langle \hat{S}^2 \rangle$ is 84%, and the quartet component is 15.7% [57]. This means that the spin projection in the UHF framework can substantially affect only spin characteristics of a radical but distribution of the electron density is almost not influenced. This conclusion is confirmed by numerical calculations [57].

Table 5 shows the distribution of the spin densities $\rho_z^{\pi}(C)$ and $\rho_z(H)$ at the atomic nuclei of the benzyl radical calculated without projection [93 – 95] and there is also given a comparison of the calculated hyperfine splitting on protons with the experimental data.

As many calculations in the π -electron approximation [102 – 104], *ab initio* calculations have led to similar values of π -spin density $\rho_z^{\pi}(C)$ at the *ortho* and *para* carbon atoms. Using the simple McConnell equation [99, 100], we obtain the same splittings at the *ortho* and *para* protons which is inconsistent with the experimental data [96 – 98]. However, the direct calculation of the spin density at the protons $\rho_z(H)$ leads to the correct ratio of the corresponding splittings.

Table 5

Atom	$\rho_z^{\pi}(\mathbf{C})$	а ^н , Ое				$\rho_z(\mathrm{H})$	Atom	
		Calc.*	Experiment		Calc.**			
			[96]	[97]	[98]			
C_o	0.2760	-7.45	5.14	5.15	5.08	-5.88	-0.011 ₆	H _o
\mathbf{C}_m	-0.1916	5.17	1.79	1.75	1.7	3.95	0.0078	H_m
\mathbf{C}_p	0.2757	-7.44	6.14	6.18	6.18	-6.18	-0.0122	H_p
C _α	0.7671	-18.72	16.35	16.35	15.7	-15.20	-0.030_{0}	H _α

The spin densities and hyperfine splittings a^{H} in the benzyl radical calculated according to the UHF framework without projection

* Calculated according to the McConnell equation [99, 100] with the constants $Q_{CH}^{H} = -27$ and $Q_{CH_{2}}^{H} = -24.4 \ Oe$ [101].

**Calculated according to the equation $a^{\rm H} = Q^{\rm H} \rho_z({\rm H})$ with constant $Q^{\rm H}$, equal to the hyperfine splitting in the free hydrogen atom (506.82 *Oe*).

From the analysis of the occupation numbers of natural orbitals calculated from UHF wave functions before and after projection, it was shown that the evaluation of the spin density after projection can be performed practically without loss of accuracy from non-projected values multiplied by S/(S+1) [57]. It was shown that this rule is asymptotically exact at $N \rightarrow \infty$ [6, 10, 105].

Significant progress in understanding the properties of carbon-chain polymeric systems has been achieved due to the use of different versions of the Generalized HF approaches [106]. Thus, the relative simplicity of UHF equations has allowed to perform a number of analytical calculations of infinite polyene chains [16, 107 – 110], long polyene radicals [6, 105], cumulenes, polyacenes, and graphite [17, 111], long polyene chains with impurity atoms [7] and take into account the end effects in long polyenes and cumulenes [10]. These calculations have allowed, in particular, to make conclusions about the physical nature of the dielectric properties of such systems [16], which was further confirmed for polyenes by exact solutions [112]. However, the use of the instant UHF approach leaves some doubt primarily because the wave function in this method does not have the correct spin symmetry. Fortunately, this difficulty was overcame surprisingly easily in the calculations of systems with a large number of electrons ($N \gg 1$). It was found [10] that the self-consistent equations for the orbitals in the EHF method asymptotically ($N \rightarrow \infty$) coincide with the similar equations in the UHF methods:

$$E_0^{EHF} = E_0^{UHF} + \mathcal{O}\left(\frac{1}{N}\right).$$

Consequently, the energy characteristics of long polyene chains (the ground state energy, the spectrum of low-lying excitations) obtained by UHF methods are preserved if passing to EHF approach.

Now we turn to theory of electronic structure of long polyene neutral alternant radicals based on the different orbital for different spins SCF method.

4. Electronic Structure of Long Neutral Polyene Alternant Radicals by the DODS Method

As shown above the simplest method to account for correlation between electrons with different spins consists in using different orbitals for different spins (DODS). McLachlan [113], considering the polarization of closed shells in a radical due to the field of its unpaired electron, suggested a simple method for the calculation of the spin density based on the DODS approach. His method is restricted by applicability conditions of perturbation theory [114, 14, 34]. In this chapter we suggest a method for the calculation of alternant radicals which is free from this defect and which is more congruous from the point of the self-consistency procedure. This method will be applied to long neutral polyene radicals with the emphases to the spin properties of the wave functions in the DODS approximation. The second quantization formalism [115] will be used.

4.1. The DODS method for alternant radicals

Consider a system with 2n electrons in the state with closed shells. In the oneparticle approximation the corresponding Hamiltonian correct to a constant is

$$\hat{H}_0 = \sum_{i\sigma} \varepsilon^0(i) \hat{A}^+_{i\sigma} \hat{A}^-_{i\sigma} , \qquad (106)$$

where $\hat{A}_{i\sigma}^{+}$ and $\hat{A}_{i\sigma}$ are creation and annihilation operators of an electron in the state $\varphi_i(\vec{r})$ with spin σ , the real functions $\varphi_i(\vec{r})$ form a complete orthonormal set, the variable σ takes two values +1/2 and -1/2 (in units of \hbar), and $\varepsilon^0(i)$ is the orbital energy in the state *i*. The corresponding wave function for the ground state is

$$\left|\Psi_{0}\right\rangle = \prod_{i=1}^{n} \hat{A}_{i\uparrow}^{+} \hat{A}_{i\downarrow}^{+} \left|0\right\rangle.$$

$$(107)$$

Let us add one more electron to this system filling the state with i = p, $\sigma = \uparrow$ and choose as zero approximation the function

$$\left|\Psi^{(0)}\right\rangle = \hat{A}_{p\uparrow}^{+} \left|\Psi_{0}\right\rangle. \tag{108}$$
The corresponding Hamiltonian for a system with N = 2n+1 electrons in the SCF approximation will be written as

$$\hat{H} = \hat{H}_0 + \hat{V} = \sum_{i\sigma} \varepsilon^0(i) \hat{A}_{i\sigma}^+ \hat{A}_{i\sigma} + \sum_{ij\sigma} V_\sigma(i,j) \hat{A}_{i\sigma}^+ \hat{A}_{j\sigma}, \qquad (109)$$

where, using standard notations for the integrals,

$$V_{\sigma}(i,j) = \langle ip | jp \rangle - \delta_{\sigma\uparrow} \langle ip | pj \rangle.$$
(110)

To the first order of the perturbation \hat{V} the following expression for the spin density is obtained

$$\rho^{(1)}(\vec{r}) = R^{(1)}_{\uparrow}(\vec{r},\vec{r}) - R^{(1)}_{\downarrow}(\vec{r},\vec{r}), \qquad (111)$$

$$\rho^{(1)}(\vec{r}) = \varphi_p^2(\vec{r}) - \sum_{ij} \langle ip | pj \rangle \frac{\varphi_i(\vec{r})\varphi_j(\vec{r})}{\varepsilon^0(i) - \varepsilon^0(j)} (n_i - n_j), \qquad (112)$$

where n_i are the occupation numbers for the state $|\Psi_0\rangle$, and the one-particle density matrix is

$$R_{\sigma}^{(1)}(\vec{r},\vec{r}') = \sum_{ij} \left\langle \Psi^{(1)} \,|\, \hat{A}_{i\sigma}^{+} \hat{A}_{j\sigma} \,|\, \Psi^{(1)} \right\rangle \varphi_{i}(\vec{r}') \varphi_{j}(\vec{r}), \qquad (113)$$

where $|\Psi^{(1)}\rangle$ is the first-order wave function for *N* electrons.

Using a representation of orthogonal AOs

$$\varphi_i(\vec{r}) = \sum_{\mu} C_{\mu i} \chi_{\mu}(\vec{r}) , \qquad (114)$$

one obtains from (112) the familiar McLachlan expression for the elements of the spin density matrix

$$\rho_{\mu\nu}^{(1)} = \rho_{\mu\nu}^{(0)} - \sum_{ij\kappa\lambda} \gamma_{\kappa\lambda} \frac{C_{\kappa i} C_{\lambda j} C_{\mu i} C_{\nu j}}{\varepsilon^0(i) - \varepsilon^0(j)} (n_i - n_j) C_{\kappa p} C_{\lambda p}, \qquad (115)$$

$$\rho_{\mu\nu}^{(0)} = C_{\mu p} C_{\nu p} \,, \tag{116}$$

$$\gamma_{\kappa\lambda} = \left\langle \kappa \lambda \, \middle| \, \kappa \lambda \right\rangle. \tag{117}$$

Expressions (12) and (115) are valid if the applicability conditions of perturbation theory

$$|\mathcal{E}^{0}(i) - \mathcal{E}^{0}(j)| \gg V_{\sigma}(i,j) \quad (i \neq j)$$
(118)

are satisfied. To eliminate conditions (118) we shall account for the polarization of closed shells of a radical without the use of the perturbation theory.

We shall consider large neutral alternant radicals $(N \gg 1)$ for which conditions (118) break down. For these systems Hamiltonian (109), neglecting terms of order N^{-2} , can be written as

$$\hat{H} = \sum_{\substack{i\sigma\\(1 \le i \le (N+1)/2)}} [\mathcal{E}'_{\sigma}(i)(\hat{A}^{+}_{i\sigma}\hat{A}^{-}_{i\sigma} + \hat{A}^{+}_{\overline{i}\sigma}\hat{A}^{-}_{\overline{i}\sigma}) + a_{\sigma}(i)(\hat{A}^{+}_{i\sigma}\hat{A}^{-}_{\overline{i}\sigma} + \hat{A}^{+}_{\overline{i}\sigma}\hat{A}^{-}_{i\sigma})], \quad (119)$$

where

$$\varepsilon_{\sigma}'(i) = \varepsilon^{0}(i) + \Delta \varepsilon_{\sigma}(i), \quad \Delta \varepsilon_{\sigma}(i) = V_{\sigma}(i,i), \quad a_{\sigma}(i) = V_{\sigma}(i,i), \quad \varepsilon^{0}(i) = -\varepsilon^{0}(N-i),$$

and we suppose in the following that the unpaired electron occupies the nonbonding orbital

p = (N+1)/2 with $\varepsilon^{0}(p) = 0$.

The Hamiltonian (119) can be diagonalized by the following canonical transformation of the annihilation operators

$$\hat{A}_{i\sigma} = [\hat{B}_{i\sigma} + \xi_{\sigma}(i)\tilde{\hat{B}}_{i\sigma}]\mathfrak{I}_{\sigma}^{-1/2}(i), \qquad (120a)$$

$$\hat{A}_{i\sigma} = [\tilde{B}_{i\sigma} - \xi_{\sigma}(i)\hat{B}_{i\sigma}]\mathfrak{T}_{\sigma}^{-1/2}(i), \qquad (120a')$$

$$\hat{B}_{i\sigma} = [\hat{A}_{i\sigma} - \xi_{\sigma}(i)\hat{A}_{\bar{i}\sigma}]\mathfrak{T}_{\sigma}^{-1/2}(i), \qquad (120b)$$

$$\tilde{\hat{B}}_{i\sigma} = [\hat{A}_{\bar{i}\sigma} + \xi_{\sigma}(i)\hat{A}_{i\sigma}]\mathfrak{I}_{\sigma}^{-1/2}(i), \qquad (120b')$$

and similar expressions for the creation operators, where

$$\mathfrak{I}_{\sigma}(i) = 1 + \xi_{\sigma}^2(i), \qquad (120c)$$

and $\xi_{\sigma}(i)$ are certain real values. It is easy to show that the operators $\hat{B}_{i\sigma}$, $\hat{B}_{i\sigma}^+$ as well as the operators $\hat{A}_{i\sigma}$, $\hat{A}_{i\sigma}^+$ satisfy the same commutation rules.

The transformation (120) mixes orbital $\varphi_i(\vec{r})$ only with its complementary orbital, and the mixing coefficients $\xi_{\sigma}(i)$ may be different for different spins. See also [116] where a charge-density wave state has been discussed using a phasefactor in (120) which may depend on spin.

Substituting (120) into (119) one obtains

$$\hat{H} = \sum_{\substack{i\sigma\\(1,2,\dots,n+1)}} \{\varepsilon_{\sigma}(i)\hat{B}_{i\sigma}^{\dagger}\hat{B}_{i\sigma} + \tilde{\varepsilon}_{\sigma}(i)\tilde{B}_{i\sigma}^{\dagger}\hat{B}_{i\sigma} + [2\xi_{\sigma}(i)\varepsilon^{0}(i) + a_{\sigma}(i)(1 - \xi_{\sigma}^{2}(i))]\mathfrak{I}_{\sigma}^{-1}(i)(\hat{B}_{i\sigma}^{\dagger}\hat{B}_{i\sigma} + \tilde{B}_{i\sigma}^{\dagger}\hat{B}_{i\sigma}^{\dagger})\}, (121)$$

where

$$\varepsilon_{\sigma}(i) = \{\varepsilon^{0}(i)[1 - \xi_{\sigma}^{2}(i)] - 2\xi_{\sigma}(i)a_{\sigma}(i)\}\mathfrak{I}_{\sigma}^{-1}(i) + \Delta\varepsilon_{\sigma}(i), \qquad (122a)$$

$$\tilde{\varepsilon}_{\sigma}(i) = \{-\varepsilon^{0}(i)[1-\xi_{\sigma}^{2}(i)] + 2\xi_{\sigma}(i)a_{\sigma}(i)\}\mathfrak{T}_{\sigma}^{-1}(i) + \Delta\varepsilon_{\sigma}(i).$$
(122b)

Adjusting the coefficients of the non-diagonal terms in (121) to zero an equation for $\xi_{\sigma}(i)$ is obtained

$$\xi_{\sigma}^{2}(i) - 2\xi_{\sigma}(i)\varepsilon^{0}(i) / a_{\sigma}(i) = 1, \quad (a_{\sigma}(i) \neq 0)$$
(123a)

$$\xi_{\sigma}(i) = 0.$$
 (123b)

Equation (123a) has always a root not exceeding 1 by module (i = 1, 2, 3, ..., n), which will be used in the following. The non-bonding orbital $\varphi_p(\vec{r})$ is not affected by the transformation (120). Nevertheless the energy levels $\varepsilon_{\sigma}(p)$ may be displaced. It can be shown from (119) – (123) that the results are not changed if one formally says that the orbital $\varphi_p(\vec{r})$ mixes with itself. It follows from (123) that $|\xi_{\sigma}(p)|=1$.

For the values $\xi_{\sigma}(i)$ satisfying the Equations (123) the Hamiltonian \hat{H} has a diagonal form and the ground state wave function is

$$\left|\Psi\right\rangle = \prod_{\substack{i\sigma\\(i=1,2,\dots,n)}} \hat{B}^{+}_{i\sigma} \hat{B}^{+}_{p\uparrow} \left|0\right\rangle.$$
(124)

In the state (124) the first order density matrix and the spin density are

$$R_{\sigma}(\vec{r},\vec{r}') = \sum_{ij} \left\langle \Psi \mid \hat{A}_{i\sigma}^{+} \hat{A}_{j\sigma} \mid \Psi \right\rangle \varphi_{i}(\vec{r}) \varphi_{j}(\vec{r}') = \delta_{\sigma\uparrow} \varphi_{p}(\vec{r}) \varphi_{p}(\vec{r}') + \sum_{k=1}^{n} \Im_{\sigma}^{-1}(k) \{\varphi_{k}(\vec{r}) \varphi_{k}(\vec{r}') + \xi_{\sigma}^{2}(k) \varphi_{\bar{k}}(\vec{r}) \varphi_{\bar{k}}(\vec{r}') - \xi_{\sigma}(k) [\varphi_{k}(\vec{r}) \varphi_{\bar{k}}(\vec{r}') + \varphi_{\bar{k}}(\vec{r}) \varphi_{k}(\vec{r}')] \},$$

$$\rho(\vec{r}) = R_{\uparrow}(\vec{r},\vec{r}) - R_{\downarrow}(\vec{r},\vec{r}).$$
(125)
(126)

Substituting (114) into (126) and using the pairing relation

$$C_{\mu \bar{k}} = (-1)^{\mu + 1} C_{\mu k} ,$$

one obtains for the spin density on atom μ

$$\rho_{\mu} = C_{\mu p}^{2} + (-1)^{\mu} 2 \sum_{k=1}^{n} C_{\mu k}^{2} \left[\frac{\xi_{\uparrow}(k)}{\mathfrak{T}_{\uparrow}(k)} - \frac{\xi_{\downarrow}(k)}{\mathfrak{T}_{\downarrow}(k)} \right].$$
(127)

It should be noted that in the general case the Hamiltonian (119) and the wave function (124) are not self-consistent. In other words, the Hamiltonian in the Hartree – Fock approximation built on function (124) does not coincide in the general case with (119). The problem of self-consistency is to be solved accounting for the specific form of the matrix elements $\langle ij|ks \rangle$. We shall consider below a case when self-consistent values of $a_{\sigma}(k)$ can be determined for a Hamiltonian of type (119).

4.2. Calculation of Properties of Long Neutral Polyene Radicals by the DODS Method

The Hartree – Fock solution of the Schrodinger equation for long polyene radicals will be found and the corresponding expression for the spin density will be compared with the McLachlan formula [113]. The eigenvalues and eigenfunctions of the Hamiltonian (106) are taken as

$$\varepsilon^{0}(i) = -2 \left| \beta \right| \cos(i\theta), \qquad (128a)$$

$$\varphi_i(\vec{r}) = \sqrt{\frac{2}{N+1}} \sum_{\mu=1}^N \sin(\mu i \theta) \chi_\mu(\vec{r}),$$
 (128b)

where $\theta = \pi / (N+1)$, *N* is the number of atoms in the polyene chain. In the following we will consider a case when $N \gg 1$ and omit all terms $\sim 1/N^2$. For large *N* the solution (128) are close to the self-consistent ones. The matrix elements $V_{\sigma}(i, j)$ in (109) will be calculated in the zero differential overlap approximation accounting for Coulomb integrals $\gamma_{\mu\nu}$ only for nearest neighbors and using the following notations: $\gamma_{\mu\mu} \equiv \gamma_1, \quad \gamma_{\mu,\mu\pm 1} \equiv \gamma_2$. The last approximation is based on [117 – 119].

The first case to be considered is that when $\gamma_2 = 0$. Substituting (128) into (109) the following parameters of the Hamiltonian (119) are obtained

$$a_{\sigma}(k) = \Delta \varepsilon_{\sigma}(k) = \frac{\gamma_1}{N} \delta_{\sigma \downarrow}. \quad \left(0 < k \le \frac{\pi}{2}\right).$$
(129)

The Hamiltonian (119) with the parameters (129) is not self-consistent since it is built on the zero order wave function (108) and its diagonalization corresponds to the first iteration of the self-consistency procedure. Performing the latter step-by-step the following expression for the Hamiltonian on the *r*th iteration is obtained

$$\hat{H}^{(r)} = \sum_{\substack{k\sigma\\(0 < k \le \pi/2)}} \left[\mathcal{E}^{0}(k) (\hat{n}_{k\sigma} - \hat{n}_{\bar{k}\sigma}) + \Delta \mathcal{E}_{\sigma}(k) (\hat{n}_{k\sigma} - \hat{n}_{\bar{k}\sigma}) + a_{\sigma}^{(r)}(k) (\hat{A}^{+}_{k\sigma} \hat{A}_{\bar{k}\sigma} + \hat{A}^{+}_{\bar{k}\sigma} \hat{A}_{k\sigma}) \right] + \hat{W}^{(r)}, (130)$$

~

where

$$\hat{n}_{k\sigma} = A_{k\sigma}^{+} A_{k\sigma},$$

$$a_{\sigma}^{(r+1)}(k) = -\frac{\gamma_{1}}{2N} \sum_{k'} (1 + \frac{1}{2} \delta_{kk'}) \frac{a_{-\sigma}^{(r)}(k') n_{-\sigma}^{(1)}(k')}{\sqrt{4\beta^{2} \cos^{2} k' + [a_{-\sigma}^{(r)}(k')]^{2}}},$$
(131)

and $n_{\sigma}^{(1)}(k')$ are the occupation numbers in the state (108),

$$\hat{W}^{(r)} = \frac{\gamma_1}{N} \sum_{\lambda=1}^{4} \sum_{ks} f^{(r)}(s,k) \hat{A}^+_{k\sigma} \hat{A}^-_{s_\lambda\sigma}, \quad f^{(0)}(s,k) \equiv 0, \quad |f^{(r)}(s,k)| < 1,$$

$$s_1 = 2k - s, \quad s_2 = 2k + s, \quad s_3 = 2\pi - 2k - s, \quad s_4 = 2\pi - 2k + s.$$
(132)

The final solution will be found in the following way. Taking $\hat{W}^{(r)} = 0$ and using Equations (131) the self-consistent values of $a_{\sigma}(k)$ are determined. Diagonalizing the Hamiltonian (119) with the self-consistent parameters $a_{\sigma}(k)$ the ground state wave function is obtained in the form (124). Then $\hat{W}^{(r)}$ is taken into account by perturbation theory. The convergence of the perturbation series will indicate the correctness of this treatment. In other words, the method of compensation of "dangerous" diagrams developed by Bogolyubov [120, 121] for solving problems in the theory of superconductivity is used. It will be clear later that the "dangerous" diagrams in the sense of the convergence of perturbation series are the non-diagonal terms in (119). This means that (123) is the equation for the compensation of "dangerous" diagrams.

We shall now find the self-consistent values of the parameters $a_{\sigma}(k)$. Neglecting in the left part of (131) terms ~1/N one obtains

$$a_{\sigma}^{(r+1)} = -\frac{\gamma_1}{2\pi} a_{-\sigma}^{(r)} \int_0^{\pi/2} \frac{dx}{\sqrt{4\beta^2 \cos^2 x + [a_{-\sigma}^{(r)}]^2}}.$$
 (133)

The values of $a_{\sigma}^{(r)}$ for r = 0, 1, 2 and $N \to \infty$ are given in Table 6.

	Table 6
Values of the parameters	$a_{\sigma}^{(r)}$ for Hamiltonian (130)

r	$a^{(r)}_{\uparrow}$	$a_{\downarrow}^{(r)}$
0	0	$\frac{\gamma_1}{N}$
1	$-\frac{\gamma_1}{N}\ln N$	$\frac{\gamma_1}{N}$
2	$-\frac{\gamma_1}{N}\ln N$	$\frac{\gamma_1}{N}\ln N(\ln N - \ln\ln N)$

It is seen that $|a_{\sigma}^{(r)}|$ increases as *r* becomes larger. The reason is that the integral in the right part of (133) has a logarithmic singularity at $a_{\sigma}^{(r)} \rightarrow 0$. If one takes $a_{\downarrow}^{(r)} = -a_{\uparrow}^{(r)} = a^{(r)}$ then the self-consistency condition $a_{\sigma}^{(r)} = a_{\sigma}^{(r+1)} = a$ leads to the equation

$$xK(x) = \frac{4\pi |\beta|}{\gamma_1} , \qquad (134)$$

where K(x) – elliptical integral of the first order, and $x^2 = 4\beta^2 / (4\beta^2 + a^2)$.

Equation (134) has a root for a certain a > 0 [122]. For reasonable choices of parameters $(\gamma_1 / |\beta| < 5)$ the value of *a* satisfying Equation (134) is limited by $2|\beta|/3 > a > 0$. Thus, certain self-consistent values of the parameters of the Hamiltonian (130) exist:

$$a_{\downarrow}(k) = -a_{\uparrow}(k) = a. \tag{135}$$

Substituting (135) into (122) the following expressions for the energy levels correct to $\sim 1/N$ are obtained

$$\varepsilon_{\sigma}(k) = \varepsilon(k) = -\sqrt{4\beta^2 \cos^2 k + a^2}, \qquad (136a)$$

$$\tilde{\varepsilon}_{\sigma}(k) = \tilde{\varepsilon}(k) = \sqrt{4\beta^2 \cos^2 k + a^2}$$
(136b)

since according to (123a) and (135)

$$\xi_{\downarrow}(k) = -\xi_{\uparrow}(k) = \xi(k) = -\frac{2|\beta|}{a} \cos k + \sqrt{1 + \frac{4\beta^2 \cos^2 k}{a^2}}.$$
 (137)

It follows from (136) that $\varepsilon_{\uparrow}(\pi/2) = -a$, $\tilde{\varepsilon}_{\downarrow}(\pi/2) = a$ since the levels $\tilde{\varepsilon}_{\uparrow}(\pi/2)$ and $\varepsilon_{\downarrow}(\pi/2)$ are absent according to (120b) and (137).

One sees from (136) and (137) that self-consistency leads to a splitting of the energy spectrum with 2N levels into to bands, each with N levels. The wave function (124) corresponds to the ground state of a chain with all levels $\varepsilon_{\sigma}(k)$ filled and $\tilde{\varepsilon}_{\sigma}(k)$ empty. One notes also that according (136) $\varepsilon_{\uparrow}(k) = \varepsilon_{\downarrow}(k) = \varepsilon(k)$ and to $\tilde{\varepsilon}_{\uparrow}(k) = \tilde{\varepsilon}_{\downarrow}(k) = \tilde{\varepsilon}(k)$. The width of the forbidden zone between filled and empty bands is equal to 2a. An analogous solution for polyenes with even number of atoms has been obtained in [16, 109, 110]. It was also established that this state is energetically more stable than the Hartree – Fock state (128). Theory of the local electronic states in long polyene chains with an account of electronic correlation as in the present approach will be discussed below in connection with the nature of the forbidden zone which is still not clear enough physically.

It can be shown that an account for perturbation (132) in the first and second orders changes the elements of the density matrix $\hat{B}_{k\sigma}^+ \hat{B}_{k'\sigma}$ by values ~1/N and that the contribution to the energy equals $\Delta E_0^{(1)} = \Delta E_0^{(2)} = Const$. Thus, the effect of the perturbation (132) can be neglected. On the other hand, as follows from Table 6, perturbation theory is not applicable to the Hamiltonian (130). The reason is that the interaction between levels with $k \sim \pi/2$ is important even for small a(k). The use of the compensation principle permits to account exactly for the contribution of all terms in the Hamiltonian (130) which violate the convergence of the perturbation series.

It will be shown now that an account for the integrals γ_2 in the matrix elements of the electronic interaction does not change qualitatively the results obtained above. In this case Equation (131) becomes

$$a_{\sigma}(k) = -\frac{1}{2N} \sum_{k'} \left[\gamma_1 (1 + \frac{1}{2} \delta_{kk'}) - \gamma_2 (1 + \frac{1}{2} \delta_{kk'} \cos 2k') \frac{a_{-\sigma}(k') n_{-\sigma}^{(1)}(k')}{\sqrt{4\beta^2 \cos^2 k' + a_{-\sigma}^2(k')}} \right]. \quad (138)$$
$$+ \frac{\gamma_2}{2N} \sum_{k} (1 + \sin k \sin k') \frac{a_{\sigma}(k') n_{\sigma}^{(1)}(k')}{\sqrt{4\beta^2 \cos^2 k' + a_{\sigma}^2(k')}} \right].$$

Supposing $a_{\downarrow}(k) = -a_{\uparrow}(k) = a(k)$ and neglecting in (138) all terms $\sim 1/N$ one obtains for a(k) the equation

$$a(k) = \frac{1}{2\pi} \int_{0}^{\pi/2} (\gamma_1 + \gamma_2 \sin k \sin k') \frac{a(k')dk'}{\sqrt{4\beta^2 \cos^2 k' + a^2(k')}}.$$
 (139)

The solution of (139) can be found in a form

$$a(k) = c_1 + c_2 \sin k \,, \tag{140}$$

where

$$c_1 = \frac{\gamma_1}{2\pi} \int_0^{\pi/2} \frac{a(x)dx}{\sqrt{4\beta^2 \cos^2 x + a^2(x)}},$$
 (141a)

$$c_2 = \frac{\gamma_2}{2\pi} \int_0^{\pi/2} \frac{a(x)\sin x \, dx}{\sqrt{4\beta^2 \cos^2 x + a^2(x)}}.$$
 (141b)

The dependence of the one-particle energies $\varepsilon_{\sigma}(k)$ on k is determined by the following relations

$$\varepsilon_{\sigma}(k) = \{2\beta \cos k [1 - \xi_{\sigma}^{2}(k)](1 + \Re_{\sigma}) - 2\xi_{\sigma}(k)a_{\sigma}(k)\}\mathfrak{I}_{\sigma}^{-1}(k) + \Delta\varepsilon_{\sigma}$$
(142a)

with

$$0 < k \ll \frac{\pi}{2} \quad (\sigma = \uparrow), \quad 0 < k < \frac{\pi}{2} \quad (\sigma = \downarrow)$$

and

$$\tilde{\varepsilon}_{\sigma}(k) = \{-2\beta \cos k [1 - \xi_{\sigma}^{2}(k)](1 + \Re_{\sigma}) + 2\xi_{\sigma}(k)a_{\sigma}(k)\}\mathfrak{I}_{\sigma}^{-1}(k) + \Delta\varepsilon_{\sigma}$$
(142b)

with

$$0 < k \ll \frac{\pi}{2} \quad (\sigma = \downarrow), \quad 0 < k < \frac{\pi}{2}, \quad (\sigma = \uparrow)$$

where

$$\Delta \varepsilon_{\uparrow} = \gamma_2 / N, \quad \Delta \varepsilon_{\downarrow} = (\gamma_1 + \gamma_2) / N,$$
$$\Re_{\sigma} = \frac{\gamma_2}{N |\beta|} \sum_k n_{\sigma}^{(1)}(k) \cos k \frac{\xi_{\sigma}^2(k)}{\Im_{\sigma}(k)}.$$

In this case, as follows from (142) and (140), the energy spectrum with 2N levels also splits into two bands , each with N levels. The distance between these bands is equal to $2a(\pi/2)$. As above, the effect of the perturbation \hat{W} can be neglected.

Thus, the inclusion of the Coulomb repulsion integrals for electrons on neighboring atoms of a chain into the matrix elements does not change qualitatively the previous solution. The quantitative aspects are determined by the relations between parameters β , γ_1 , and γ_2 .

Expressing the parameters $\xi_{\sigma}(k)$ in (127) through $a_{\sigma}(k)$ one obtains for the spin density

$$\rho_{\mu} = \frac{2}{N} \sin \frac{\mu \pi}{2} + (-1)^{\mu+1} \frac{4}{N} \sum_{k=\theta}^{(\pi/2)-\theta} \frac{a(k) \sin^2 \mu k}{\sqrt{4\beta^2 \cos^2 k + a^2(k)}}.$$
 (143)

We note that for $N \to \infty$ the spin density ρ_{μ} according to (139) and (133) has a finite limit:

$$0 < |\rho_{\mu}| < a$$
.

Now we shall consider the spin density in a long polyene chain which results from McLachlan's method [113]. Substituting (128) into (115) and accounting only for $\gamma_1(\gamma_2 = 0)$ one obtains

$$\rho_{\mu}^{(1)} = \frac{2}{N+1} \sin \frac{\mu \pi}{2} + \frac{2\lambda}{(N+1)^2} (-1)^{\mu+1} \sum_{k=\theta}^{(\pi/2)-\theta} \frac{\sin^2 \mu k}{\cos k},$$
(144)

where $\lambda = \gamma_1 |\beta| / 2$.

For $N \to \infty$ the second term in (144) is estimated as

$$\frac{2\lambda}{(N+1)^2}(-1)^{\mu+1}\sum_{k=\theta}^{(\pi/2)-\theta}\frac{\sin^2\mu k}{\cos k}\sim\frac{2\lambda}{N\pi}\int_0^{\pi/2-\theta}\frac{\sin^2\mu k\,dk}{\cos k}\cong\frac{\lambda}{\pi}\frac{\ln N}{N}\to0.\quad (N\to\infty)$$

Thus, McLachlan's method gives incorrect asymptotic behaviour for the spin density in a polyene chain with $N \to \infty$. The reason is that McLachlan's formula was obtained in the first order of the perturbation over non-diagonal terms in the Hamiltonian (130). As we already know, perturbation theory is not applicable to the operator (130). Contribution to ρ_{μ} in the second order is equal to $\sim (\ln N)^2 / N$ ($N \to \infty$) which supports our conclusion.

Results obtained so far indicate that in systems like long polyene radicals the Hartree – Fock solution (128) is unstable relative to a small perturbation caused by the spin polarization of closed shells in a radical. The existence of this perturbation in the Hamiltonian leads necessary to a state described by the wave function with different orbitals for different spins. The possibility of existence of these states in

systems like alternant hydrocarbons has been discussed in [107] by the use of Green functions and thoroughly demonstrated in [67].

4.3. Projection on Pure Spin State

It follows from (120), (124), and (137) that the solution obtained above corresponds to the DODS type and therefore is not an eigenfunction of operator \hat{S}^2 . This fact can be expressed in the following equivalent form which seems to us more visual if the representation of occupation numbers is used, namely: in the DODS method the operator \hat{S}^2 does not commute with Hamiltonian. The equivalency of both statements is proved by the use of one of the main theorems in quantum mechanics: two operators commute if and only if they have a common system of eigenfunctions [123].

The following statement can also be proved : a Hamiltonian of the type

$$\hat{H}_1 = \sum_{ij\sigma} h_{\sigma}(i,j) \hat{A}_{i\sigma}^{\dagger} \hat{A}_{j\sigma}$$

commutes with the operator \hat{S}^2 only if one of the following two conditions are satisfied

(1)
$$h_{\uparrow}(i,j) = h_{\downarrow}(i,j),$$

(2) $h_{\uparrow}(i,i) = h_{\downarrow}(i,i) = Const, \quad h_{\uparrow}(i,j) = h_{\downarrow}(i,j). \quad (i \neq j)$

To prove this it is necessary to calculate the commutator $[\hat{S}^2, \hat{H}_1]$. The expression for an operator \hat{S}^2 in the second quantization representation may be found in [115]. For our case

$$[\hat{S}^{2}, \hat{H}_{1}] = \sum_{lkj} [h_{\uparrow}(l,k) - h_{\downarrow}(l,k)] (\hat{A}_{l\downarrow}^{+} \hat{A}_{j\uparrow}^{+} \hat{A}_{j\downarrow} \hat{A}_{k\uparrow} - \hat{A}_{l\uparrow}^{+} \hat{A}_{j\downarrow}^{+} \hat{A}_{j\uparrow} \hat{A}_{k\downarrow}).$$
(145)

Expression (145) proves our statement. For the Hamiltonian (119) with parameters (135) and (139) conditions (1) and (2) above are not satisfied because

$$h_{\uparrow}(k,\bar{k}) - h_{\downarrow}(k,\bar{k}) = a_{\uparrow}(k) - a_{\downarrow}(k) = -2a(k).$$

Using traditional rules for the calculation of averages let us determine the average value of the operator \hat{S}^2

$$\langle \Psi | \hat{S}^2 | \Psi \rangle = m_S^2 + \frac{N}{2} - Sp(R_{\uparrow}R_{\downarrow}) = m_S^2 + \frac{1}{2}\sum_{kl} \rho^2(k,l),$$
 (146)

where

$$\hat{S}_{z} |\Psi\rangle = m_{S} |\Psi\rangle, \quad \rho(k,l) = R_{\uparrow}(k,l) - R_{\downarrow}(k,l), \quad R_{\sigma}(k,l) = \langle \Psi | \hat{A}_{k\sigma}^{+} \hat{A}_{l\sigma} | \Psi \rangle.$$

Expression (146) is valid for any state described by a single-determinant real function. Taking the function (124) with parameters $\xi_{\sigma}(k)$ from (137) one obtains the following expressions correct to ~1/*N*

$$\rho(k,l) = \frac{a\delta_{kl}}{\sqrt{4\beta^2 \cos^2 k + a^2}} + \delta_{kl}, \qquad (147a)$$

$$\left\langle \Psi \left| \hat{S}^2 \right| \Psi \right\rangle = \frac{3}{4} + \frac{dN}{2\sqrt{1+d^2}}$$
(147b)

with $d = a |\beta|/2$.

It is seen from (147) that the average value of \hat{S}^2 in the states described by (123), (124), and (133) – (143) is proportional to the number of electrons *N*. To estimate the spin density quantitatively projection on a pure spin state is important [58]. One notes that when the parameters a_{σ} or $a_{\sigma}(k)$ satisfy Equations (133) or (134) then the operators $\hat{B}_{k\sigma}$ correspond to the states described in the coordinate representation by orbitals like AMO

$$\mathfrak{R}_{k\uparrow}(\vec{r}) = \cos x_k \cdot \varphi_k(\vec{r}) + \sin x_k \cdot \varphi_{\bar{k}}(\vec{r}), \qquad (148a)$$

$$\Re_{k\downarrow}(\vec{r}) = \cos x_k \cdot \varphi_k(\vec{r}) - \sin x_k \cdot \varphi_{\bar{k}}(\vec{r}).$$
(148b)

The parameter x_k is related to the parameters a(k) by the relation

$$\sin 2x_k = \frac{a(k)}{\sqrt{4\beta^2 \cos^2 k + a^2(k)}}.$$
 (149)

Projection on the lowest doublet state of the wave function (124) with parameters $a_{\sigma}(k)$ satisfying Equations (134) and (139) by the method due to Harriman [124] leads to the following expression for the spin density

$$\rho_{\mu} = \frac{2}{N} \sin \frac{\mu \pi}{2} \left\{ 1 + \frac{2}{3} \sum_{i=1}^{n} \left[1 - \frac{\omega_{1/2}(i)}{\omega_{1/2}} \right] \right\} + \frac{4}{3N} \sum_{i=1}^{n} \left[\frac{\omega_{1/2}(i)}{\omega_{1/2}} - 1 \right] \sin^{2}(\mu i \theta) + \frac{4}{3N} (-1)^{\mu+1} \sum_{i=1}^{n} \frac{\omega_{1/2}(i) a(i\theta) \sin^{2}(\mu i \theta)}{\omega_{1/2} \cdot \sqrt{4\beta^{2} \cos^{2}(i\theta) + a^{2}(i\theta)}},$$
(150)

where according to [124]

$$\omega_s = \sum_{k=0}^n (-1)^k {\binom{2s+k+1}{k}}^{-1} B_k, \qquad (151a)$$

$$\omega_{s}(i) = \sum_{k=0}^{n-1} (-1)^{k} {\binom{2s+k+1}{k}}^{-1} B_{k}(i), \qquad (151b)$$

$$B_{k} = \sum_{\{m_{1}, m_{2}, \dots, m_{k}\}}^{\binom{n}{k}} \prod_{m=m_{1}}^{m_{k}} \left[\frac{a^{2}(m\theta)}{4\beta^{2}\cos^{2}(m\theta) + a^{2}(m\theta)} \right],$$
(152a)

$$B_{k}(i) = \sum_{\substack{\{m_{1}, m_{2}, \dots, m_{k}\} \\ (m_{j} \neq m_{i})}}^{\binom{n-1}{k}} \prod_{m=m_{1}}^{m_{k}} \left[\frac{a^{2}(m\theta)}{4\beta^{2}\cos^{2}(m\theta) + a^{2}(m\theta)} \right],$$
(152b)

2s+1 is the state multiplicity required, $\binom{n}{k} = \frac{n!}{k!(n-k)!}$, summation in (152) is carried out over all possible choices of k numbers from $\{1, 2, ..., n\}$. It can be shown that for $N \to \infty$ (n = N/2) the values of B_k from (152) may be represented as

$$B_{k} = \left(\frac{N}{\pi}\right)^{k} \int_{0}^{\pi} f(x_{k}) dx_{k} \int_{0}^{x_{k}} f(x_{k-1}) dx_{k-1} \cdots \int_{0}^{x_{2}} f(x_{1}) dx_{1} = \left(\frac{N}{\pi}\right)^{k} \frac{F^{k}(\pi)}{k!} = \frac{(N\alpha)^{k}}{k!},$$
(153)

where

$$f(x) = \frac{d^2}{1+2d^2+\cos x}, \ \ \alpha = \frac{d}{2\sqrt{1+d^2}},$$

and according to [125]

$$F(y) = \int_{0}^{y} f(x) dx = 2\alpha \arctan\left(2\alpha \operatorname{tg} \frac{y}{2}\right)$$

with

$$F(0)=0, F(\pi)=\alpha\pi$$
.

In an analogous way one obtains for $B_k(i)$

$$B_{k}(i) = \frac{(N\alpha)^{k}}{k!} - 2f(i\theta)\frac{(N\alpha)^{k-1}}{(k-1)!}.$$
(154)

Thus, the expression (151) for s = 1/2 become

$$\omega_{1/2} = 2\sum_{k=0}^{n} (-1)^k \frac{(N\alpha)^k}{(k+2)!},$$
(155)

$$\omega_{1/2}(i) = \omega_{1/2} + 2(-1)^{n+1} \frac{(N\alpha)^n}{(n+2)!} - 4f(i\theta) \sum_{k=1}^{n-1} (-1)^k \frac{k(N\alpha)^{k-1}}{(k+2)!}.$$
 (156)

A general term in (155) and (156) $(N\alpha)^k / (k+2)!$ has a maximum for $k \sim N\alpha = x$

$$\frac{x^x}{(x+2)!} \sim \frac{e^x}{x^{5/2}}.$$
 (157)

For k = n = N/2 one obtains

$$\frac{(N\alpha)^{N/2}}{\left(\frac{N}{2}+2\right)!} \sim (2e\alpha)^{N/2} N^{-5/2} < N^{-5/2} .$$
(158)

Since it follows from (133) that for reasonable choices of the parameters

$$2\alpha < \frac{1}{3}$$
.

From the theory of alternating series [125, 126] increasing the upper limit of summation *n* in (155) and (156) to infinity leads to an error less than $N^{-5/2}$. Thus, the following equation is valid within this accuracy

$$\omega_{1/2}(x) = 2\sum_{k=0}^{\infty} (-1)^k \frac{x^k}{(k+2)!} = 2\frac{e^{-x}}{x^2} - \frac{2}{x^2} + \frac{2}{x}.$$
 (159)

For $N \to \infty$, $\omega_{1/2}(x) \to 0$.

Noting that according to (156)

$$\omega_{1/2}(x) - \omega_{1/2}(x,i) = -2f(i\theta)\frac{d\omega_{1/2}(x)}{dx}$$

one obtains

$$\omega_{1/2}(x) - \omega_{1/2}(x,i) = -4f(i\theta) \left(\frac{2}{x^3} - \frac{1}{x^2} - \frac{2e^{-x}}{x^3} - \frac{e^{-x}}{x^2}\right).$$
(160)

It follows from (160) and (159) that

$$\frac{\omega_{1/2}(i)}{\omega_{1/2}} \sim 1 + \frac{Const}{N\alpha}. \quad (N \to \infty).$$
(161)

Substituting (161) into (150) one obtains

$$\rho_{\mu} = (-1)^{\mu+1} \frac{4}{3\pi} \int_{0}^{\pi/2} \frac{a(x)\sin^{2}\mu x \, dx}{\sqrt{4\beta^{2}\cos^{2}x + a^{2}(x)}}.$$
(162)

Comparing (162) and (143) one sees that the projection lowers the amplitude of alternation of the spin densities on chain atoms by a factor of three. Nevertheless, for $N \rightarrow \infty$ the amplitude of alternation of the spin densities $|\rho_{\mu}|$ remains different from zero. Relative values of the spin densities on different atoms are not affected by the projection.

It was shown in paragraph 4.2 that the solution of the SCF equations for long polyene radicals by the DODS method leads to lower ground state energy compared with the traditional solution (128). The state corresponding to the latter is unstable with respect to a perturbation polarizing the closed shells of a radical. Comparing expressions (134), (136), and (143) with the results of [16] one notes that the appearance of an unpaired electron in the long polyene chain does not affect the main characteristics of the system. This is a natural consequence of Koopmans' theorem [75].

However, there is a certain difference in the properties of a long polyene with an even number of electrons and in long polyene radicals. If an electronic system has zero value of the spin projection \hat{S}_z then the spin density is identically equal to zero [127, 124]. A radical has a non-zero eigenvalue of \hat{S}_z and the latter conclusion is not valid. In fact, from (162) the projection of the wave function on to a doublet state leads only to quantitative changes in the spin density distribution. Therefore the DODS method predicts antiferromagnetism in long polyene radicals. There is here no contradiction with physical intuition which tells us that an addition of one electron to a large system must not affect its properties because, first of all, the spin of a system changes on a finite value and, secondly, as already mentioned above, main characteristics of the system including its energy are not changed by addition of one electron.

In the absence of experimental data we cannot compare the theory with experiment and insist on the indisputability of results obtained. In fact, the non-projected DODS method describes incorrectly the spin properties, for any non-relativistic Hamiltonian must commute with the operator \hat{S}^2 . After projection the wave function (124) is no longer an eigenfunction of the Hamiltonian which casts doubt on its adequacy as a true solution. On the other hand the DODS methods seems to be the best one in its account of electronic correlation in the one-particle approximation. Thus, the correct way to account for the spin polarization requires repudiation of the one-particle approximation. In fact, as follows from paragraph 4.3,

it is impossible to write down a one-electron Hamiltonian which accounts for the spin polarization correctly and at the same time commutes with the operator \hat{S}^2 . It follows from (136) and (142) that a finite forbidden zone appears in the spectra of oneparticle eigenvalues of the antiferromagnetic state (124) of the polyene radical, and this state is separated from the usual state (128). Extrapolation to $N \to \infty$ of the experimental data leads to a certain finite value of the frequency of the first electronic transition in the absorption spectra of polyenes [16]. It has been also shown in [16] that the correlation gap 2a is close to the interpolated experimental value. Nevertheless it should be noted that the interpretation of the excited states in the DODS method is still not clear. The antiferromagnetic state in long polyene radicals obtained above is, as suggested in [107], one of the phase states in systems like large alternant hydrocarbons.

Now we come back to the local electronic states in polyene chains with an impurity atom (§ 2.2) using unrestricted Hartree – Fock approach.

5. The Influence of an Impurity Atom on π -electronic Structure of Long Polyenes using the UHF Approach

It is well known from optical experiments [128] that the frequency of the first electronic transition in polyenes tends to a non-zero value when the polyene chain is lengthened. Until recently this energy gap was supposed to arise from the instability of the equal-bond polyene configuration with respect to the bond alternation [129, 130]. Nevertheless, it has recently been shown that the unrestricted Hartree – Fock (UHF) approach taking into account electron correlation can be used to describe the π -electronic spectra of large conjugated systems like polyenes, cumulenes, polyacenes, and graphite [16, 17, 107, 109 – 111, 108, 6]. Note that the papers [6, 16, 108] have dealt with the electronic structure of regular ideal polyene chains consisting of an even [16, 108] or odd [6] number of carbon atoms.

Comparing with experiment only the values of energy gaps, obtained in the two different models, do not make it clear which of these models or their combination [131] is more realistic. One of the possible methods of investigating the electronic structure of any periodic systems is to study the influence of the appropriately introduced defects on the energy spectra of these systems. Thus, to study the effect of disturbed periodicity on the electronic structure of polyene chains by means of the UHF method is of interest. The same problem has been discussed in [1, 2, 4] under the assumption that the energy gap is due to the bond alternation.

5.1. The UHF Solution for Long Polyene Chains with an Impurity Atom

As follows from paragraphs 2 and 4, the UHF equations for an ideal polyene chain have the following general form in the orthogonal AO representation [6, 16, 108]

$$\left(\alpha_{0} + \frac{\gamma}{2} + \varepsilon_{k}^{(j)} \right) C_{k\sigma}^{(j)}(\mu) = \sum_{\nu=1}^{N} \hat{H}_{\sigma}(\mu, \nu)$$

$$\equiv [\alpha_{0} + \gamma n_{\mu\sigma}^{(0)}] C_{k\sigma}^{(j)}(\mu) + \beta [(1 - \delta_{\mu,1}) C_{k\sigma}^{(j)}(\mu - 1) + (1 - \delta_{\mu,N}) C_{k\sigma}^{(j)}(\mu + 1)],$$
(163)

where α_0 and β are the Coulomb and resonance integrals, γ is the electron repulsion integral,

$$n_{\mu\sigma}^{(0)} = \sum_{k < \pi/2} [C_{k\sigma}^{(1)}(\mu)]^2$$

are the electron populations of the μ -th AO with σ -spin, $\sigma = \uparrow, \downarrow$.

The solution of (163) is defined by the relations

$$C_{k\sigma}^{(1)}(\mu) = \sqrt{\frac{2}{N}} [1 + (-1)^{\mu + 1} \xi_k \tau_\sigma] \sin \mu k / \sqrt{1 + \xi_k^2}, \qquad (164a)$$

$$C_{k\sigma}^{(2)}(\mu) = \sqrt{\frac{2}{N}} [(-1)^{\mu+1} - \xi_k \tau_\sigma] \sin \mu k / \sqrt{1 + \xi_k^2}, \qquad (164b)$$

$$\varepsilon_k^{(1)} = -\varepsilon_k^{(2)} = -\sqrt{4\beta^2 \cos^2 k + a^2} , \qquad (165)$$

where $N \gg 1$ is the number of carbon atoms in the chain. The self-consistent value of *a* is found from the equation

$$\frac{\gamma}{\pi} \int_{0}^{\pi/2} dk (4\beta^2 \cos^2 k + a^2) = 1, \qquad (166)$$

$$\xi_{k} = \left[2\beta\cos k + \sqrt{4\beta^{2}\cos^{2}k + a^{2}}\right]/a, \quad \tau_{\sigma} = \begin{cases} 1, & (\sigma = \uparrow) \\ -1, & (\sigma = \downarrow) \end{cases}.$$
(167)

The width of the forbidden zone between the energy levels $\varepsilon_k^{(1)}$ occupied in the ground state and empty levels $\varepsilon_k^{(2)}$ is equal to 2a. It follows from (164) – (167) that

$$n_{\mu\sigma}^{(0)} = \frac{1}{2} + (-1)^{\mu+1} \frac{2\gamma\tau_{\sigma}}{\pi} \int_{0}^{\pi/2} dk \frac{\sin^{2}\mu k}{\varepsilon_{k}^{(2)}} = \frac{1}{2} + (-1)^{\mu+1} \delta_{\mu}.$$
 (168)

As seen from (168), the values of δ_{μ} depend on an atom number μ . The analysis of (168) shows that this dependence occurs near the chain boundary:

$$\delta_{\mu} \approx \delta + \left(\frac{1}{2}\right)^{\mu - 1} \Delta \delta, \qquad (169)$$

where $\delta = a / \gamma = 0.21$, $\Delta \delta = 0.06$ with $\beta = -2.4 \text{ eV}$ and $\gamma = 5.4 \text{ eV}$ [16].

Using the UHF method we now consider the electronic structure of a long polyene chain with the *v*-th atom substituted. We make an assumption that such a substitution can be approximated by changing an appropriate Coulomb integral as $\alpha_v = \alpha_0 + t$. As seen from (163), the change of γ corresponding to perturbed atom can be taken into account by an appropriate change of the effective value of α . We shall consider here such substitutions which can be described by the change of the parameters α and γ only, *i.e.* the values of β are considered to be close to those for ideal polyenes. There are a number of substitutions which satisfy the conditions above, *e.g.* H \rightarrow CH₃, C \rightarrow N.

The UHF Hamiltonian for polyenes (163) is a non-linear operator since it contains $n_{\mu\sigma}^{(0)}$ (168). Therefore, a direct application of the local-perturbation theory [132] developed for linear Hamiltonians [20, 21, 24], *e.g.*, for the tight binding method, requires an justification. The correct solution involves an iteration procedure usual for the calculations by the SCF methods. Consequently, one can use the local-perturbation theory for each iteration. The equation for eigenfunctions and eigenvalues in the case of long polyenes with the substitution has the following form for the first iteration, *e.g.*, see [20, 21]

$$(\hat{H}_{\sigma} + t\hat{\Lambda} - z_{\sigma})\varphi_{\sigma} = 0, \qquad (170)$$

where \hat{H}_{σ} is given by (163), and operator $\hat{\Lambda}$ is defined by

$$(g, \hat{\Lambda} \varphi) \equiv \sum_{\mu, \mu'} g^*(\mu) \Lambda(\mu, \mu') \varphi(\mu') = g^*(\nu) \varphi(\nu).$$
(171)

Let us present some general results which follow from [20,21]. Eigenvalues $z_{q\sigma}^{(i)}$ of the Equation (170) are determined by

$$1 + t \sum_{k,j} \frac{[C_{k\sigma}^{(j)}(\nu)]^2}{\varepsilon_k^{(j)} - z_{q\sigma}^{(i)}} = 0.$$
(172)

It follows from (172) that a perturbation of type (171) gives rise to the infinitesimal shifts of zone levels

$$z_{k\sigma}^{(i)} = \varepsilon_k^{(i)} + \frac{\pi}{N} \frac{d\varepsilon_k^{(i)}}{dk} \Theta_{k\sigma}^{(i)}.$$
(173)

The perturbation of the type (171) can also give rise to a local state splitting off zones. This question will be discussed in the next section. Now, we consider the effect of the substitution of an atom placed near the end of polyene chain $(v \ll N)$. Then the shifts in a quasi-continuous spectrum are determined by the equation (see Appendix 5.3 below)

$$\operatorname{ctg} \pi \Theta_{k\sigma}^{(i)} = -\frac{\sin 2k}{2\lambda L_{k\sigma}^{(i)}(\nu)\sin^2 \nu k} \left[1 - \lambda L_{k\sigma}^{(i)}(\nu) \frac{\sin 2\nu k}{\sin 2k} \right], \tag{174}$$

where $\lambda = t / |\beta|$, and

$$L_{k\sigma}^{(i)}(\nu) = \frac{1}{2|\beta|} [\varepsilon_k^{(i)} + (-1)^{\nu} a \tau_{\sigma}].$$
(175)

The eigenfunctions corresponding to the eigenvalues (173) can be written as (see Appendix in [])

$$\varphi_{k\sigma}^{(i)}(\mu) = \sqrt{\frac{2}{N}} \widetilde{C}_{k\sigma}^{(i)}(\mu) \sin(k \ast \mu - \pi \Theta_{k\sigma}^{(i)}), \qquad (\mu > \nu), \qquad (176)$$

$$\varphi_{k\sigma}^{(i)}(\mu) = \sqrt{\frac{2}{N}} \widetilde{C}_{k\sigma}^{(i)}(\mu) \sin(k\nu - \pi \Theta_{k\sigma}^{(i)}) \frac{\sin \mu k}{\sin \nu k}, \quad (\mu < \nu), \tag{177}$$

$$\varphi_{k\sigma}^{(i)}(\nu) = \sqrt{\frac{1}{2N}} \frac{d\varepsilon_k^{(i)}}{dk} \sin \Theta_{k\sigma}^{(i)} / (t\widetilde{C}_{k\sigma}^{(i)}(\nu)\sin k\nu), \qquad (178)$$

where

$$C_{k\sigma}^{(i)}(\mu) = \sqrt{\frac{2}{N}} \widetilde{C}_{k\sigma}^{(i)}(\mu) \sin k\mu, \quad k^* = k + \frac{\pi}{N} \Theta_{k\sigma}^{(i)}$$

It follows from (176) that the perturbation results in the phase shift of the eigenfunctions for $\mu > \nu$. In order to define under what conditions the relations (172) – (178) correspond to the self-consistent solution of Eq. (170) we evaluate $n_{\mu\sigma}$. Transforming (176) yields for the zone-state density at the μ -th atom

$$[n_{\mu\sigma}^{(1)}]_{zone} = \sum_{k} [\varphi_{k\sigma}^{(1)}(\mu)]^{2} = \frac{1}{2} + (-1)^{\mu+1} \delta_{\mu} \tau_{\sigma} + \frac{a}{\pi} \int_{0}^{\pi/2} dk [\cos(2\mu k - 2\pi \Theta_{k\sigma}^{(i)})] / \varepsilon_{k}^{(2)}. \quad (\mu > \nu)$$
(179)

Comparing (179) with (168) one can see that the perturbation effect on the zonestate density is transferred along the chain in the same way as the influence of its boundary, *i.e.* it sharply attenuates: $2^{|\mu-\nu|}$ times at the distance $|\mu-\nu|$. Thus, if $\mu-\nu \gg 1$ then (179) leads to $n_{\mu\sigma}^{(1)} = n_{\mu\sigma}^{(0)}$. It means that regardless of the non-linearity of the UHF equations, the impurity effect is local as in the case of linear Hamiltonians. Following (179) one can obtain for the electron density at the impurity atom (see Appendix below in § 5.3)

$$n_{\nu\sigma}^{(1)} = \frac{d}{dt} \sum_{k} (z_{k\sigma}^{(1)} - \varepsilon_{k}^{(1)}).$$
(180)

Taking into consideration Coulson's and Lonquet-Higgins' relation [73], we reduce the expression (180) to the form

$$n_{\nu\sigma}^{(1)} = \frac{d}{dt} \frac{1}{2\pi i} \oint_C z \, d \ln[M_{\sigma}(z) / M_{\sigma}^{(0)}(z)], \qquad (181)$$

where the integration is in the positive direction along the infinite half-circle (Re z < 0) and imaginary axis in the complex plane z; $M_{\sigma}(z)$ and $M_{\sigma}^{(0)}(z)$ are determinants which vanish at the points $z = z_{k\sigma}^{(i)}$ and $z = \varepsilon_{k}^{(1)}$, respectively. The expression (181) can be written as [133]

$$n_{\nu\sigma}^{(1)} = \frac{d}{dt} \frac{1}{2\pi i} \oint_C z \, d \ln[1 - t \, G_{0\sigma}(\nu, \nu; z)] = -\frac{1}{2\pi i} \oint_C dz \frac{d}{dt} \ln[1 - t \, G_{0\sigma}(\nu, \nu; z)], \quad (182)$$

where the function

$$G_{0\sigma}(\nu,\mu;z) = \sum_{kj} \frac{C_{k\sigma}^{(j)}(\nu)C_{k\sigma}^{(j)}(\mu)}{z - \varepsilon_k^{(j)}}$$
(183)

is the Green function:

$$\sum_{\mu'=1}^{N} [\hat{H}_{\sigma}(\mu,\mu') - z\delta_{\mu\mu'}]G_{0\sigma}(\mu',\nu;z) = -\delta_{\mu\nu'}$$

The equivalence of expressions (181) and (182) results from the fact that in accordance with (172) the functions in brackets in (181) and (182) have simple poles and zeros at the same points. Having failed to obtain general analytical expressions for (179) or (181) we now discuss some limiting cases. Let $|\lambda| \ll 1$. Then the integrand in(182) can be expanded in the series of λ

$$n_{\nu\sigma}^{(1)} = \frac{1}{2\pi i} \oint_{C} dz \, G_{0\sigma}(\nu,\nu;z) \sum_{n=0}^{\infty} [\lambda \,|\, \beta \,|\, G_{0\sigma}(\nu,\nu;z)]^{n} \,.$$
(184)

According to (183) $|\beta G_{0\sigma}(v,v;z)| < 1$ if $z \in C$. Therefore, the series in (184) converges regularly if $|\lambda| < 1$ and $z \in C$. As a consequence, integrating (184) term by term yields

$$n_{\nu\sigma}^{(1)} = \sum_{k} [C_{k\sigma}^{(1)}(\nu)]^2 \sum_{n=0}^{\infty} [\lambda L_{k\sigma}^{(1)}(\nu) \sin 2\nu k / \sin 2k]^n .$$
(185)

It follows from (185) that

$$n_{\nu\sigma}^{(1)} = n_{\nu\sigma}^{(0)} + \mathcal{O}(\lambda), \quad |\lambda| \ll 1.$$
(186)

Thus, if $|\lambda|$ is small, the solution of (170) given by (172) – (180) and corresponding to the first iteration of the self-consistency procedure for a long polyene chain with impurity is a self-consistent one. The equation of second iteration has the following form

$$\sum_{\mu'=1}^{N} \{ \hat{H}_{\sigma}(\mu,\mu') + t\Lambda(\mu,\mu') + \lambda [n_{\mu\sigma}^{(1)} - n_{\mu\sigma}^{(0)}] \delta_{\mu\mu'} - z\delta_{\mu\mu'} \} \varphi_{\sigma}(\mu') = 0.$$
(187)

Let us consider this equation for the case v=1, *i.e.* when the perturbation is localized at the first atom of the chain. It follows from (185) that

$$n_{1\sigma}^{(1)} - n_{1\sigma}^{(0)} = \sum_{n=1}^{\infty} \lambda^n (-1)^n f_{n\sigma} = -\lambda \,\Delta^{(1)} / \gamma \,, \tag{188}$$

where $\Delta^{(1)} > 0$, and

$$f_{n\sigma} = \frac{1}{\pi} \int_{0}^{\pi/2} dk \sin^2 k \frac{(\sqrt{\cos^2 k + d^2} + d\tau_{\sigma})^{n+1}}{\sqrt{\cos^2 k + d^2}}.$$

As seen from (188), the correction $-\lambda \Delta^{(1)}$ to the perturbation has the opposite sign to the initial perturbation $\lambda |\beta|$. Consequently, if λ is finite, the impurity is screened with zone electrons, as one should expect. It means that the effective value of the perturbation parameter $|\lambda'|$ is less than $|\lambda|$. It is easy to verify using (185) that this result is also valid if $\nu \neq 1$.

In order to evaluate differences $n_{\mu\sigma}^{(1)} - n_{\mu\sigma}^{(0)}$ for $\mu > \nu$ we now consider another limiting case: $|\lambda| \rightarrow \infty$. Then it follows from (174) that $\pi \Theta_{k\sigma}^{(i)} \rightarrow \nu k$. Hence, the relations (176) – (178) take the form

$$\lim_{|\lambda| \to \infty} \varphi_{k\sigma}^{(i)}(\mu) = \begin{cases} C_{k\sigma}^{(i)}(\mu - \nu), & (\mu > \nu) \\ 0, & (\mu \le \nu) \end{cases}$$
(189)

It follows from (189) that a strong perturbation tears the link consisting of v atoms of the chain. It is obvious that the functions (189) are self-consistent for the chain consisting of $N - v \approx N$ atoms because they coincide with the self-consistent zone functions of an ideal polyene chain. Substituting (189) into (179) and using (168) and (169) one obtains

$$|n_{\mu\sigma}^{(1)} - n_{\mu\sigma}^{(0)}| = |\delta_{\mu\nu} - \delta_{\mu}| \le |\delta_1 - \delta_2| = 0.09.$$
(190)

It means that the changes of values $n_{\mu\sigma}(\mu > \nu)$ are small even though the parameter $|\lambda|$ changes from zero to infinity. Thus, in order to obtain the zone functions $\varphi_{k\sigma}^{(i)}(\mu)$ of a long polyene chain with the *v*-th atom substituted $(\nu \ll N)$ as $\mu > \nu$, it is quite sufficient to restrict oneself to the first iteration of the self-consistency procedure for any value of the perturbation parameter λ . In particular, if $\nu = 1$ one can suppose that $n_{\mu\sigma}^{(1)} - n_{\mu\sigma}^{(0)} = \delta_{\mu l}(-\lambda \Delta^{(1)}/\gamma)$. It means that the non-linearity of Eq. (170) can be neglected except for the fact that an initial perturbation parameter λ is to be replaced by its effective value λ' , $|\lambda'| < |\lambda|$. On the other hand, if $\nu \neq 1$ and $|\lambda| \gg 1$ then functions $\varphi_{\sigma}(\mu) \quad (\mu < \nu)$ are to be close to the corresponding functions of a short polyene chain consisting of $\nu - 1$ atoms. It should be also noted that calculating $n_{\mu\sigma}^{(1)}$ -values, we neglect the contribution of local-state functions, which have the amplitude (see Appendix below in § 5.3)

$$|\varphi_{p\sigma}(\mu)| = Const(e^{-|\mu-\nu|q_0/2} + e^{-|\mu+\nu|q_0/2}), \qquad (191)$$

where $q_0 > 0$. Hence it is clear that the functions are localized near the substituted atom. If $|\lambda| \gg 1$ then $q_0 \gg 1$, *i.e.* $\varphi_{p\sigma}(\mu) \sim \delta_{\mu\nu}$; if $|\lambda| \ll 1$ then $\varphi_{p\sigma}(\mu) \sim \lambda$ (see Appendix below in § 5.3). Thus, we are taking into account that the local-state functions does not affect the relations (186) and (190).

5.2. Local States

General results obtained above can be used to consider the local electronic states in polyene chains with impurity.

As stated by Lifshits [20, 21] and Koster and Slater [24], the wave functions of local states are determined by the equations

$$\varphi_{\sigma}(\nu) = -\sum_{\mu,\mu'} G_{0\sigma}(\nu,\mu';z) t_{\mu',\mu} \varphi_{\sigma}(\mu) .$$
(192)

Here $t_{\mu\nu}$ is the matrix elements of perturbation produced by substitution. If, for example, only one of the Coulomb integrals changes $\alpha_{\nu} \rightarrow \alpha_{\nu 0} + t\Delta \alpha_{\nu 0}$, then $t_{\mu\mu'} = t\delta_{\mu\mu'}\delta_{\mu\nu_0}$. To solve (192) the following relation should be satisfied

$$Det[G_{0\sigma}(\mu,\mu';z)t_{\mu\mu'} + \delta_{\mu\mu'}] = 0.$$
(193)

The relation (193) gives the equation for evaluating the energies of local states. Substituting $\varepsilon_k^{(j)}$ and $C_{k\sigma}^{(j)}(\mu)$ from (164) – (165) into (183) one can obtain expressions for $G_{0\sigma}(\mu, v; z)$ for the most interesting case of local states in the forbidden zone:

$$\begin{array}{l}
G_{0\sigma}(2\mu,2\nu;z_{\sigma}) = (z_{\sigma} - a\tau_{\sigma})(2\beta^{2}\mathrm{sh}\Theta)^{-1}(-1)^{\mu-\nu}[e^{-|\mu-\nu|\Theta} - e^{-|\mu+\nu|\Theta}],\\
G_{0\sigma}(2\mu-1,2\nu-1;z_{\sigma}) = (z_{\sigma} + a\tau_{\sigma})(2\beta^{2}\mathrm{sh}\Theta)^{-1}(-1)^{\mu-\nu}[e^{-|\mu-\nu|\Theta} + e^{-|\mu+\nu|\Theta}],\\
G_{0\sigma}(2\mu-1,2\nu;z_{\sigma}) = (-1)^{\mu-\nu}(\beta\,\mathrm{sh}\Theta)^{-1}[\mathrm{sh}\mu\Theta - \mathrm{sh}(\mu-1)\Theta], \quad (\nu \ge \mu)\\
G_{0\sigma}(2\mu-1,2\nu;z_{\sigma}) = (-1)^{\mu-\nu}(\beta\,\mathrm{sh}\Theta)^{-1}[1 - e^{\Theta}]e^{-\mu|\Theta}\mathrm{sh}\mu\Theta, \quad (\nu < \mu)
\end{array}$$
(194)

where Θ is given by the relation

$$\operatorname{ch}\Theta = \frac{-(z_{\sigma}^2 - a^2 - 2\beta^2)}{2\beta^2}$$

The Green functions determined by (194) are identical with those for a diatomic $(\dots - A - B - A - B - \dots)$ chain with equal bonds in tight binding approximation (see the expressions (8a) – (8d) in paragraph 2 above and (9) – (10) in [4] for $\beta_1 = \beta_2$ and $z = a\tau_{\sigma}$). If the values of $n_{v\sigma}$ were independent of v this fact would be considered as trivial because the Hamiltonian (163) and that which is used in paragraph 2 above and in [4] are identical. However, as follows from (168), $n_{v\sigma}$ depends on v and the self-consistent field near the end of a chain differs from the one in the middle of a chain. Thus, the Hamiltonian (163) differs from the Hamiltonian of [4] and coincides with the tight-binding Hamiltonian for the diatomic chain in the case of the specific change of the Coulomb integrals α_{μ}^{A} and α_{μ}^{B} when increases. As the Green functions (194) and (8a) – (8d) in paragraph 2 above and (9) – (10) in [4] are identical, one can use the results of paragraph 2 and [4] to consider the conditions under which the local states arise. These conditions corresponding to the simplest perturbation, which is described by the change of the Coulomb integral of an atom or resonance integral of a bond, can be formulated as follows.

The infinitesimal change $\Delta \alpha$ of the Coulomb integral of an odd atom is sufficient to give rise to a local state in the forbidden zone.

On the other hand, the perturbation of an even atom with number 2l generates the local state in the forbidden zone only if

$$|\Delta \alpha| > 2\beta^2 (\sqrt{a^2 + 4\beta^2} \pm a)^{-1} \frac{1}{l}.$$
 (195)

The wave function and the energy of the local state caused by the perturbation of the first atom will be considered in more details. Substituting v = 1 and $t_{\mu\nu} = t \delta_{\mu\nu} \delta_{\mu 1}$ into (193) one can obtain

$$1 + \lambda (\tilde{z}_{p\sigma} - d\tau_{\sigma})(1 + e^{-q_0}) / \operatorname{sh} q_0 = 0$$
(196)

with

$$ch q_0 = 1 + 2(d^2 - \tilde{z}_{p\sigma}^2), \quad \tilde{z}_{p\sigma} = \frac{z_{p\sigma}}{|2\beta|} < d,$$
(197)

and

$$1 - \lambda (\tilde{z}_{p\sigma} - d\tau_{\sigma}) (1 - e^{-Q_0}) / \operatorname{sh} Q_0 = 0$$
(198)

with

$$\operatorname{ch} Q_0 = 2(\tilde{z}_{p\sigma}^2 - d^2) - 1, \quad |\tilde{z}_{p\sigma}| > \sqrt{1 + d^2}.$$
 (199)

As seen from (196), the infinitesimal change of the Coulomb integral of the first atom actually leads to the local state appearing in the forbidden zone. Its energy distance from the edge of the gap is equal to

$$|\tilde{z}_{p\sigma} - a| \approx a\lambda^2 = 1.1\lambda^2 eV$$

In the case of large perturbation $\lambda \to \pm \infty$ the Eq. (198) gives for the energy of local state

$$\tilde{z}_{p\sigma} \rightarrow \pm \infty$$
.

Using the general equation (192) one can obtain the wave function of a local state, the first atom being perturbed

$$\varphi_{p\sigma}(\mu) = \tau_{p\sigma}(-1)^{\frac{\mu-1}{2}} e^{-\frac{\mu-1}{2}q_0}, \quad (\mu \text{ is odd})$$
 (200a)

$$\varphi_{p\sigma}(\mu) = \tau_{p\sigma} \lambda(-1)^{\frac{\mu}{2}} e^{-\frac{\mu}{2}q_0}, \quad (\mu \text{ is even})$$
(200b)

where

$$\tau_{p\sigma} = \frac{1 - e^{-2q_0}}{1 + \lambda^2 e^{-2q_0}}$$

and q_0 are determined by (197). In accordance with (198) the larger the perturbation parameter the higher the degree of the localization of the wave function of the impurity level in the region of impurity. It can be shown that the situation is exactly the same when $v \neq 1$.

If the perturbation of a chain can be simulated by a small change of the resonance integral of a bond, then it does not cause the local states to split off the allowed bands.

Derived above properties of local states differ essentially from those obtained under the assumption that the energy gap in the spectra of long polyene chains is due to the bond alternation []. In the latter case the perturbation giving rise to the local state in the forbidden zone is $\sim 1/l$, (*l* being the number of a perturbed atom) both for even and odd *l*. Thus. In contrast to the model above, the generation of a "surface" state (*l*=1) is most difficult. In addition, the appropriate change of the resonance integral of a bond (weakening of a stronger bond or strengthening of a weaker bond) leads to two local states appearing in the forbidden zone.

The recent theoretical results [111, 131, 134] provide an evidence in favor of the electron-correlation nature of the polyene-spectrum gap. But it appears likely that the question still remains doubtful (see, *e.g.*, [135 – 137]). The above mentioned differences in the properties of local states can be used to study experimentally whether the energy gap is due to electron correlations or its appearance is a consequence of the bond alternation.

The results obtained so far seem to be useful in the study of the following question. In contrast to polyenes, the first optical transition frequency in the symmetric cyanide dyes tends to zero when the conjugated chain of the dye is lengthened [138]. Nevertheless, the long conjugated chains of cyanide dyes and polyenes differ by their end groups only. Then, it is natural to correlate the above difference in the optical spectra of these two classes of molecules with the effect of nitrogen atoms of the end groups of cyanide dyes. Indeed, the insertion of nitrogen atoms into the polyene chain can give rise to a local state near the bottom of an empty zone. As a consequence, the first optical transition corresponds to the transition of an electron from this local level to an empty zone. The energy of this transition is small for long chains. Then, the extrapolation of experimental data can give zero value (or nearly zero value) of the first transition frequency. Let us also note that the conjugated chains of cyanide dyes consist of an odd number of atoms N. But, the number of π -electrons N_e is even: $N_e = N \pm 1$. If $N_e = N + 1$ then the local state considered above is occupied in the ground state. If $N_e = N - 1$ then there is a hole in a valence zone of cyanide dye and the explanation of optical experiments is trivial.

5.3. Appendix

We first deal with the derivation of main relations used in § 5.1, namely, will consider the sum in (172):

$$-G_{0\sigma}(v,v;z_{q\sigma}^{(i)}) \equiv \sum_{k,j} \frac{|C_{k\sigma}^{(j)}(v)|^2}{\varepsilon_k^{(j)} - z_{q\sigma}^{(i)}} = \frac{4}{N} \sum_k \frac{\sin^2 k v [\varepsilon_q^{(i)} + a \tau_{\sigma}(-1)^v]}{\varepsilon_k^2 - \varepsilon_q^2 - \frac{2\pi}{N} \Theta_{q\sigma}^{(i)} \varepsilon_q^{(i)} \frac{d\varepsilon_q^{(i)}}{dq}} + O\left(\frac{1}{N}\right)$$

$$\equiv [\varepsilon_q^{(i)} + a \tau_{\sigma}(-1)^v] S^{(i)}(q,\sigma),$$
(A1)

where we have used (173). To calculate $S^{(i)}(q,\sigma)$ we shall use the method developed by Lifshits [20, 21]. Let us denote

$$S^{(i)}(q,\sigma) = S_1^{(i)}(q,\sigma) + S_2^{(i)}(q,\sigma)$$
(A2)

and evaluate each sum separately, namely:

$$\begin{split} S_{1}^{(i)}(q,\sigma) &= \frac{4}{N^{2}} \sum_{k \neq q} \frac{2\pi \Theta_{q\sigma}^{(i)}(d\varepsilon_{q}^{(i)}/dq) \varepsilon_{q}^{(i)} \sin^{2}kv}{(\varepsilon_{k}^{2} - \varepsilon_{q}^{2}) \left(\varepsilon_{k}^{2} - \varepsilon_{q}^{2} - \frac{2\pi}{N} \Theta_{q\sigma}^{(i)} \frac{d\varepsilon_{q}^{(i)}}{dq}\right)} - \frac{2}{\pi} \frac{\sin^{2}qv}{\Theta_{q\sigma}^{(i)} \varepsilon_{q}^{(i)} \frac{d\varepsilon_{q}^{(i)}}{dq}} \\ &= \frac{2\sin^{2}qv}{\varepsilon_{q}^{(i)}(d\varepsilon_{q}^{(i)}/dq)} \left[\frac{2}{N^{2}} \sum_{k \neq q} \frac{\pi \Theta_{q\sigma}^{(i)}}{(k - q) \left(k - q - \frac{\pi}{N} \Theta_{q\sigma}^{(i)}\right)} - \frac{1}{\pi \Theta_{q\sigma}^{(i)}} \right] + O\left(\frac{1}{N}\right) \quad (A3) \\ &\approx \frac{2\sin^{2}qv}{\varepsilon_{q}^{(i)}(d\varepsilon_{q}^{(i)}/dq)} \left[\sum_{n \neq 0} \frac{\pi \Theta_{q\sigma}^{(i)}}{n\pi(n\pi - \pi \Theta_{q\sigma}^{(i)})} - \frac{1}{\pi \Theta_{q\sigma}^{(i)}} \right] = -2\sin^{2}qv \operatorname{ctg}\left[\frac{\pi \Theta_{q\sigma}^{(i)}}{\varepsilon_{q}^{(i)}(d\varepsilon_{q}^{(i)}/dq)} \right], \\ &\qquad S_{2}^{(i)}(q,\sigma) = \frac{4}{N} \sum_{k \neq q} \frac{\sin^{2}kv}{\varepsilon_{k}^{2} - \varepsilon_{q}^{2}} = \frac{1}{2\pi\beta^{2}} \int_{C} \frac{1 - \cos kv}{\cos k - \cos 2q} dk + O\left(\frac{1}{N}\right), \quad (A4) \end{split}$$

where \int_{c}^{c} denotes the principal value of a corresponding contour integral taken from 0 to π . In order to evaluate (A4) we need to calculate

$$I = \int_{C} \frac{\cos kv}{\cos k - \cos 2q} dk = I_1 + I_2, \tag{A5}$$

where

$$I_{1} = \frac{1}{2} \int_{C} dx \frac{e^{ivx}}{\cos x - \cos q},$$

$$I_{2} = \frac{1}{2} \int_{C} dx \frac{e^{-ivx}}{\cos x - \cos q}.$$
(A6)

The integrals (A6) can be evaluated by the residue theory. The integral I_1 is taken along the contour C₁, and I_2 – along contour C₂ (fig. 4). Calculations give

Fig. 4. The contours for the evaluation of integrals (A6).

The substitution of (A7) into (A5) and (A4) results in the relation

$$S_{2}^{(i)}(q,\sigma) = -\frac{1}{2\beta^{2}} \frac{\sin 2vq}{\sin 2q}.$$
 (A8)

Equation (174) can be obtained from (A3), (A8), (A1), and (172). The eigenfunctions of (170) are defined as [20, 21]

$$\varphi_{q\sigma}^{(i)}(\mu) = -t \tau_{q\sigma}^{(i)} \sum_{k,j} \frac{C_{k\sigma}^{(j)}(\mu) C_{k\sigma}^{(j)}(\nu)}{\varepsilon_k^{(j)} - z_{q\sigma}^{(i)}}.$$
 (A9)

The sum in (A9) is calculated just like as $S_1^{(i)}(q,\sigma)$. Let us evaluate a normalization constant $\tau_{q\sigma}^{(i)}$, namely:

$$\sum_{\mu=1}^{N} [\varphi_{q\sigma}^{(i)}(\mu)]^{2} = \left[\frac{\tilde{C}_{q\sigma}^{(i)}(\nu)\sin q\nu}{d\varepsilon_{q}^{(i)}/dq} t\tau_{q\sigma}^{(i)} \right]^{2} \frac{2}{N} \sum_{k} \left(k - q - \frac{\pi}{N} \Theta_{q\sigma}^{(i)} \right)^{-2} + O\left(\frac{1}{N}\right)$$

$$= 2N (t\tau_{q\sigma}^{(i)})^{2} \left[\frac{\tilde{C}_{q\sigma}^{(i)}(\nu)\sin q\nu}{(d\varepsilon_{q}^{(i)}/dq)\sin \pi \Theta_{q\sigma}^{(i)}} t\tau_{q\sigma}^{(i)} \right]^{2} = 1.$$
(A10)

Substituting $\tau_{q\sigma}^{(i)}$ from (A10) into (A9) one obtains (176 – 178).

It follows from (A10) that

$$(t\tau_{q\sigma}^{(i)})^{2} = \sum_{k,j} \left(\frac{C_{k\sigma}^{(j)}(\nu)}{\varepsilon_{k}^{(j)} - z_{q\sigma}^{(i)}} \right)^{2} = \left(\frac{d \, z_{q\sigma}^{(i)}}{dt} \right)^{-1} \frac{d}{dt} \sum_{k,j} \frac{[C_{k\sigma}^{(j)}(\nu)]^{2}}{\varepsilon_{k}^{(j)} - z_{q\sigma}^{(i)}} = -\frac{1}{t^{2}} \left(\frac{d \, z_{q\sigma}^{(i)}}{dt} \right)^{-1}. \tag{A11}$$

Taking also into account that according with (A9) and (A10) $\varphi_{q\sigma}^{(i)}(\nu) = \tau_{q\sigma}^{(i)}$, one obtains (180).

Now let us consider functions $G_{0\sigma}(v,\mu;z)$, where

$$\frac{|z|}{2|\beta|} \notin (d, \sqrt{1+d^2}),$$

i.e., for states splitting off zones. Using (164) and (165) one obtains

$$G_{0\sigma}(v,v;z) = -\sum_{k,j} \frac{[C_{k\sigma}^{(j)}(v)]^2}{\varepsilon_k^{(j)} - z} = \frac{\tilde{z} + (-1)^v d\tau_\sigma}{\pi |\beta|} \int_0^{\pi} dk \left(1 - \cos vk\right) / (\alpha + \cos k)$$
(A12)

where

$$\tilde{z} = z/2 |\beta|, \quad d = a/2 |\beta|, \quad \alpha = 1 + 2(d^2 - \tilde{z}^2).$$

The integral in (A12) is calculated as the integral (A5) except the poles of the integrand are in the complex plane k on the lines $\operatorname{Re} k = 0$ $(\tilde{z}^2 > 1 + d^2)$ and $\operatorname{Re} k = \pi$ $(|\tilde{z}| < d)$. Having carried out the calculations one obtains

$$\int_{0}^{\pi} dk \frac{\cos \nu k}{\alpha + \cos k} = \begin{cases} (-1)^{\nu} \pi e^{-\nu q_{0}} / \operatorname{sh} q_{0}, & (\alpha > 0) \\ \pi e^{-\nu Q_{0}} / \operatorname{sh} Q_{0}, & (\alpha < 0) \end{cases}$$
(A13)

where

ch
$$q_0 = 1 + 2(d^2 - \tilde{z}^2), \quad (\tilde{z}^2 < d^2)$$

ch $Q_0 = 2(\tilde{z}^2 - d^2) - 1, \quad (\tilde{z}^2 > 1 + d^2)$

Using (A13) one can calculate all functions $G_{0\sigma}(v, \mu; z)$ with $\tilde{z}^2 > 1 + d^2$ or $\tilde{z}^2 < d^2$. In particular, one can obtain equations for local energies

$$1 - t G_{0\sigma}(v, v; z_{pz}) = 0$$
 (A14)

and for corresponding functions

$$\varphi_{p\sigma}(\mu) = t\tau_{p\sigma}G_{0\sigma}(\mu,\nu;z_{pz}). \tag{A15}$$

The relations (191), (194), (196) – (200) results from (A14) and (A15). If $|\lambda| \gg 1$, then it follows from (A13) and (A14) that $q_0Q_0 \gg 1$. Using (191) and (178) one can see that if $|\lambda| \ll 1$ then

$$\tau_{p\sigma}^{2} \sim t^{-2} (1 - e^{-2q}) \operatorname{sh}^{2} q, \quad (q = q_{0}, Q_{0})$$

 $|\varphi_{p\sigma}(\mu)|^{2} \sim \lambda^{2}.$ (A16)

hence

Finally we turn now to cumulenes which have two orthogonal π -systems, as compared with polyenes, and will end with the thorough discussion of the physical nature of the forbidden zone in quasi-one-dimensional electron systems.

6. Basics of π -Electron Model of Cumulenes

Cumulene molecules have the general formula $H_2C=(C=)_{N-2}CH_2$ and contain a linear chain of *N* carbon atoms. The inner N - 2 atoms are characterized by diagonal hybridization *sp* and are in the valence state $didi\pi_x\pi_y$. Hybridization of the end-C-atoms should be close to trigonal sp^2 , and these atoms can be in valence state $trtrtr\pi_x$ or $trtrtr\pi_y$. Properties of cumulenes are discussed in several reviews [139 – 142]. Even cumulenes (EC) with the ethylene as the first member of ECs are known to be planar with symmetry D_{2h} . In odd cumulenes (OC) with the allene [143] as the first

member of OCs the two end-groups are perpendicular to one another with symmetry D_{2d} . Both experimental facts are in accordance to valence bond theory.

The ease of *cis-trans* isomerization for the ECs or of stereoisomerization for the OCs is determined by the barrier height of internal rotation of the CH₂ end-groups. Rotation of one of the CH₂ groups by 180° returns the cumulene molecule to its initial state. It is a natural suggestion that the barrier height is determined by the energy of such a molecular conformation in which one of the CH₂ groups is turned by 90° in comparison with the most stable conformation. In the following under barrier height V we shall imply the difference between energies of the lowest singlet states of the molecular conformations with symmetry D_{2h} and D_{2d} .

The barriers V in cumulenes were considered theoretically in [144, 145, 8, 9]. Popov [145] used a simple Huckel method which leads to the conclusion that with an increase of the number of C atoms the barrier tends to zero which is actually simply obvious from physical point of view. σ -Bonds of cumulene chains have cylindrical symmetry and their energy does not depend upon the angle of rotation of the endgroups. Therefore if direct interaction of the end-groups is neglected the barrier height is determined by the energy change of the π -electrons with the change of the molecular conformation.

Cumulenes C_NH_4 have $2N - 2\pi$ -electrons. In accordance with the simple MO theory 2N - 2 levels can contain either N - 1 bonding levels and equally many antibonding levels in ECs or N - 2 bonding and equally many antibonding levels plus 2 nonbonding levels in OCs. In the former $2N - 2\pi$ -electrons occupy all N - 1 bonding levels; in the later – all N - 2 bonding levels and the two remaining electrons occupy the two-fold degenerate nonbonding level. The first distribution is energetically more favorable than the second one. This is achieved for even N for planar conformations and for odd N for twisted conformations. This may be considered as a simple explanation of the known experimental fact [142] that the stable conformation of the ECs is planar, but that of the OCs is twisted with perpendicular arrangements of planes of the end-groups. This very interesting property of the cumulenes was in fact first explained by van't Hoff [146] in 1877 using the tetrahedral model of the carbon atom.

Let us choose the coordinate system in a way so that in the conformation $D_{2h} \pi$ -AOs of the subsystem with N AOs are directed along x-axis and with N - 2 AOs – along y-axis. The z-axis passes through the C atoms. Conformation D_{2d} is formed by a rotation of one of the end-AO's by 90°. In this case the number of AOs which are directed along the x- and y-axis equals N - 1 in both cases.

In the conformation $D_{2h} \pi_x$ -states have symmetry b_{2g} and b_{3u} , and π_y -states $-b_{2u}$ and b_{3g} . In the conformation D_{2d} all π -MOs transform according to the irreducible representation *e*. Therefore in this conformation the frontier MOs (pair of nonbonding orbitals) is degenerated by symmetry. Accidental degeneration of the frontiers MOs in the conformation D_{2h} remains in the Pariser – Parr – Pople (PPP) [147, 148] approximation also, for in this case zero differential overlap approximation is used. It is removed by alternation of the bond lengths.

The lowest electronic configuration of the cumulene molecule in its unstable conformation has a multiplet structure with states ${}^{3}A_{2}$, ${}^{1}B_{1}$, ${}^{1}A_{1}$, and ${}^{1}B_{2}$ for ECs and ${}^{3}A_{u}$, ${}^{1}A_{u}$, ${}^{1}A_{g}$, and ${}^{1}A'_{g}$ for OCs. We shall see later that when electronic interaction is accounted for the lowest states become ${}^{3}A_{2}$, ${}^{1}B_{1}$, resp. ${}^{3}A_{u}$, ${}^{1}A_{u}$. The states ${}^{1}A_{1}$, ${}^{1}B_{2}$, resp. ${}^{l}A_{\varrho}$, ${}^{l}A_{\varrho}$ correspond to electron transfer between the perpendicular x- and ysubsystems of π -AOs. The molecule in its stable conformation, which is ${}^{I}A_{g}$ for ECs and ${}^{l}A_{l}$ for OCs has a closed shell. The degeneration of the frontier π -MOs is removed for inorganic cumulenes with alternating atoms of different electronegativity. To a smaller degree the same is true if the difference in the hybridization between the parameters of inner and outer C atoms is taken into account. But even in this case the lowest singlet state may be ${}^{1}A_{\mu}$ if the orbital energy splitting does not exceed the splitting of even and odd states.

In the following we shall neglect the difference in hybridization between outer and inner C atoms. This approximation is sufficiently good because the integrals for sp^2 and sp states are almost equal [149].

Let us the *x*- and *y*-MOs in the conformation D_{2h} write down as a linear combination of the π -AOs x_v and y_v with the chain of AOs y_v denoted by primed symbols

$$\varphi_i = \sum_{\nu} C_{\nu i} x_{\nu}, \quad \varphi'_i = \sum_{\nu} C'_{\nu i} y_{\nu}$$

The summation is extended over all AOs of the chain. In the same manner it is possible to set up the components of the degenerate pairs of the MOs in the conformation D_{2d} .

Let \hat{A}_i^+ be the creation operator for an electron *i* of orbital state φ_i and spin state α , and \hat{A}_i^+ be the same for spin state β . Degenerate orbital pairs of open shell will be denoted by the symbols *k* and *k'*, and orbitals of closed shell by *j* and *j'*. Then the wave functions of states with closed shell Ψ^c may be written as

$$\Psi^{c}({}^{1}A_{1},{}^{1}A_{g}) \equiv \Psi^{c},$$

$$\Psi^{c} = \prod_{j} \hat{A}_{j}^{+} \hat{A}_{j}^{+} \prod_{j'} \hat{A}_{j'}^{+} \hat{A}_{j'}^{+} |0\rangle'$$

where $|0\rangle$ is the vacuum state.

Wave functions of states with open shell Ψ^o will be written as follows:

$$\begin{split} \Psi^{o}({}^{3}A_{2}, {}^{3}A_{u}) &= \frac{1}{\sqrt{2}} (\hat{A}_{\bar{k}'}^{+} \hat{A}_{k}^{+} + \hat{A}_{k'}^{+} \hat{A}_{\bar{k}}^{+}) \Psi^{c}, \\ \Psi^{o}({}^{1}B_{1}, {}^{1}A_{u}) &= \frac{1}{\sqrt{2}} (\hat{A}_{\bar{k}'}^{+} \hat{A}_{k}^{+} - \hat{A}_{k'}^{+} \hat{A}_{\bar{k}}^{+}) \Psi^{c}, \\ \Psi^{o}({}^{1}B_{2}, {}^{1}A_{g}) &= \frac{1}{\sqrt{2}} (\hat{A}_{\bar{k}}^{+} \hat{A}_{k}^{+} - \hat{A}_{\bar{k}'}^{+} \hat{A}_{k'}^{+}) \Psi^{c}, \\ \Psi^{o}({}^{1}A_{1}, {}^{1}A_{g}') &= \frac{1}{\sqrt{2}} (\hat{A}_{\bar{k}}^{+} \hat{A}_{k}^{+} + \hat{A}_{\bar{k}'}^{+} \hat{A}_{k'}^{+}) \Psi^{c}. \end{split}$$

For these states the *z*-component of the total spin $M_s = 0$. Two other components of the triplet state ${}^{3}A_{2}$ or ${}^{3}A_{u}$ with $M_s = \pm 1$ are described by the functions

$$\hat{A}^+_{k'}\hat{A}^+_k\Psi^c$$
 and $\hat{A}^+_{\bar{k}'}\hat{A}^+_{\bar{k}}\Psi^c$.

Let us introduce the standard notations:

$$\begin{split} H_{k} &= \int \varphi_{\bar{k}}^{*} H^{core} \varphi_{\bar{k}} \, d\tau, \\ J_{ij} &= \int \varphi_{i}^{*} \varphi_{\bar{j}}^{*} \frac{1}{r_{12}} \varphi_{i} \varphi_{\bar{j}} d\tau_{1} d\tau_{2}, \\ K_{ij} &= \int \varphi_{\bar{i}}^{*} \varphi_{j}^{*} \frac{1}{r_{12}} \varphi_{i} \varphi_{\bar{j}} d\tau_{1} d\tau_{2}. \end{split}$$

Then the energy of states with closed shell will be:

$$E^{c}({}^{1}A_{1}, {}^{1}A_{g}) = 2\sum_{j}H_{j} + 2\sum_{j'}H_{j'} + \sum_{j_{1}j_{2}}(2J_{j_{1}j_{2}} - K_{j_{1}j_{2}}) + \sum_{j_{1}j'_{2}}(4J_{j_{1}j'_{2}} - 2K_{j_{1}j'_{2}}) + \sum_{j'_{1}j'_{2}}(2J_{j'_{1}j'_{2}} - K_{j'_{1}j'_{2}}) + E^{core},$$

where E^{core} is the core total energy. If we denote

$$E_{1} = E^{c} + H_{k} + H_{k'} + \sum_{j} (2J_{jk} - K_{jk} + 2J_{jk'} - K_{jk'}) + \sum_{j'} (2J_{j'k} - K_{j'k} + 2J_{j'k'} - K_{j'k'}),$$

where E^c means an expression which has the same structure as $E^c({}^{1}A_{1}, {}^{1}A_{g})$ above, the sums being taken over the closed shell only, the energy of the states with open shell are:

$$E^{o}({}^{3}A_{2}, {}^{3}A_{u}) = E_{1} + J_{kk'} - K_{kk'},$$

$$E^{o}({}^{1}B_{1}, {}^{1}A_{u}) = E_{1} + J_{kk'} + K_{kk'},$$

$$E^{o}({}^{1}B_{2}, {}^{1}A_{g}) = E_{1} + \frac{1}{2}(J_{kk} + J_{k'k'}) - K_{kk'},$$

$$E^{o}({}^{1}A_{1}, {}^{1}A_{g}') = E_{1} + \frac{1}{2}(J_{kk} + J_{k'k'}) + K_{kk'}.$$

Usually

$$J_{ij} < \frac{1}{2} (J_{ii} + J_{jj})$$

holds. This means that among the lower singlet states the lowest are ${}^{1}B_{1}$ and ${}^{1}A_{u}$.

Reducing the MOs to AOs the integrals over the AOs

$$\left\langle \kappa \lambda \left| \mu \nu \right\rangle = \int x_{\kappa}^{*}(1) x_{\mu}^{*}(2) \frac{1}{r_{12}} x_{\lambda}(1) x_{\nu}(2) d\tau_{1} d\tau_{2} \right\rangle$$

will have to be calculated. Zero differential overlap

$$\langle \kappa \lambda | \mu \nu \rangle = \langle \kappa \lambda | \mu \nu \rangle = \delta_{\kappa \lambda} \delta_{\mu \nu} \langle \kappa \kappa | \mu \mu \rangle = \delta_{\kappa \lambda} \delta_{\mu \nu} \gamma_{\kappa \mu}$$

will be used in this context.

Core integrals $H_{\mu\nu}$ with $\mu \neq \nu$ will be accounted for only in case of neighbouring atoms and renamed $\beta_{\mu\nu}(\beta_{\mu\mu} \equiv 0)$. Integrals between AOs π_x and $\pi_y H_{\mu\nu'}$ are zero for symmetry reasons. Integrals $H_{\mu\mu}$ will be calculated in the Goeppert-Mayer and Sklar approximation [150], neglecting penetration integrals

$$\begin{split} H_{\mu\mu} &= -I_{\mu} - \sum_{\nu} \gamma_{\mu\nu} - \sum_{\nu'} \gamma_{\mu\nu'} + \gamma_{\mu\mu}, \\ H_{\mu'\mu'} &= -I_{\mu} - \sum_{\nu} \gamma_{\mu'\nu} - \sum_{\nu'} \gamma_{\mu'\nu'} + \gamma_{\mu\mu}. \end{split}$$

Here I_{μ} is ionization potential of π -electron in the corresponding valence state and in the outer field of neighbouring neutral atoms. It is obvious that $I_{\mu'} = I_{\mu}$ as well as $\gamma_{\mu'\mu'} = \gamma_{\mu\mu}$. The summation runs over all AOs π_x resp. π_y .

Let us introduce the following notations for density matrix elements in AO representation:

$$P^{c}_{\mu\nu} = \sum_{j} C_{\mu j} C_{\nu j}, \quad P^{o}_{\mu\nu} = C_{\mu k} C_{\nu k}, \quad P^{T}_{\mu\nu} = 2P^{c}_{\mu\nu} + P^{o}_{\mu\nu}$$

and analogous expressions for the primed densities. For the states with closed shell $P_{\mu\nu}^o$ is equal to zero.

Using these notations and under the assumption of the approximations mentioned above we obtain

$$\begin{split} \sum_{j} J_{jk} &= \sum_{\mu\nu} P^{c}_{\mu\mu} P^{o}_{\nu\nu} \gamma_{\mu\nu}, \\ \sum_{j} K_{jk} &= \sum_{\mu\nu} P^{c}_{\mu\nu} P^{o}_{\mu\nu} \gamma_{\mu\nu}, \\ J_{kk'} &= \sum_{\mu'\nu} P^{o}_{\mu'\mu'} P^{o}_{\nu\nu} \gamma_{\mu'\nu}. \end{split}$$

In the zero differential overlap approximation all exchange integrals of the type $K_{ij'}$ are zero. When the necessary substitutions are done we get the following expressions for the energy of states with closed shell:

$$E^{c}({}^{1}A_{1}, {}^{1}A_{g}) = \sum_{\nu} (\gamma_{\nu\nu} - I_{\nu})P_{\nu\nu}^{T} + \sum_{\nu'} (\gamma_{\nu'\nu'} - I_{\nu'})P_{\nu'\nu'}^{T} + \sum_{\mu\nu'} \left\{ \left[\frac{1}{2} P_{\mu\mu}^{T} P_{\nu\nu}^{T} - P_{\nu\nu}^{T} - \frac{1}{4} (P_{\mu\nu}^{T})^{2} \right] \gamma_{\mu\nu} + P_{\mu\nu}^{T} \beta_{\mu\nu} \right\} + \sum_{\mu'\nu''} \left\{ \left[\frac{1}{2} P_{\mu'\mu'}^{T} P_{\nu'\nu'}^{T} - P_{\nu'\nu'}^{T} - \frac{1}{4} (P_{\mu'\nu'}^{T})^{2} \right] \gamma_{\mu'\nu'} + P_{\mu'\nu'}^{T} \beta_{\mu'\nu'} \right\} .$$
(201)
+
$$\sum_{\mu\nu'} (P_{\mu\mu}^{T} P_{\nu'\nu'}^{T} - P_{\nu'\nu'}^{T} - P_{\mu\mu}^{T}) \gamma_{\mu\nu'}$$

Further simplifications will follow if we take into account that for alternant hydrocarbons it holds that $P_{vv}^T = P_{v'v'}^T = 1[151]$. This is also true for the SCF method in the PPP approximation, which is assumed, if the ionization potentials and integrals are put equal for all C atoms [148, 152] including the end-atoms:

$$I_{\nu} = I_{\nu'} \equiv I, \quad \gamma_{\nu\nu} = \gamma_{\nu'\nu'} \equiv \gamma .$$

This assumption seems to be not far from the truth for organic cumulenes.

If the alternant properties of cumulenes are taken into account then the energy of the states with closed shell can be divided up as follows:

$$E^{c}({}^{1}A_{1}, {}^{1}A_{g}) = E^{c}_{x} + E^{c}_{y} + E_{\text{int}} + E^{core},$$

where

$$E_{x}^{c} = \sum_{\nu} (\gamma_{\nu\nu} - I_{\nu}) + \sum_{\mu\nu} \left[P_{\mu\nu}^{T} \beta_{\mu\nu} - \frac{1}{2} \gamma_{\mu\nu} - \left(\frac{1}{2} P_{\mu\nu}^{T}\right)^{2} \gamma_{\mu\nu} \right],$$
(202a)

$$E_{y}^{c} = \sum_{v'} (\gamma_{v'v'} - I_{v'}) + \sum_{\mu'v'} \left[P_{\mu'v'}^{T} \beta_{\mu'v'} - \frac{1}{2} \gamma_{\mu'v'} - \left(\frac{1}{2} P_{\mu'v'}^{T}\right)^{2} \gamma_{\mu'v'} \right], \quad (202b)$$
$$E_{\text{int}} = -\sum_{\mu v'} \gamma_{\mu v'}.$$

The energy E_x^c represents the π -electron energy of a hypothetical compound with the same space structure as the corresponding cumulene with closed shell but having only one system of AOs of the type π_x . The same is true for the energy E_y^c . E_{int} represents the energy of the static electron interaction of the two chains and does not depend upon the MO coefficients. Analogous transformations for the states with open shell ${}^{1}B_{1}$ and ${}^{1}A_{u}$ lead to the following result:

$$E^{o}({}^{1}B_{1}, {}^{1}A_{u}) = E_{x}^{o} + E_{y}^{o} + E_{\text{int}} + E^{core},$$

where

$$E_{x}^{o} = \sum_{\nu} (\gamma_{\nu\nu} - I_{\nu}) + \sum_{\mu\nu} \left[P_{\mu\nu}^{T} \beta_{\mu\nu} - \frac{1}{2} \gamma_{\mu\nu} - \left(\frac{1}{2} P_{\mu\nu}^{T}\right)^{2} \gamma_{\mu\nu} - \left(\frac{1}{2} P_{\mu\nu}^{o}\right)^{2} \gamma_{\mu\nu} \right], \quad (203a)$$

$$E_{y}^{o} = \sum_{\nu'} (\gamma_{\nu'\nu'} - I_{\nu'}) + \sum_{\mu'\nu'} \left[P_{\mu'\nu'}^{T} \beta_{\mu'\nu'} - \frac{1}{2} \gamma_{\mu'\nu'} - \left(\frac{1}{2} P_{\mu'\nu'}^{T}\right)^{2} \gamma_{\mu'\nu'} - \left(\frac{1}{2} P_{\mu'\nu'}^{o}\right)^{2} \gamma_{\mu'\nu'} \right].$$
(203b)

As we see, division into two chains is possible also in this case, but now each chain is in a doublet state and has an open shell structure as in organic free radicals.

However, for the open shell states ${}^{1}A_{1}$, ${}^{1}B_{2}$, ${}^{1}A_{g}$, and ${}^{1}A'_{g}$ division of the π -electron system in two subsystems is not possible despite of the fact that rule $P_{\nu\nu}^{T} = P_{\nu'\nu'}^{T}$ is satisfied.

The energy E_{int} is not the same for different cumulene conformations. A simple consideration yields

$$E_{\rm int}(D_{2d}) - E_{\rm int}(D_{2h}) = -\gamma_{\alpha\omega'},$$

where α and ω are the indices of the end-atoms.

Let us note one incorrectness of the Goeppert-Mayer and Sklar approximation [150] when one calculates the interaction energy of positive core charges E_D . In fact, if we try to find E_D in this approximation by the method of Dewar and Gleicher [153]

$$E_D = \sum_{\mu < \nu} \gamma'_{\mu\nu} ,$$

where the summation is taken over all AOs of the two chains, one gets different interaction energies for different conformations:

$$E_D(D_{2d}) - E_D(D_{2h}) = \gamma_{\alpha\omega'} - \gamma_{\alpha\omega}.$$

However on physical grounds the interaction energies of positive charges in different core conformations of cumulenes can not be different. These differences are small, of course, and decrease rapidly with increasing chain length.

If one accepts the differences mentioned then the barrier height *V* may be found from the relation

$$V = E_x(D_{2d}) + E_y(D_{2d}) - E_x(D_{2h}) - E_y(D_{2h}) - \gamma_{\alpha\omega}.$$
 (204)

The last term will then result from compensations of charges of E_{int} and E^{core} .

If, on the other hand, one takes the same core energies E^{core} for both conformations then

$$V = E_x(D_{2d}) + E_y(D_{2d}) - E_x(D_{2h}) - E_y(D_{2h}) - \gamma_{\alpha\omega'}.$$
(205)

Barrier values by (204) and (205) are almost identical especially for large N.

As we see from (204) and (205) the barrier height is determined first of all by SCF energies of the π -electron subsystems which may be calculated from formulae (202a,b) and (203a,b) [9]. It is also of interest to consider the case of Huckel orbitals for a chain with all bond lengths equal. These orbitals are expressed analytically as

$$C_{\mu j} = \sqrt{\frac{2}{m+1}} \sin \frac{\mu j \pi}{m+1}.$$

Let us take into account the integrals $\beta_{\mu\nu}$ and $\gamma_{\mu\nu}$ only for neighbouring atoms and use the following relations:

$$\sum_{\mu=1}^{m-1} P_{\mu,\mu+1}^{T} \equiv Q_{m} = \begin{cases} \csc \frac{\pi}{2m+2} - 1, & m \text{ even} \\ \operatorname{ctg} \frac{\pi}{2m+2} - 1, & m \text{ odd} \end{cases}$$
$$\sum_{\mu=1}^{m-1} (P_{\mu,\mu+1}^{T})^{2} = \frac{Q_{m}^{2}}{m+1} + \begin{cases} m/(m+1), & m \text{ even} \\ (m-1)/m, & m \text{ odd} \end{cases}$$
$$\sum_{\mu=1}^{m} (P_{\mu\mu}^{o})^{2} = \frac{2}{m+1}, & m \text{ odd} \end{cases}$$
$$\sum_{\mu=1}^{m-1} (P_{\mu,\mu+1}^{o})^{2} = 0.$$

It is possible then to show analytically that barriers calculated by formula (204) tend asymptotically to zero with increasing *N* in accord with Huckel calculations in [145].

Now we are ready to consider very long cumulene chains using sophisticated EHF as well as UHF approaches.

7. Electronic Structure of Long Cumulene Chains in the Extended Hartree – Fock Method Compared with its Unrestricted Version

It is important to note once more that most properties of carbon polymeric chains like polyenes, cumulenes, polyacetylenes, polyacenes, and graphene can be explained in terms of the π -electron approximation. This fact enables methods involving electron correlation to be used for theoretical treatment of such electronic systems, which in turn gives a possibility for studying the main features of electron

correlation methods for calculations of molecular electronic structure. It is well known [6, 16, 17, 107 - 111] that electron interaction may give rise to qualitative changes in spectra of systems we are concerned. Thus, if electron correlation are taken into account by the UHF method, then energy spectra of long polyenes with equal bond lengths [6, 16, 109. 110] and long regular cumulenes [17, 111] contain a forbidden zone, the width of which is in good agreement with experimental data. If the Huckel or the RHF methods are used, *i.e.*, when electron correlations are neglected, the molecular systems we consider have spectra of the metallic type unless the further assumptions about the bond length alternation have been made [129].

We begin our consideration of long cumulenes with the UHF equations for long polyene chains.

7.1. The UHF equations for long polyene chains

Here will be now proved that the UHF equations for long neutral polyenes both with even and odd number of carbon atoms are the same. For this purpose let us analyze the results obtained for polyenes with even [16] and odd (§ 4 above) number of C atoms $N \gg 1$ by the UHF method. If the chain boundaries are taken into account, as in the Hubbard's approximation, the Hamiltonian for a long polyene with equal bond lengths can be expressed as [16, 107, 108]

$$\hat{H} = \sum_{k\sigma} (\alpha + 2\beta \cos k) \hat{A}^{+}_{k\sigma} \hat{A}^{-}_{k\sigma} + \frac{\gamma}{2N} \sum_{k,k',k'',\sigma} \hat{A}^{+}_{k\sigma} \hat{A}^{+}_{k'\sigma} \hat{A}^{+}_{k'',-\sigma} \hat{A}^{+}_{k'',-\sigma} f(k,k',k'',k'''), \quad (206)$$

where α and β are the Coulomb and the resonance integrals respectively, γ is the Coulomb integral corresponding to the electron interaction with one of the nearest atoms, $\hat{A}^+_{k\sigma}$ and $\hat{A}_{k\sigma}$ are the operators of π -electron creation and annihilation in the state

$$\varphi_k^{(0)}(\vec{r}) = \sqrt{\frac{2}{N}} \sum_{\nu=1}^N \chi_\nu(\vec{r}) \sin k\nu,$$

involving σ -spin, $\sigma = \uparrow, \downarrow, \chi_{\nu}(\vec{r})$ is the vth AO,

$$f(k,k',k'',k''') = \frac{4}{N} \sum_{\mu=1}^{N} \sin k\mu \cdot \sin k'\mu \cdot \sin k''\mu \cdot \sin k'''\mu$$

is a linear combination of the Kroneker δ -symbols of the type

$$\delta(k \pm k' \pm k'' \pm k''' \pm 2n\pi)$$
. $n = 0, 1, 2, ...$

It is easy to show that functions $\varphi_k^{(0)}$ are the HF solutions for the Hamiltonian (206). In the HF approximation only averages over the ground state of the type

 $\langle \hat{A}^{+}_{k\sigma} \hat{A}^{-}_{k\sigma} \rangle$ do not vanish. In case of the UHF method we have also to take as non-zero the averages of the type $\langle \hat{A}^+_{k\sigma} \hat{A}^-_{\bar{k}\sigma} \rangle$, where $\bar{k} = \pi - k$. The case when the chain boundaries are neglected, *i.e.* the cyclic boundary conditions are used, see in [16, 107, 108]. Hence it follows that

$$\varphi_k^{(0)} = \frac{1}{\sqrt{N}} \sum_{\nu=1}^N \chi_\nu e^{ik\nu}, \quad -\pi \le k \le \pi, \quad \overline{k} = k - \pi \cdot \operatorname{sign}(k).$$

The UHF Hamiltonian for a long polyene chain can be written as

$$\hat{H}_{\sigma}^{(UHF)} = \sum_{k \le \pi} (2\beta \hat{A}_{k\sigma}^{\dagger} \hat{A}_{k\sigma} \cos k + \gamma \cdot \Delta \cdot \tau_{-\sigma} \hat{A}_{k\sigma}^{\dagger} \hat{A}_{\bar{k}\sigma}) + C, \qquad (207)$$

where

$$C = \frac{N}{2} \left(\alpha + \frac{\gamma}{4} + \gamma \Delta^2 \right), \quad \tau_{\sigma} = \begin{cases} 1, & (\sigma = \uparrow) \\ -1, & (\sigma = \downarrow) \end{cases}$$

The self-consistent value of

$$\Delta = \frac{\tau_{\sigma}}{N} \sum_{k} \left\langle \hat{A}_{k\sigma}^{+} \hat{A}_{k\sigma} \right\rangle \tag{208}$$

is defined by the equation

$$\frac{\gamma}{\pi} \int_{0}^{\pi/2} dk (4\beta^2 \cos^2 k + \gamma^2 \Delta^2)^{-1/2} = 1.$$
(209)

Let us transform the operators $\hat{A}^{+}_{k\sigma}$ and $\hat{A}^{-}_{k\sigma}$ using Eqs (120) above as

$$\hat{A}_{k\sigma} = (\hat{A}_{k\sigma}^{(1)} - \xi_k \tau_\sigma \hat{A}_{k\sigma}^{(2)}) \mathfrak{I}_k^{-1/2},
\hat{A}_{\bar{k}\sigma} = (\hat{A}_{k\sigma}^{(2)} + \xi_k \tau_\sigma \hat{A}_{k\sigma}^{(1)}) \mathfrak{I}_k^{-1/2},$$
(210)

where

$$0 \le k \le \pi / 2, \quad \mathfrak{I}_{k} = 1 + \xi_{k}^{2},$$

$$\xi_{k} = (2\beta \cos k + \sqrt{4\beta^{2} \cos^{2} k + (\gamma \Delta)^{2}}) / (\gamma \Delta). \quad (211)$$

67

Substituting (210) and (211) into (207) one obtains

$$\hat{H}_{\sigma}^{(UHF)} = \sum_{i,k} \varepsilon_k^{(i)} \hat{A}_{k\sigma}^{(i)+} \hat{A}_{k\sigma}^{(i)}, \qquad (212)$$

where

$$\varepsilon_k^{(1)} = -\varepsilon_k^{(2)} = -\sqrt{4\beta^2 \cos^2 k + \gamma^2 \Delta^2} \,. \tag{213}$$

The operators $\hat{A}_{k\sigma}^{(i)}$ correspond to one-electron wave functions

$$\varphi_{k\sigma}^{(i)}(\vec{r}) = \sum_{\mu=1}^{N} C_{k\sigma}^{(i)}(\mu) \chi_{\mu}(\vec{r}),$$

where

$$C_{k\sigma}^{(1)}(\mu) = \sqrt{\frac{2}{N}} [1 + (-1)^{\mu+1} \xi_k \tau_\sigma] \mathfrak{I}_k^{-1/2} \sin \mu k,$$

$$C_{k\sigma}^{(2)}(\mu) = \sqrt{\frac{2}{N}} [(-1)^{\mu+1} - \xi_k \tau_\sigma] \mathfrak{I}_k^{-1/2} \sin \mu k.$$
(214)

In the ground state all levels $\varepsilon_k^{(1)}$ are filled and all levels $\varepsilon_k^{(2)}$ are empty whether N is even or odd. Thus, the relations (208) – (214) are valid in both cases. Consequently, in the UHF method the self-consistent functions (214) and the energy spectra of long polyene chains with even N coincide with those for odd N, as it should be expected so far as $N \gg 1$. By contrast, the HF solution for long polyene is unstable relative to a small perturbation modeling the addition of an unpaired electron to the system.

Unfortunately, the UHF wave function is not an eigenfunction of the total spin operator \hat{S}^2 . To get rid of this disadvantage one has to use the EHF method. It will be shown below that both the UHF and the EHF methods being applied to large enough systems give identical results except spin density expressions. This means that the projection of the UHF wave function on the state involving the lowest multiplicity does not affect the relations (208) – (214). It should also be noted that the exact solution of the Schrodinger equation with the Hamiltonian (206) and the cyclic boundary conditions is obtained in [112]. The study of the exact solution [112, 154] has shown that there was an energy gap in the spectrum of quasi-ionic excitations active in optical spectra. Hence, it can be concluded that the UHF/EHF method treats correctly this feature of the exact solution.

Now we shall consider the values

$$n_{\mu\sigma} = \sum_{k \le \pi/2} [C_{k\sigma}^{(1)}(\mu)]^2 \,. \tag{215a}$$

Substituting (214) into (215a) one obtains

$$n_{\mu\sigma} = \frac{1}{2} + (-1)^{\mu+1} \tau_{\sigma} \delta_{\mu}, \qquad (215b)$$

where

$$\delta_{\mu} = \frac{2\gamma \Delta}{\pi} \int_{0}^{\pi/2} dk \, (\varepsilon_{k}^{(2)})^{-1} \sin^{2} \mu k \,.$$
(216)
The chain boundary effect is revealed in the dependence of δ_{μ} on μ . It follows from (216) that

 $\delta_1 = 0.28, \delta_2 = 0.18, \delta_3 = 0.23, \dots, \delta_{\mu} = \Delta = 0.21 \text{ for } \mu \gg 1 (\beta = -2.4 \text{ eV}, \gamma = 5.4 \text{ eV}[16]).$ Thus, the chain boundary effect extends, in fact, to only the first two – three atoms. It also follow s from (215) that $n_{\mu} = \sum n_{\mu\sigma} = 1$. The values $n_{\mu\sigma}$ are equal to electron

populations of the μ th AO with σ -spin in the UHF method, but it is not the case when the EHF method is used as shown below. In the latter case the values (215) can be treated as self-consistent parameters.

7.2. Electronic Structure of Long Cumulene Chains

Now we shall turn to the treatment of long cumulenes $C_N H_4$ ($N \gg 1$) using the results obtained just above. As we know the π -electron system of a cumulene molecule consists of the two π -subsystems which have the maxima of the electron density at two mutually perpendicular planes. From now all values corresponding to one of these subsystems will be marked with letter a/A and to another – with letter b/B. There are two possible conformations of a cumulene molecule which differ by mutual orientation of its end-groups CH₂. Let us denote the conformation of symmetry D_{2h} in which the end-groups lie in the same plane as A_{\parallel} and the alternative conformation of symmetry D_{2d} – as A_{\perp} .

Let us consider a cumulene molecule neglecting its end-groups. In the short-range interaction approximation [17, 111] one can obtain the following expression for the Hamiltonian of a long chain $=(C=)_N$

$$\hat{H} = \sum_{k\sigma} (\alpha + 2\beta \cos k) \left(\hat{A}_{k\sigma}^{+} \hat{A}_{k\sigma} + \hat{B}_{k\sigma}^{+} \hat{B}_{k\sigma} \right) + \\
+ \frac{1}{2N} \sum_{k,k',k'',k''',\sigma} \left[\gamma \left(\hat{A}_{k\sigma}^{+} \hat{A}_{k'\sigma} \hat{A}_{k'',-\sigma}^{+} \hat{A}_{k''',-\sigma} + \hat{B}_{k\sigma}^{+} \hat{B}_{k'\sigma} \hat{B}_{k'',-\sigma}^{+} \hat{B}_{k''',-\sigma} \right) \\
+ \tilde{\gamma} \left(\hat{A}_{k\sigma}^{+} \hat{B}_{k'\sigma} \hat{A}_{k'',-\sigma}^{+} \hat{B}_{k'',-\sigma} + \hat{B}_{k\sigma}^{+} \hat{A}_{k'\sigma} \hat{B}_{k'',-\sigma}^{+} \hat{A}_{k''',-\sigma} \right) \\
+ 2\sum_{\sigma'} \left(\tilde{\gamma} \hat{B}_{k\sigma}^{+} \hat{B}_{k'\sigma} \hat{A}_{k''\sigma'}^{+} \hat{A}_{k'''\sigma'} - \tilde{\gamma} \hat{A}_{k\sigma}^{+} \hat{A}_{k'\sigma'} \hat{B}_{k''\sigma}^{+} \hat{B}_{k'''\sigma} \right) \right],$$
(217)

where $\hat{A}^{+}_{k\sigma}$ and $\hat{B}^{+}_{k\sigma}$ are the operators of electron creation in the states $\varphi^{(0)}_{k,a}$ and $\varphi^{(0)}_{k,b}$ with σ -spin,

$$\varphi_{k,j}^{(0)}(\vec{r}) = \sqrt{\frac{2}{N}} \sum_{\mu=1}^{N} \chi_{\mu}^{(j)}(\vec{r}) \sin \mu k ,$$

$$= e^{2} \int dV + \chi_{\mu}^{(a)}(\vec{r}) |^{2} r^{-1} + \chi_{\mu}^{(b)}(\vec{r}) |^{2}$$
(218a)

$$\tilde{\tilde{\gamma}} = e^2 \int dV_{12} |\chi_{\mu}^{(a)}(\vec{r}_1)|^2 r_{12}^{-1} |\chi_{\mu}^{(b)}(\vec{r}_2)|^2, \qquad (218a)$$

$$\tilde{\gamma} = e^2 \int dV_{12} \,\chi_{\mu}^{(a)}(\vec{r}_1) \,\chi_{\mu}^{(b)}(\vec{r}_1) \,r_{12}^{-1} \,\chi_{\mu}^{(a)}(\vec{r}_2) \,\chi_{\mu}^{(b)}(\vec{r}_2) \,.$$
(218b)

Taking into account that the orbitals of different subsystems do not mix and assuming that the values $\langle \hat{A}_{k\sigma}^{+} \hat{A}_{k\sigma} \rangle$, $\langle \hat{B}_{k\sigma}^{+} \hat{B}_{k\sigma} \rangle$, $\langle \hat{A}_{k\sigma}^{+} \hat{A}_{\bar{k}\sigma} \rangle$ and $\langle \hat{B}_{k\sigma}^{+} \hat{B}_{\bar{k}\sigma} \rangle$ being averaging over the ground state do not vanish, we obtain the effective UHF Hamiltonian for a long cumulene molecule

$$\hat{H}_{\sigma,a}^{(UHF)} = \sum_{k} [2\beta \hat{A}_{k\sigma}^{+} \hat{A}_{k\sigma} \cos k + (\gamma \Delta_{a} \tau_{-\sigma} - \tilde{\gamma} \Delta_{b} \tau_{\sigma}) \hat{A}_{k\sigma}^{+} \hat{A}_{\bar{k}\sigma}] + C_{1},$$

$$\hat{H}_{\sigma,b}^{(UHF)} = \sum_{k} [2\beta \hat{B}_{k\sigma}^{+} \hat{B}_{k\sigma} \cos k + (\gamma \Delta_{b} \tau_{-\sigma} - \tilde{\gamma} \Delta_{a} \tau_{\sigma}) \hat{B}_{k\sigma}^{+} \hat{B}_{\bar{k}\sigma}] + C_{1},$$
(219)

where

$$\begin{split} \Delta_{a} &= \frac{\tau_{\sigma}}{N} \sum_{k} \left\langle \hat{A}_{k\sigma}^{+} \hat{A}_{\bar{k}\sigma} \right\rangle, \quad \Delta_{b} = \frac{\tau_{\sigma}}{N} \sum_{k} \left\langle \hat{B}_{k\sigma}^{+} \hat{B}_{\bar{k}\sigma} \right\rangle, \\ C_{1} &= \frac{N}{4} \left[2\alpha + \frac{\gamma - \tilde{\gamma}}{2} + \tilde{\tilde{\gamma}} + 2(\gamma + \tilde{\gamma}) \Delta_{1}^{2} \right]. \quad 0 \le k \le \pi \end{split}$$

According to [17, 111], there are two possible self-consistent solutions:

(1)
$$\Delta_a = \Delta_b = \Delta_1$$
,
(2) $\Delta_a = -\Delta_b = \Delta_2$.

Since the lowest ground state energy is known to correspond to the first case [17, 111], we shall restrict ourselves to the case $\Delta_a = \Delta_b$. Substituting this condition into Eq. (219) one obtains

$$\hat{H}_{\sigma,a}^{(UHF)} = \sum_{k} [2\beta \hat{A}_{k\sigma}^{\dagger} \hat{A}_{k\sigma} \cos k + (\gamma + \tilde{\gamma})\Delta_{1}\tau_{-\sigma} \hat{A}_{k\sigma}^{\dagger} \hat{A}_{\bar{k}\sigma}] + C_{1},$$

$$\hat{H}_{\sigma,b}^{(UHF)} = \sum_{k} [2\beta \hat{B}_{k\sigma}^{\dagger} \hat{B}_{k\sigma} \cos k + (\gamma + \tilde{\gamma})\Delta_{1}\tau_{-\sigma} \hat{B}_{k\sigma}^{\dagger} \hat{B}_{\bar{k}\sigma}] + C_{1}.$$
(220)

The expression (220) have the same form as (203). Because of this the expressions (220) are diagonalized by canonical transformation of the type (205), namely:

$$\hat{H}_{\sigma,a}^{(UHF)} = \sum_{i,k} \varepsilon_{k}^{(i)} \hat{A}_{k\sigma}^{(i)+} \hat{A}_{k\sigma}^{(i)} + C_{1},$$

$$\hat{H}_{\sigma,b}^{(UHF)} = \sum_{i,k} \varepsilon_{k}^{(i)} \hat{B}_{k\sigma}^{(i)+} \hat{B}_{k\sigma}^{(i)} + C_{1},$$
(221a)

where

$$\varepsilon_{k}^{(1)} = -\varepsilon_{k}^{(2)} = -\sqrt{4\beta^{2}\cos^{2}k + (\gamma + \tilde{\gamma})^{2}\Delta_{1}^{2}}, \quad 0 \le k \le \pi/2,$$
(221b)

the self-consistent value of Δ_1 is defined by the equation

$$\frac{\gamma + \tilde{\gamma}}{\pi} \int_{0}^{\pi/2} (\varepsilon_k^{(2)})^{-1} dk = 1.$$
(222)

The operators $\hat{A}_{k\sigma}^{(i)}$ and $\hat{B}_{k\sigma}^{(i)}$ correspond to the functions $\varphi_{k\sigma,a}^{(i)}$ and $\varphi_{k\sigma,b}^{(i)}$. Their coefficients of the expansion in terms of the atomic orbitals $\chi_{\mu}^{(a)}$ and $\chi_{\mu}^{(b)}$ are diagonal as to the marking *a* and *b* and have the form

$$C_{k\sigma,a}^{(i)}(\mu) = C_{k\sigma,b}^{(i)}(\mu) = C_{k\sigma}^{(i)}(\mu), \qquad (223)$$

where $C_{k\sigma}^{(i)}$ are determined by (214) if ξ_k is substituted by

$$\xi_{k} = \left[2\beta\cos k + \sqrt{4\beta^{2}\cos^{2}k + (\gamma + \tilde{\gamma})^{2}\Delta_{1}^{2}}\right] / \Delta_{1}(\gamma + \tilde{\gamma}).$$
(224)

In the ground state all levels $\varepsilon_k^{(1)}$ of the two subsystems are filled and all levels $\varepsilon_k^{(2)}$ are empty. Thus, the UHF wave function of the cumulene ground state has the following form

$$\Psi_{0}^{(UHF)} = \prod_{k\sigma} \hat{A}_{k\sigma}^{(1)+} \hat{B}_{k\sigma}^{(1)+} |0\rangle.$$
(225)

Using (217) and (225) one can obtain the expression for the ground state energy

$$E_{0}^{(UHF)} = \left\langle \Psi_{0}^{(UHF)} \middle| \hat{H} \middle| \Psi_{0}^{(UHF)} \right\rangle$$

$$= 4 \sum_{k \le \pi/2} \left(1 - \frac{1}{2} \delta_{k,\pi/2} \right) \varepsilon_{k}^{(1)} + N \left[2\alpha + \tilde{\gamma} + \frac{\gamma - \tilde{\gamma}}{2} + 2(\gamma + \tilde{\gamma}) \Delta_{1}^{2} \right].$$
(226)

Atomic populations are defined as

$$n_{\mu\sigma}^{(a)} = n_{\mu\sigma}^{(b)} = \frac{1}{2} + (-1)^{\mu+1} \tau_{\sigma} \,\delta_{\mu}, \qquad (227)$$

where

$$\delta_{\mu} = \frac{2(\gamma + \tilde{\gamma})\Delta_{1}}{\pi} \int_{0}^{\pi/2} dk \left[4\beta^{2}\cos^{2}k + (\gamma + \tilde{\gamma})^{2}\Delta_{1}^{2}\right]^{-1/2} \sin^{2}\mu k .$$
(228)

The analysis of (228) allows to reveal the dependence of δ_{μ} on μ ($\beta = -3.6 eV, \gamma = 5.4 eV, \tilde{\gamma} = 0.5 eV$ [17, 111])

$$\delta_1 = 0.16, \quad \delta_2 = 0.07, \quad \delta_3 = 0.13, \dots \quad \delta_\mu = \Delta_1 = 0.11. \quad (\mu \gg 1)$$
 (229)

Thus, as with the polyenes, the chain boundary influence on δ_{μ} sharply decreases when the distance from the chain boundary increases.

We shall need further the equations for the coefficients (223), which can be obtained by proper transformation of (221), namely:

$$\left(\mathcal{E}_{k}^{(i)} + \tilde{\tilde{\gamma}} + \frac{\gamma - \tilde{\gamma}}{2} + \alpha \right) C_{k\sigma,a}^{(i)}(\mu) = \sum_{\nu=1}^{N} \hat{H}_{\sigma,a}^{(UHF)}(\mu,\nu) C_{k\sigma,a}^{(i)}(\nu)$$

$$\equiv \beta [(1 - \delta_{\mu,1}) C_{k\sigma,a}^{(i)}(\mu - 1) + (1 - \delta_{\mu,N}) C_{k\sigma,a}^{(i)}(\mu + 1)] + [\alpha + \gamma n_{\mu,-\sigma}^{(a)} - \tilde{\gamma} n_{\mu,-\sigma}^{(b)} + \tilde{\tilde{\gamma}} n_{\mu}^{(b)}] C_{k\sigma,a}^{(i)}(\mu).$$

$$(230)$$

To obtain the equations for $C_{k\sigma,b}^{(i)}$ it is necessary to permute markings *a* and *b* in (230).

Now let us consider cumulenes taking into account the end-effects. In the conformation A_{\parallel} with symmetry D_{2h} the subsystem *a* contains $N \pi$ -electrons and the subsystem *b* contains N-2 π -electrons. In the conformation A_{\perp} with symmetry D_{2d} both subsystems *a* and *b* contain the same N-1 π -electrons. In passing from the long ideal no-end-groups cumulene to a real cumulene molecule with the end-groups some alterations in the equation (230) result due to the relative shift of the cumulene π -electron subsystems *a* and *b*. Namely, the effective values of the Coulomb integrals are changed according to

$$\begin{aligned} \alpha_{\nu\sigma}^{(a)} &= \alpha + \gamma n_{\nu,-\sigma}^{(a)} - \tilde{\gamma} n_{\nu\sigma}^{(b)} + \tilde{\tilde{\gamma}} n_{\nu}^{(b)}, \\ \alpha_{\nu\sigma}^{(b)} &= \alpha + \gamma n_{\nu,-\sigma}^{(b)} - \tilde{\gamma} n_{\nu\sigma}^{(a)} + \tilde{\tilde{\gamma}} n_{\nu}^{(a)}. \end{aligned}$$
(231)

It follows from (231) and (229) that the effective Coulomb integrals of the end-atoms decrease by the value

$$\Delta_{1\sigma}^{(i)} = \Delta \alpha_{N\sigma}^{(i)} = \tilde{\tilde{\gamma}} n_1^{(i)} - \tilde{\gamma} n_{1\sigma}^{(i)} = \tilde{\tilde{\gamma}} - \tilde{\gamma} n_{1\sigma}^{(i)} \approx 4.7 \, eV$$

without regard for a change in the interaction between σ - and π -electrons in passing from the long ideal no-end-groups cumulene to real cumulene molecule. However, as long as the end carbon atoms of a cumulene molecule have the sp^2 hybridization, one should expect that the absence of the Coulomb interaction between π -electrons at the end-atoms is compensated by an interaction between σ - and π -electrons. This point of view is supported by the fact that the first ionization potential of a carbon atom in the valence sp^2 state coincides with that in the sp state within $10^{-3} eV$ [149]. On the other hand, the exchange interaction $\tilde{\gamma}$ does not appear to be compensated for in this case. Thus, we shall assume that the change in the Coulomb integrals (231) at the endatoms is

 $|\Delta \alpha_{1\sigma}^{(i)}| = |\Delta \alpha_{N\sigma}^{(i)}| \le 0.66\tilde{\gamma} \approx 0.3 \, eV$. Let us consider the alteration of $\alpha_{\mu\sigma}^{(i)}$ at the atoms next to the end-atoms. Using (229) and (231) one can obtain for the longer subsystem

$$\Delta \alpha_{2\sigma} = -\tau_{\sigma} \cdot 0.04 \, eV, \\ \Delta \alpha_{3\sigma} = +\tau_{\sigma} \cdot 0.02 \, eV,$$

and for the shorter subsystem

$$\Delta \alpha_{2\sigma} = +\tau_{\sigma} \cdot 0.04 \, eV, \\ \Delta \alpha_{3\sigma} = -\tau_{\sigma} \cdot 0.02 \, eV.$$

Thus, the end-effects in cumulenes are of a local nature and can be considered by means of the local perturbation theory [20], which was applied to long polyenes in the framework of the UHF method in § 5 above. The ratio $|\Delta \alpha_{\mu\sigma}^{(i)} / \beta| = |\lambda_{\mu\sigma}^{(i)}|$ is a parameter which defines the relative magnitude of a local perturbation [20]. It follows from evaluations given above that $\operatorname{Max} |\lambda_{\mu\sigma}^{(i)}| \leq 0.08$, *i.e.* the perturbation due to the end-effects in cumulenes is small enough. It was already shown in paragraph 5 above that small local perturbation do not disturb the self-consistency of the UHF Hamiltonian (accurate within $\sim \lambda$). Therefore, let us consider the electronic structure of cumulenes in the conformations A_{\parallel} and A_{\perp} neglecting the small alterations of the parameters $\alpha_{\mu\sigma}^{(i)}$. In one of the two conformations, namely A_{\perp} , each π -subsystem *a* and *b* consists of an odd number of electrons, being a long polyene radical. Nevertheless, it follows from the previous section of this paragraph that the energy spectra of long even polyenes and long polyene radicals are the same in the framework of the UHF (or EHF) method. Thus, in both conformations of a cumulene, its excited states are separated from the ground state with the gap $2(\gamma + \tilde{\gamma})\Delta_1$ in accordance with Eq. (221b).

Let us evaluate the difference between the ground state energy of a long cumulene chain in the conformation A_{\parallel} and that in the conformation A_{\perp} : $\Delta E = E_{\parallel} - E_{\perp}$. The value of ΔE is usually referred to as the torsion barrier of cumulene end-groups. Using the relations (217) and (225), one can obtain

$$\Delta E = \sum_{k\sigma} [\varepsilon_k^{(1)}]_N + \sum_{k\sigma} [\varepsilon_k^{(1)}]_{N-2} - 2\sum_{k\sigma} [\varepsilon_k^{(1)}]_{N-1} + N(\gamma + \tilde{\gamma})[(\Delta_1)_N^2 + (\Delta_1)_{N-2}^2 - 2(\Delta_1)_{N-1}^2], (232)$$

where $\sum_{k} [\varepsilon_{k}^{(1)}]_{N}$ stands for *k* changes from 0 to $\pi/2$ spaced $\pi/(N+1)$ when summing up, $(\Delta_{1})_{N}$ is the root of the equation

$$\frac{\gamma + \tilde{\gamma}}{\pi} \sum_{i=1}^{N/2} \left[4\beta^2 \cos^2 \left(i \frac{\pi}{N+1} \right) + (\gamma + \tilde{\gamma})^2 \Delta_1^2 \right]^{-1/2} = 1.$$
(233)

In order to evaluate Eq. (27) it is important to note that if f(k) is a continuous function of k then

$$f\left(\frac{a}{N+1}\right) + f\left(\frac{a}{N-1}\right) - 2f\left(\frac{a}{N}\right) = O\left(\frac{1}{N^2}\right).$$
(234)

It follows from Eqs (234), (221b), and (233) that $\Delta E = O(1/N)$, *i.e.*, the torsion barrier tends to zero when the cumulene is lengthened. From the mathematical point of view this result is due to the fact that the intervals between the levels occupied in the ground state are of ~1/N whether the cumulene subsystems *a* and *b* consist of the even or odd number of π -electrons.

Let us evaluate the influence of the small perturbations $\Delta \alpha_{\mu\sigma}^{(i)}$ on the π -electronic structure of cumulenes. As we already know from paragraph 5 above, small local

perturbations can give rise to local states in the forbidden zone of a system like long polyene chains. These local state energies differ from the nearest zone state energy by values $\sim a\lambda^2$, where *a* is the width of the forbidden zone in the ideal cumulene chain. It means that in our case the forbidden zone width $2(\gamma + \tilde{\gamma}) \Delta_1$ is not affected practically by the end-effects. It was also shown in § 5 above that local perturbations placed at the large distance from one another do not interact. Hence it follows that the end-effects in long cumulenes can not change the value of the torsion barrier. Indeed, the contributions into the ground state energy are additive relative to perturbations of atoms placed at the different ends of a long cumulene chain and, because of this, are the same whether the cumulene is in the conformation A_{\parallel} or A_{\parallel} .

To study spin properties of cumulenes we should pass from the UHF method to the EHF approach. As it will be shown below, the SCF equations for systems consisting of the large number of electrons are the same whether one uses the UHF or the EHF method. So, the orbitals $\varphi_{k\sigma,a}^{(i)}$ and $\varphi_{k\sigma,b}^{(i)}$ corresponding to the operators $\hat{A}_{k\sigma}^{(i)}$ and $\hat{B}_{k\sigma}^{(i)}$ are also self-consistent ones in the EHF method. To put it another way, the Eqs (230) remain valid in spite of the fact that the values $n_{\mu\sigma}^{(i)}$ given by (227) are not equal to the AO electron populations with σ -spin when the EHF method is used.

Let us now consider the multiplicity of the cumulene grounf state. Suppose the number of cumulene carbon atom to be even, *i.e.* N = 2q. Then both cumulene subsystems *a* and *b* in the conformation A_{\parallel} consist of the even number of π -electrons N and N - 2, respectively. Hence, the total spin projection for each of the two subsystems in the ground state when all levels of both subsystems are filled is equal to zero: $M_a = M_b = 0$. Therefore, the cumulene ground state in the conformation A_{\parallel} is a singlet one (S = M = 0) and its EHF wave function, as will be shown below, has the following form

$$\Psi_{A_{||}}^{(EHF)} = \hat{O}_{S=M=0} \hat{A} \phi_{A_{||}} \chi_{A_{||}}, \qquad (235)$$

where is the antisymmetrization operator be specified later,

$$\phi_{A_{\parallel}} = \prod_{i=1}^{n_a} \varphi_{i\uparrow,a}^{(1)}(i) \prod_{i=1}^{n_b} \varphi_{i\uparrow,b}^{(1)}(i+n_a) \prod_{i=1}^{m_a} \varphi_{i\downarrow,a}^{(1)}(i+n) \prod_{i=1}^{m_b} \varphi_{i\downarrow,b}^{(1)}(i+n+m_a), \qquad (236)$$

$$\varphi_{i\sigma,j}^{(l)} \equiv \varphi_{k_i,\sigma}^{(l)}, \quad k_i = i\pi / (N+1),$$

$$\chi_{A_{\parallel}} = \alpha(1)\alpha(2)\cdots\alpha(n)\beta(n+1)\beta(n+2)\cdots\beta(n+m), \quad (237)$$

 $m = m_a + m_b$, $n = n_a + n_b$, $n_a = m_a = N/2$, $n_b = m_b = \frac{N}{2} - 1$.

Let us now discuss the conformation A_{\perp} . Each of the cumulene subsystems *a* and *b* consists of the odd N – 1 number of π -electrons and, consequently, possesses the total spin projection $|M_a| = |M_b| = 1/2$. To determine the total spin projection of the cumulene $M = M_a + M_b$ we shall consider the Eqs (219) taking into account the equivalence of the equations of the UHF and EHF methods for large systems. "Unpaired" electrons in the cumulene subsystems *a* and *b* occupy the levels involving $k = \pi/2$ and energies $-(\gamma + \tilde{\gamma})\Delta_1$ in both subsystems according to (219). It follows from the relation $\Delta_a = \Delta_b$ and (219) that one-electron functions of these levels should have the same spin parts in the two different subsystems. Hence, $M_a = M_b$ and the ground state of cumulene in the conformation A_{\perp} is a triplet. Its EHF wave function can be written as

$$\Psi_{A_{\perp}}^{(EHF)} = \hat{O}_{S=M=1} \hat{A} \phi_{A_{\perp}} \chi_{A_{\perp}},$$

where $\phi_{A_{\perp}}$ and $\chi_{A_{\perp}}$ are defined by Eqs (236) and (237) if the following relations are taken into account, namely:

$$n_a = n_b = m_a + 1 = m_b + 1 = N / 2.$$

Let us pass now to the calculation of the AO spin populations in long cumulene chains. Using the Eqs (223) and (224) according to the UHF method one can obtain in the two conformations of cumulenes

$$\rho_z^{(UHF)}(\mu) = (-1)^{\mu+1} \frac{2(\gamma + \tilde{\gamma})\Delta_1}{\pi} \int_0^{\pi/2} dk [\varepsilon_k^2]^{-1} [\sin^2 k \,\mu + \sin^2 k (\mu - 1)] = (-1)^{\mu+1} 2(\delta_\mu + \delta_{\mu-1}) .$$
(238)

To obtain spin populations in the framework of the EHF method one should multiply (238) by the factor S/(S+1) in accordance to the relation (252) below. So, the AO spin populations in long cumulene chains C_NH_4 with an even number N vanish identically in the conformation A_{\parallel} . But, they differ from zero in the conformation A_{\perp} and are equal to

$$\rho_z^{(EHF)}(\mu) = \frac{1}{2} \rho_z^{(UHF)}(\mu) = (-1)^{\mu+1} (\delta_\mu + \delta_{\mu-1}) \approx 0.22 \times (-1)^{\mu+1}. \quad (\mu \gg 1)$$

7.3. EHF and UHF Methods when Applied to Large Electronic Systems

Before to give the final discussion for this paragraph let us compare the UHF and EHF approaches as applied to large systems. The EHF wave function can be written as (see § 3 above)

$$\Psi_0^{(EHF)} = \hat{O}_{S,M} \Psi_0^{(UHF)} = \hat{O}_{S,M} \hat{A} \phi_0 \chi_0, \qquad (239)$$

where

$$\phi_0 = \varphi_{1\uparrow}(1)\varphi_{2\uparrow}(2)\cdots\varphi_{n\uparrow}(n)\varphi_{1\downarrow}(n+1)\varphi_{2\downarrow}(n+2)\cdots\varphi_{m\downarrow}(N), \chi_0 = \alpha(1)\alpha(2)\cdots\alpha(n)\beta(n+1)\beta(n+2)\cdots\beta(n+m).$$
(240)

 $\hat{O}_{S,M}$ is the operator of the projection on the state with the multiplicity 2S + 1, M = (n-m)/2, $\hat{A} = \sum_{\tau} \xi_{\tau} \hat{\tau}$ is the antisymmetrization operator. In the EHF method the ground state energy of a many electron system has the form

$$E_{0}^{(EHF)} = \left\langle \Psi_{0}^{(EHF)} \left| \hat{H} \right| \Psi_{0}^{(EHF)} \right\rangle / \left\langle \Psi_{0}^{(EHF)} \right| \Psi_{0}^{(EHF)} \right\rangle = T00^{-1} \\ \times \left\{ \sum_{i\sigma} \left\langle i\sigma \left| \hat{h}_{1} \right| i\sigma \right\rangle T01(i) + \frac{1}{2} \sum_{ij\sigma} T21(i,j) \left[\sum_{\sigma'} \left\langle i\sigma, j\sigma' \right| \hat{g}_{12} \right| i\sigma, j\sigma' \right\rangle - \sum_{\sigma'} \left\langle i\sigma, j\sigma \right| \hat{g}_{12} \left| j\sigma, i\sigma \right\rangle \right] \\ + \sum_{i\sigma} \left\langle i\sigma \left| \hat{h}_{1} \right| i, -\sigma \right\rangle T11(i) + \frac{1}{2} \sum_{i\sigma} \left\langle i\sigma \right| \hat{h}_{1} \left| i, -\sigma \right\rangle T11(i) + \frac{1}{2} \sum_{ij} \left[T12(i,j)S_{1}(i,j) + T22(i,j)S_{2}(i,j) \right] \right\},$$
(241)

where we have used the standard notations for the electron integrals, $S_1(i, j)$ and $S_2(i, j)$ are the sums of some electron integrals,

$$\left\langle \varphi_{i\sigma} \left| \varphi_{j\sigma'} \right\rangle \equiv \left\langle i\sigma \right| j\sigma' \right\rangle = \left[\lambda_i + (1 - \lambda_i) \delta_{\sigma\sigma'} \right] \delta_{ij}, (242)$$

if S = M, then

$$TIJ = \sum_{p=0}^{m-J} A_p {\binom{n}{p+I}}^{-1}, \qquad (243a)$$

$$TIJ(i) = TIJ|_{x_i=0}, \qquad (243b)$$

$$TIJ(i,j) = TIJ|_{x_i = x_j = 0},$$
(243c)

$$A_{p} = \sum_{\substack{(k_{1},k_{2},\dots,k_{p})\\(k_{i}\neq k_{j})}} x_{k_{1}} x_{k_{2}} \cdots x_{k_{p}}, \quad (x_{k} = \lambda_{k}^{2}),$$
(244)

 $\binom{n}{k}$ is the binomial coefficient. If the relations

$$\frac{T0J}{T00} = \frac{T0J(i)}{T00} = \frac{T0J(i,j)}{T00} = 1,$$

$$\frac{TIJ}{T00} = \frac{TIJ(i)}{T00} = \frac{TIJ(i,j)}{T00} = 0$$
(245)

are valid with I, J = 1,2 then the expression (241) coincides with $\langle \Psi_0^{(UHF)} | \hat{H} | \Psi_0^{(UHF)} \rangle$, i.e. $E_0^{(UHF)} = E_0^{(EHF)}$. It is shown [69, 70, 155] that the relations (245) are valid for the limit

case $n \approx m \rightarrow \infty$ in the one-parameter AMO method $(x_i = x, 0 < x < 1)$. In that case one may write

$$\tilde{T}0J \approx T00 \approx 1/(1-x),$$

 $\tilde{T}1J \approx \frac{1}{m} \frac{d}{dx}(T00),$, (246)
 $\tilde{T}2J \approx \frac{1}{m(m-1)} \frac{d^2}{dx^2}(T00),$

where $\tilde{T}IJ = \tilde{T}IJ |_{x_i=x}$. Let us evaluate the values of *TIJ* for the many-parameter AMO method and, therefore, for the EHF method. To do this let us reduce the expression (244) to the form

$$A_p = \binom{m}{p} t_p^p, \qquad (247a)$$

where

$$t_{p} = \left[\binom{m}{p}^{-1} \sum_{\substack{(k_{1},k_{2},\dots,k_{p})\\(k_{i}\neq k_{j})}} x_{k_{1}} x_{k_{2}} \cdots x_{k_{p}} \right]^{1/p},$$
(247b)

Since, according to (242) $0 < x_i < 1$, then [156]

$$t_1 \ge t_2 \ge \dots \ge t_m. \tag{248}$$

Taking into account that all terms in (243) are positive and using (247) and (248) one can obtain

$$\tilde{T}IJ\mid_{x=t_m} \leq \tilde{T}IJ \leq \tilde{T}IJ\mid_{x=t_1}.$$
(249)

It follows from (246), (249), and (243) that the relations (245) are also valid in the framework of the multi-parameter AMO method for the limit case $n \approx m \rightarrow \infty$. Thus, the relation

$$E_0^{(EHF)} = E_0^{(UHF)}$$
(250)

is valid in general if the system under consideration consists of a large number of electrons. Besides, it follows from equation (250) that the SCF equations are the same in the EHF and UHF methods for this case. This can be proved directly through the use of the EHF (or the GF) equations (see § 3 above) obtained by Goddard.

As far as the EHF approximation, the spin density expression has the following form

$$\rho_{z}^{(EHF)}(\vec{R}) = \left\langle \Psi_{0}^{(EHF)} \middle| \sum_{i=1}^{N} 2\hat{S}_{z}(i) \,\delta(\vec{r}_{i} - \vec{R}) \middle| \Psi_{0}^{(EHF)} \right\rangle / T00
= \frac{S}{S+1} T00^{-1} \sum_{i=1}^{m} \{ [|\varphi_{i\uparrow}(\vec{R})|^{2} - |\varphi_{i\downarrow}(\vec{R})|^{2}] T01(i)
+ [2|\varphi_{i\uparrow}(\vec{R})| - \lambda_{i} \varphi_{i\downarrow}^{*}(\vec{R}) \varphi_{i\uparrow}(\vec{R}) - \lambda_{i}^{*} \varphi_{i\uparrow}^{*}(\vec{R}) \varphi_{i\downarrow}(\vec{R})] T11(i) \}
+ \frac{S}{S+1} T00^{-1} \sum_{i=m+1}^{n} |\varphi_{i\uparrow}(\vec{R})|^{2} (2T10 + T00)$$
(251)

in the analogous spin density expressions [67, 124] there seems to be a mistake in the coefficients in the last term in (251).

Using (245) one can obtain from (251) for the case $N \to \infty$ $(n \approx m \to \infty)$

$$\rho_{z}^{(EHF)}(\vec{R}) = \frac{S}{S+1} \left[\sum_{i=1}^{n} |\varphi_{i\uparrow}(\vec{R})|^{2} - \sum_{i=1}^{m} |\varphi_{i\downarrow}(\vec{R})|^{2} \right] = \frac{S}{S+1} \rho_{z}^{(UHF)}(\vec{R}).$$
(252)

For long polyene chain from (242) and (214) one obtains

$$x_k = \lambda_k^2 = \cos^2 k \,/ \left(\cos^2 k + d^2 \right), \tag{253}$$

where $d = \Delta \gamma / 2 |\beta|$. Using (247b) and (253) let us evaluate the values of t_1 and t_m for this case, namely:

$$t_{1} = \frac{1}{m} \sum_{k} x_{k} = \frac{2}{\pi} \int_{0}^{\pi/2} dk \cos^{2}k / (\cos^{2}k + d^{2}) \approx 0.77,$$

$$\ln t_{m} = \frac{1}{m} \sum_{k} \ln x_{k} = \frac{2}{\pi} \int_{0}^{\pi/2} dk \ln[\cos^{2}k / (\cos^{2}k + d^{2})],$$
(254)

hence

$$t_m = [1 + 2d^2 + 2\sqrt{d(1+d)}]^{-1} \approx 0.55.$$
(255)

So far $t_1 \neq 0$ and $t_m \neq 0$, then the relation (250) in case of polyenes immediately follows from (255), (246), and (249). So, the orbitals $\varphi_{k\sigma}^{(i)}$ are self-consistent ones in the framework of the EHF method as well as in the UHF method. The EHF spin density vanishes identically in long even polyenes (S = 0) and differs from zero in long polyene radicals (paragraph 4 above) according to Eq. (252).

Let us calculate the weight of the lowest multiplicity state with the normalized UHF wave function, namely

$$\omega_{S=M} = \frac{2S+1}{n+1} T00 \approx 2 \frac{2S+1}{N} \frac{1}{1-\tilde{x}},$$
(256)

where $t_1 \ge \tilde{x} \ge t_m$. It is interesting to note that using the Gaussian approximation supposed by van Leuven [157, 158] one can obtain

$$\omega_{S=0} = \int_{0}^{\infty} \exp\left[-\theta \frac{m(1-t_{1})}{4}\right] \sin\theta d\theta = \frac{2}{N} \frac{1}{1-t_{1}}.$$
(257)

It follows from (257) that the Gaussian approximation gives the same value of ω_s as the approximation used for this purpose in [6]. Comparing (257) with the exact expression (256) one can see that the approximation (257) correctly reflects the asymptotic behaviour of ω_s when $N \to \infty$ (except for the constant). It should be noted that the relation (250) can be obtained also by means of the rotation group theory [157]. However, using this method we lose some important details, *e.g.* it is impossible to obtain the asymptotic form (252) for the spin density expression (251).

Next let us discuss the excited states of long polyene chains by means of the EHF method. Let us replace an orbital $\varphi_{k\sigma}^{(1)}$ by $\varphi_{k\sigma}^{(2)}$ in (239) and denote this "configuration" as $\Psi_{(k\sigma)}^{(EHF)}$. In general the function $\Psi_{(k\sigma)}^{(EHF)}$ is not orthogonal to $\Psi_{0}^{(EHF)}$:

$$\left\langle \Psi_{0}^{(EHF)} \middle| \Psi_{(k\sigma)}^{(EHF)} \right\rangle = -\tau_{\sigma} \lambda_{k} T 1 1(k) \sqrt{1 - \lambda_{k}^{2}} .$$
(258)

But, when $N \rightarrow \infty$ it follows from (245) that

$$\frac{\left\langle \Psi_{(k\sigma)}^{(EHF)} \middle| \Psi_{0}^{(EHF)} \right\rangle}{\left\langle \Psi_{0}^{(EHF)} \middle| \Psi_{0}^{(EHF)} \right\rangle} = \frac{\left\langle \Psi_{(k\sigma)}^{(EHF)} \middle| \Psi_{0}^{(EHF)} \right\rangle}{\left\langle \Psi_{(k\sigma)}^{(EHF)} \middle| \Psi_{(k\sigma)}^{(EHF)} \right\rangle} \approx \frac{1}{N} |_{N \to \infty} \to 0.$$
(259)

So, the wave function $\Psi_{(k\sigma)}^{(EHF)}$ is asymptotically orthogonal to $\Psi_0^{(EHF)}$ and may be used for a description of the excited state the energy

$$E_{(k\sigma)}^{(EHF)} = \left\langle \Psi_{(k\sigma)}^{(EHF)} \middle| \hat{H} \middle| \Psi_{(k\sigma)}^{(EHF)} \right\rangle / T00 = E_{(k\sigma)}^{(UHF)} = E_0^{(UHF)} + 2\varepsilon_k^{(2)}.$$
(260)

To summarize, the ground state energy, energies of the lowest excitations and the the SCF equations for large systems ($N \gg 1$) are the same in the framework of the UHF and the EHF methods. Thus, to calculate the electronic structure of the system, which consists of large number of electrons, by the EHF method one may use the simple single determinant UHF wave function rather than the much more complicated EHF wave function (239).

7.4. Some Conclusions

As already known the appearance of the forbidden gap of about 1 eV width in the optical spectra of long cumulene chains can be explained by means of the RHF

method with the alternation of bond lengths being introduced. However, the torsion barrier of the end groups of long cumulene chain does not vanish in this model. This fact seems unnatural as far as the end-groups CH_2 of long cumulene chain C_NH_4 ($N \gg 1$) are placed at the large distance from one another. On the other hand, the simple MO methods give $\Delta E \rightarrow 0$ ($N \rightarrow \infty$) for cumulenes with equal bond length. But in this case the first electronic transition frequency also tends to zero which contradicts the experiment.

To put it another way, the assumption that the energy gap in the spectra of long cumulene chains is due to the bond alternation gives rise to the dependence of the gap value to the torsion barrier. The gap value is shown to be equal to the torsion barrier in this model [159]. From the mathematical point of view this correlation between the gap value and the torsion barrier results from neglecting electron correlation. Indeed, if the long cumulene chain in the conformation $A_{\perp}(D_{2d})$ involving the odd number of π -electrons in each of the two subsystems *a* and *b* is treated by means of the Huckel or the RHF methods, then in the spectrum of such chain there are two levels in the ground state which correspond to the zero values of one-electron energies, whether the bond alternation is introduced or not.

It is shown in this paragraph that the appearance of the forbidden zone in spectra of long cumulene chains is not connected with the value of the torsion barrier in the framework of the EHF method in contrast to the simple models mentioned above. Furthermore, the EHF method gives zero value of the torsion barrier for long cumulenes with equal bond lengths. On the one hand, these results once more suggest the necessity for taking account of electron correlation when large conjugated systems are treated. On the other hand, we think that these results provide some further evidence for the correlation nature of the forbidden zone in spectra of long cumulene chains and, consequently, long polyene chains.

8. Coexistence or Contradiction of the Peierls- and Mott-type Instabilities in Quasi-one-dimensional systems

It has been first stated by Mott [160 - 168] that the one-dimensional array of atoms with a half-filled valence band should necessarily exhibit metal – dielectric transition as a result of increasing the lattice constant. Modern developments of the Mott instability have been reviewed in [106, 168, 169]. In such Mott-type dielectrics the lowest quasi-ionic excitations are separated from the ground state by the energy gap of the order $\Delta \approx I - A(I \text{ and } A \text{ are being the ionization potential and electron affinity correspondingly}). The value of this important parameter should be ~10 eV in the case of isolated small atoms, but some factors in real systems like polarizability of the given elementary unit (CH₂ group in polyenes, TCNQ fragment in charge transfer$

salts) or of the neighbouring elementary units [170] reduce this gap to $\Delta \approx 3-4eV$ for polyenes and up to $\Delta \approx 1eV$ in TCNQ chains. Furthermore, electron exchange at the real interatomic distances should be taken into account which results in the broadening of previously highly degenerate ionic excited states to a conductance band of width $\sim 4|\beta|$, where β being the resonance integral. In the case of $\Delta/|\beta| \gg 1$, this does not change the spectrum qualitatively and even at real distances one gets the Mott-type dielectric at zero temperature. In the opposite case $\Delta/|\beta| \ll 1$, the exchange broadening is larger than the energy gap which leads to the metal type structure of the excitation spectrum of the 3d-crystal. However, in the 1d-case such a structure is unstable with respect to nuclear displacements of a special kind and the Peierls transition to the usual semiconducting state takes place [17, 171 – 173]. As a result one gets an initially continuous band of allowed states split in two bands with a forbidden zone of the width $\sim |\beta_1 - \beta_2|$, where β_1 and β_2 are exchange integrals of the neighbouring bonds; no magnetic structure has to be expected.

As it has been pointed out in [174], a close relationship exists between the so-called metal – insulator transition and the various instabilities of the conventional Hartree – Fock state which is associated with formation of the charge or spin density waves [175 - 186].

The following question naturally arises: what will happen if $|\beta|$ and Δ are of the same order of magnitude? Concerning some similar problems [187, 188] it has been supposed that the gap in the energy spectrum would arise from combined effects of two factors. Nevertheless, the opposite points of view have also been introduced [134, 189]. Let us mention here that the situation seems to be different for 1d- and 3d-systems; in the last case there is a strong evidence, both experimental and theoretical, in favour of coexistence of Peierls and Mott instabilities [169]. In this paragraph the 1d-problem will be treated with generalization to consider finite temperatures.

It should be mentioned that for both types of instabilities the gap should be temperature dependent and should be equal to zero if the temperature raises above some critical temperature T_c . This may be qualitatively understood as follows. In the case of the Peierls transition, the width of the gap is determined by two subtle effects: lowering of the total energy due to the lowering of filled energy levels and raising the energy due to lattice distortion. The energy minimum is reached at the definite distortion which determines the energy gap value. If the temperature is raised, some of the electrons pass to the band of excited states which results in two effects of the same sign: 1) the energy gain due to the energy levels lowering becomes smaller because not all those levels are now filled; 2) from the point of view of the excited electrons, decreasing the gap is preferable as it lowers their energy.

Thus, the gap width Δ and the lattice distortion depend on the occupation *n* of the one-electron states, which in its turn depends on the temperature: $\Delta = \Delta(n(T))$.

Thus, at a higher temperature the gap becomes smaller, which makes it easier for the electrons to occupy excited states after the temperature rise and so on. It seems likely that the process is fast enough and at some T_c the gap vanishes. The quantitative treatment [172, 173] confirms this explanation.

The situation is formally similar in the case of Mott semiconductors. In this case the creation of ionic excitation makes it easier for the electron at the neighbouring atom to be excited also, *i.e.*, the energy gap depends on the electron distribution at the levels of the ground and excited states which, in turn, is temperature dependent.

The method used below is simple and straightforward: the 1d-chain with lattice displacement Δx of the kind of bond alternation will be considered using the SCF calculations allowing, in principle, to get the correlation gap. The total energy or the free energy in the case of T > 0 will be evaluated to investigate whether its minimum correspond to the nonzero values of both correlation gap and the lattice distortion or whether only one of them may differ from zero for the 1d-system.

8.1. Peierls and Mott Instabilities at $T = 0^{\circ} K$

We start with a Hamiltonian that differs from the Hubbard Hamiltonian in two points: the lattice distortion as the bond alternation is taken into account and the repulsion of electrons when accounted for the neighbouring atoms γ_{12} is included, namely:

$$\hat{H} = \alpha \sum_{n\sigma} \hat{A}_{n\sigma}^{+} \hat{A}_{n\sigma} + \sum_{n\sigma} [\beta - (-1)^{n} \Delta \beta] (\hat{A}_{n\sigma}^{+} \hat{A}_{n-1,\sigma} + \hat{A}_{n+1,\sigma}^{+} \hat{A}_{n\sigma}) + U \sum_{n} \hat{A}_{n\alpha}^{+} \hat{A}_{n\alpha} \hat{A}_{n\beta}^{+} \hat{A}_{n\beta} + \frac{\gamma_{12}}{2} \sum_{n\sigma\sigma'} \hat{A}_{n\sigma}^{+} \hat{A}_{n\sigma} (\hat{A}_{n+1,\sigma'}^{+} \hat{A}_{n+1,\sigma'} + \hat{A}_{n-1,\sigma'}^{+} \hat{A}_{n-1,\sigma'}),$$
(261)

where α is the Coulomb integral, *U* is the Hubbard parameter of the electron repulsion on the same atom, γ_{12} accounts for electron repulsion on the nearest-neighbouring atoms. The second term describes the Peierls doubling of the unit cell. The first term will be omitted in the following treatment bearing in mind that it results only in a trivial equal shift of all energy levels.

The translational invariance of the Hamilton (261) may be used to reduce it to a more nearly diagonal form. Let us introduce the operators $\hat{B}_{k\sigma}^+$ and $\hat{B}_{k\sigma}$ which create and annihilate, respectively, an electron in a state with quasi-momentum *k* and spin σ :

$$\left. \begin{array}{l} \hat{A}_{n\sigma}^{+} = \frac{1}{\sqrt{N}} \sum_{k} \hat{B}_{k\sigma}^{+} e^{-ink} \\ \hat{A}_{n\sigma} = \frac{1}{\sqrt{N}} \sum_{k} \hat{B}_{k\sigma} e^{ink} \end{array} \right\}, \quad k = \frac{n\pi}{N}, \quad n = \pm 1, \pm 2, \dots, \pm N.$$
(262)

The usual anticommutation relations for the operators $\hat{B}_{k\sigma}$ are obeyed

$$[\hat{B}_{k\sigma}^{+}, \hat{B}_{k'\sigma'}^{+}]_{+} = [\hat{B}_{k\sigma}, \hat{B}_{k'\sigma'}]_{+} = 0, \quad [\hat{B}_{k\sigma}^{+}, \hat{B}_{k'\sigma'}]_{+} = \delta_{kk'}\delta_{\sigma\sigma'}.$$
(263)

The inverse relations are

$$\hat{B}_{k\sigma}^{+} = \frac{1}{\sqrt{N}} \sum_{n} \hat{A}_{n\sigma}^{+} e^{ink},$$

$$\hat{B}_{k\sigma}^{-} = \frac{1}{\sqrt{N}} \sum_{n} \hat{A}_{n\sigma} e^{-ink}.$$
(264)

Transforming the Hamiltonian (262) to the new operators, one obtains

$$\hat{H} = 2\beta \sum_{k} \hat{B}_{k\sigma}^{+} \hat{B}_{k\sigma} \cos k + 2i \Delta \beta \sum_{k} \hat{B}_{k\sigma}^{+} \hat{B}_{k+\pi,\sigma} \sin k + \frac{U}{N} \sum_{kk'q} \hat{B}_{k+q,\alpha}^{+} \hat{B}_{k\alpha} \hat{B}_{k'-q,\beta}^{+} \hat{B}_{k'\beta} + \frac{\gamma_{12}}{N} \sum_{k_{1}+k_{3}=k_{2}+k_{4}} \hat{B}_{k_{1}\sigma}^{+} \hat{B}_{k_{2}\sigma} \hat{B}_{k_{3}\sigma'}^{+} \hat{B}_{k_{4}\sigma} \cos(k_{1}-k_{2}),$$
(265)

The quadratic part of the Hamiltonian is diagonal only for the regular lattice $(\Delta\beta = 0)$. In the alternating lattice $(\Delta\beta \neq 0)$ there are N/2 equivalent pairs of sites rather than N equivalent sites. Thus, a linear combination of the operators (264) is required to diagonalize the quadratic part of the Hamiltonian. The energy spectrum breaks up into two bands, separated by a forbidden zone $4\Delta\beta$ in width. We do not follow this procedure here because it is useless in treating the last two quartic interacting terms in (265).

To treat the full Hamiltonian, we have to simplify it in an appropriate way. We wish to obtain the self-consistent solution of our problem. Thus, we shall reolace some terms in the quartic part of the Hamiltonian by their average values. Bearing this in mind one can reduce (265) leaving only the terms we expect to have as nonzero average values in the ground state we are looking for and omitting all the terms with zero ground state average.

In the Hubbard term of (265) only two terms should be left: (i) the q = 0 term, namely:

$$\frac{U}{N}\sum_{kk'}\hat{B}^+_{k\alpha}\hat{B}^+_{k\alpha}\hat{B}^+_{k'\beta}\hat{B}^+_{k'\beta}.$$
(266)

Assuming that in the ground state the average numbers of electrons with spin α and β are equal ($\langle n_{\alpha} \rangle = \langle n_{\beta} \rangle = N/2$), and remembering that

$$\sum_{k} \hat{B}^{+}_{k\alpha} \hat{B}_{k\alpha} = \sum_{n} \hat{A}^{+}_{n\alpha} \hat{A}_{n\alpha} = \hat{n}_{\alpha},$$

one may replace (266) by the C number UN/4; and

(ii) the $q = \pi$ term, namely:

$$\frac{U}{N}\sum_{kk'}\hat{B}^{+}_{k+\pi,\alpha}\hat{B}^{+}_{k\alpha}\hat{B}^{+}_{k'+\pi,\beta}\hat{B}^{+}_{k'\beta} \equiv UN\hat{\Delta}_{\alpha}\hat{\Delta}_{\beta}, \qquad (267)$$

where

$$\hat{\Delta}_{\alpha} = \frac{1}{N} \sum_{k} \hat{B}^{+}_{k+\pi,\alpha} \hat{B}^{-}_{k\alpha} , \qquad (268)$$

and analogous expression for $\hat{\Delta}_{\beta}$.

To understand the physical meaning of the operator $\hat{\Delta}_{\sigma}$, let us return to the site operators $\hat{A}_{n\sigma}$ and $\hat{A}_{n\sigma}^{+}$ following Eq. (264). Then one obtains

$$\hat{\Delta}_{\sigma} = \frac{1}{N} \sum_{n} (-1)^n \hat{A}_{n\sigma}^+ \hat{A}_{n\sigma}.$$
(269)

Equation (269) evidently shows that $\langle \hat{\Delta}_{\sigma} \rangle$ is proportional to the overall difference in the number of electrons with spin σ at the even and odd atoms of the chain and differs from zero only if spin alternation at the neighbouring sites of the chain take place. Retaining this term makes it possible to account for the correlation contribution to the energy gap or, in other words, to treat the Mott-type semiconductors, while, as it has been mentioned, the second term in (265) allows ua to consider the Peierls instability.

In the last term of (265) we preserve the following four terms: (i) $k_1 = k_2$, namely,

$$\frac{\gamma_{12}}{N} \sum_{k_1, k_3, \sigma, \sigma'} \hat{B}^+_{k_1 \sigma} \hat{B}^+_{k_3 \sigma'} \hat{B}^+_{k_3 \sigma'} \hat{B}^+_{k_3 \sigma'}, \qquad (270)$$

which is merely a correction to the Hartree-type term discussed above, and in the ground state assumbed to be replacable by the C number $N\gamma_{12}$;

(ii) $k_1 = k_4, k_2 = k_3$, namely,

$$-\frac{\gamma_{12}}{N} \sum_{k_1, k_2', \sigma, \sigma'} \hat{B}^+_{k_1 \sigma} \hat{B}^+_{k_1 \sigma'} \hat{B}^+_{k_2 \sigma'} \hat{B}^+_{k_2 \sigma} \cos(k_1 - k_2), \qquad (271)$$

which is the usual exchange term; (iii) $k_1 = k_2 + \pi$, namely,

$$-\frac{\gamma_{12}}{N}\sum_{k_1,k_3,\sigma,\sigma'}\hat{B}^+_{k_1\sigma}\hat{B}^-_{k_1\sigma,\sigma}\hat{B}^+_{k_3\sigma'}\hat{B}^-_{k_3+\pi,\sigma'},$$
(272)

which is a Coulomb-type term connecting the states with impulses k and $k + \pi$ (these states are already connected in the second term in Eqs (265) and (267), thus we continue to keep the terms of this kind); and finally

(iv) $k_1 = k_4 + \pi$, namely,

$$-\frac{\gamma_{12}}{N}\sum_{k_1,k_3,\sigma,\sigma'}\hat{B}^+_{k_1+\pi,\sigma}\hat{B}^-_{k_1,\sigma'}\hat{B}^+_{k_2+\pi,\sigma'}\hat{B}^-_{k_2,\sigma}\cos(k_1-k_2), \qquad (273)$$

which is an exchange-type term, connecting the k and $k + \pi$ states. Writing $\cos(k_1 - k_2)$ as $\sin k_1 \sin k_2 + \cos k_1 \cos k_2$, and reffering to subsequent integration, one can reach further simplification of the Hamiltonian due to the fact that the ground state every of

simplification of the Hamiltonian due to the fact that the ground-state everage of some terms appearing vanish, thus,

$$\left\langle \hat{B}_{k\sigma}^{+}\hat{B}_{k\sigma'}\right\rangle \approx \delta_{\sigma\sigma'}, \quad \left\langle \hat{B}_{k\sigma}^{+}\hat{B}_{k\sigma}\sin k\right\rangle = 0, \quad \left\langle \hat{B}_{k\sigma}^{+}\hat{B}_{k+\pi,\sigma}\cos k\right\rangle = 0.$$

Introducing two new operators

$$\hat{\xi}_{\sigma} = \frac{1}{N} \sum_{k} \hat{B}_{k\sigma}^{+} \hat{B}_{k+\pi,\sigma} \sin k,$$

$$\hat{\eta}_{\sigma} = \frac{1}{N} \sum_{k} \hat{B}_{k\sigma}^{+} \hat{B}_{k\sigma} \cos k,$$
(274)

one ia able to rewrite the reduced Hamiltonian in the form

$$\hat{H} = 2\beta \sum_{\sigma} \hat{\eta}_{\sigma} + 2\Delta\beta \sum_{\sigma} \hat{\xi}_{\sigma} + \frac{U - 2\gamma_{12}}{2} \sum_{\sigma} \hat{\Delta}_{\sigma} \hat{\Delta}_{-\sigma} - \gamma_{12} \sum_{\sigma} (\hat{\eta}_{\sigma}^2 + \hat{\Delta}_{\sigma}^2 + \hat{\xi}_{\sigma}^2) \,. \tag{275}$$

This reduced Hamiltonian is formally very similar to the reduced Hamiltonian solved in the Bardeen – Cooper – Schrieffer (BCS) theory of superconductivity. As has been proved by Bogolyubov [120, 121], its SCF solution for a large system $(N \rightarrow \infty)$ asymptotically coinsides with the exact one. Thus, what we have to do now is to solve the wave equation with Hamiltonian (275) using the SCF method. It seems to be convenient in our case to write the wave equation in the form of equation of motion.

Let us use the standard Bogolyubov transformation

$$\hat{b}_{k\sigma} = U_{k\sigma}\hat{B}_{k\sigma} + V_{k\sigma}\hat{B}_{k+\pi,\sigma}$$
(276)

to define the new operators $\hat{b}_{k\sigma}^{+}, \hat{b}_{k\sigma}^{-}$, satisfying the equation of motion

$$[\hat{b}_{k\sigma}, \hat{H}] = \lambda_{k\sigma} \hat{b}_{k\sigma}.$$
(277)

If the coefficients $U_{k\sigma}$, $V_{k\sigma}$ in (276) are found to satisfy Eq. (277), then the transformation (277) diaginalize Hamiltonian (275).

Requiring the new operators (276) to be of the Fermi-type

$$[\hat{b}_{k\sigma}^{+},\hat{b}_{k'\sigma'}]_{+} = \delta_{kk'}\delta_{\sigma\sigma'}, \qquad (278)$$

one obtains the following relation for $U_{k\sigma}$, $V_{k\sigma}$:

$$|U_{k\sigma}|^2 + |V_{k\sigma}|^2 = 1.$$
(279)

Substituting Eqs (276) and (275) into (277), and performing the calculations required using (278), one obtains the system of two nonlinear equations with respect to $U_{k\sigma}$, $V_{k\sigma}$. Linearizing these equations, which corresponds to the SCF procedure, and using (279), one obtains the solution in the form

$$\lambda_{k\sigma} = \pm (4\tilde{\beta}^2 \cos^2 k + 4\Delta\tilde{\beta}^2 \sin^2 k + U^2 \langle \Delta_{-\sigma} \rangle^2)^{1/2}, \qquad (280)$$

$$|U_{k\sigma}|^{2} = \frac{1}{2} \pm \frac{\tilde{\beta} \cos k}{(4\tilde{\beta}^{2}\cos^{2}k + 4\Delta\tilde{\beta}^{2}\sin^{2}k + U^{2}\langle\Delta_{-\sigma}\rangle^{2})^{1/2}},$$

$$|V_{k\sigma}|^{2} = \frac{1}{2} \mp \frac{\tilde{\beta} \cos k}{(4\tilde{\beta}^{2}\cos^{2}k + 4\Delta\tilde{\beta}^{2}\sin^{2}k + U^{2}\langle\Delta_{-\sigma}\rangle^{2})^{1/2}},$$
(281)

where

$$-\frac{\pi}{2} < k < \frac{\pi}{2}, \quad \tilde{\beta} = \beta - \gamma_{12} \left\langle \hat{\eta}_{\sigma} \right\rangle, \quad \Delta \tilde{\beta} = \Delta \beta - \gamma_{12} \left\langle \xi_{\sigma} \right\rangle. \tag{282}$$

To make the solution complete, we have to calculate $\langle \Delta_{\sigma} \rangle$, $\langle \hat{\eta}_{\sigma} \rangle$, and $\langle \xi_{\sigma} \rangle$, where the everaging is implied over the just found ground state, corresponding to all states $\lambda_{k\sigma}$ occupied with the minus sign in Eq. (280), *i.e.* the ground state has the form

$$\psi_0 = \prod_{i=1}^{N} {}^{(-)} \hat{b}_{k_i}^+ \left| 0 \right\rangle, \qquad (283)$$

where the operators ${}^{(-)}\hat{b}_k^+$ are defined by Eqs (276) and (281) with the lower sign in (281).

To perform the required calculations, one should express $\hat{B}_{k\sigma}$ and $\hat{B}_{k+\pi,\sigma}$ in terms of the operators ${}^{(-)}\hat{b}_{k}^{+}$ and ${}^{(+)}\hat{b}_{k}^{+}$; and after substituting them into (274) to average Δ_{σ} , $\hat{\eta}_{\sigma}$, and ξ_{σ} over the ground state (283). Taking into account that only terms like ${}^{(-)}\hat{b}_{k}$ and ${}^{(+)}\hat{b}_{k}^{+}$ contribute to the ground state average values, one obtains the following system of coupled integral equations with respect to $\langle \Delta_{\sigma} \rangle$, $\langle \hat{\eta}_{\sigma} \rangle$, and $\langle \xi_{\sigma} \rangle$:

$$\frac{U}{\pi} \int_{0}^{\pi/2} \frac{dk}{\sqrt{\tilde{\varepsilon}^{2}(k) + U^{2} \langle \Delta_{\sigma} \rangle^{2}}} = 1,$$

$$\tilde{\beta} = \beta \left(1 - \frac{2\gamma_{12}}{\pi} \int_{0}^{\pi/2} \frac{\cos^{2}k \, dk}{\sqrt{\tilde{\varepsilon}^{2}(k) + U^{2} \langle \Delta_{\sigma} \rangle^{2}}} \right)^{-1}, \quad , \qquad (284)$$

$$\Delta \tilde{\beta} = \Delta \beta \left(1 + \frac{2\gamma_{12}}{\pi} \int_{0}^{\pi/2} \frac{\sin^{2}k \, dk}{\sqrt{\tilde{\varepsilon}^{2}(k) + U^{2} \langle \Delta_{\sigma} \rangle^{2}}} \right)^{-1},$$

where

$$\tilde{\varepsilon}^2(k) = 4(\tilde{\beta}^2 \cos^2 k + \Delta \tilde{\beta}^2 \sin^2 k).$$

This system of equations may be solved iteratively, but in the usually assumed case of $\gamma_{12} \ll \beta, U$ it breaks into

$$\Delta \tilde{\beta} \approx \Delta \beta, \quad \tilde{\beta} \approx \beta,$$

and

$$\frac{U}{\pi} \int_{0}^{\pi/2} \frac{dk}{\sqrt{\varepsilon^2(k) + U^2 \left\langle \Delta_{\sigma} \right\rangle^2}} = 1,$$
(285)

where

$$\varepsilon^{2}(k) = \beta_{1}^{2} + \beta_{2}^{2} + 2\beta_{1}\beta_{2}\cos 2k,$$

$$\beta_{1} = \beta + \frac{1}{2}\Delta\beta, \quad \beta_{2} = \beta - \frac{1}{2}\Delta\beta,$$

the last equation being the gap equation that, in the case of the regular chain structure (no bond alternation), transforms to equation for the correlation gap [17, 111]

$$\frac{U}{\pi} \int_{0}^{\pi/2} \frac{dk}{\sqrt{4\beta^2 \cos^2 k + U^2 \left\langle \Delta_\sigma \right\rangle^2}} = 1.$$
(286)

As has been stated in [187], Eq. (286) has a nonzero solution $\langle \Delta_{\sigma} \rangle \neq 0$ for all values of the parameters, which we will denote as Δ_0 .

Let us now return to the general case of Eq. (285), assuming that

$$\beta(\delta x) = \beta_0 e^{-\alpha \delta x}$$

where δx denotes displacement from the regular, equal-bond configuration. Thus, Eq. (285) may be rewritten as

$$\frac{U}{\pi} \int_{0}^{\pi/2} \frac{dk}{\sqrt{(\beta_1 - \beta_2)^2 + 4\beta_0^2 \cos^2 k + U^2 \langle \Delta_\sigma \rangle^2}} = 1.$$
(287)

Comparing (287) with (286) one easily concludes that if Δ_0 is the solution of (286) then the solution of (287) is given by

$$2U^{2}\langle \Delta_{\sigma} \rangle^{2} + (\beta_{1} - \beta_{2})^{2} = U^{2}\langle \Delta_{\sigma} \rangle_{0}^{2},$$

so that

$$\left\langle \Delta_{\sigma} \right\rangle^{2} = \left\langle \Delta_{\sigma} \right\rangle_{0}^{2} - \frac{1}{2} \left(\frac{\beta_{1} - \beta_{2}}{U} \right)^{2}.$$
 (288)

We are now in a position to turn to the final step of the treatment, namely, calculation of the total energy and minimization of it with respect to δx .

Substituting Eqs (275) and (280) - (283) into the usual expression for the total electronic energy in the ground state

$$\bar{E}_{el} = \left\langle \psi_0 \right| \hat{H} \left| \psi_0 \right\rangle,$$

one obtains

$$\overline{E}_{el} = \frac{U}{4} + \sum_{k} \lambda_k + U\Delta^2.$$
(289)

It is important to recognize that according to (280) and (288)

$$\lambda_k (\beta_1 - \beta_2)^2 / U$$

is independent on δx because the only term containing this dependence cancels in the expression for λ_k . Thus, assuming δx to be small, which results in $\beta_1 - \beta_2 \approx \delta x$, one can rewrite (289) in the form

$$\bar{E}_{el} = E_0 - E_1 (\delta x)^2.$$
(290)

Adding the core deformation energy

$$E_{core} = \frac{1}{2}\kappa(\delta x)^2,$$

one obtains the total energy of the chain in the form

$$E = E_0 + \alpha(\delta x)^2. \tag{291}$$

This expression, when minimized with respect to δx , gives us a solution $\delta x = 0$ only in the case

$$\alpha = E_1 - \frac{1}{2}\kappa > 0,$$

which obviously corresponds to a vanishing bond correlation and to the energy gap (286) of the pure "correlation" type.

In the opposite case of $\alpha < 0$, the total energy does not exibit a minimum at all, decreasing formally to $-\infty$ when δx increases. Nevertheless, taking into account (288), one can see that for some δx and corresponding $\beta_1 - \beta_2$, value of $\langle \Delta^2 \rangle$ becomes negative, which evidently means that our solution fails completely. Here we should remember that apart from the solution described by Eqs. (284) and (286), which is the non-trivial solution of the UHF SCF equations, we always have the trivial solution $\Delta = 0$, corresponding to the usual HF SCF procedure. We have used the non-trivial solution in the case of the regular chain structure (no alternation) because in this case it corresponds to a lower energy than the trivial solution [174]. However, for $\alpha < 0$ this non-trivial solution does not minimize the total energy, and for some δx in the process of its increasing we get $\Delta = 0$; at this point we should jump to the trivial solution because the non-trivial one ceases to exist. Hence, in this case we have an alternating-bond chain with a vanishing ($\Delta = 0$) contribution of the Mott-type correlation to the creation of the energy gap; while the gap due to the bond alternation should be calculated in a quite different way [171 - 173]. The results is well known: in the absence of the Mott-type contribution, the Peierls-type transition to a semiconducting state necessarily takes place, and the gap obtained can be approximately calculated as

$$\Delta_{alt} = 8\beta_0 e^{-\kappa/2\beta} \,. \tag{292}$$

Therefore, at least at zero temperature the picture is clear: depending on the numerical values of the parameters involved the quasi-one-dimensional chain represents either a Mott-type or a Peierls-type semiconductor, but not their combination, and the choice should be done by comparison of the total energies of both states. Roughly speaking, it may be stated that the real state is the state with the larger gap calculated neglecting the possibility of the other state available. In fact, in addition to the criterion $U > |\beta|$ mentioned above for the Mott metal – dielectric transition, one more criterion should be formulated determining the value of the gap arised due to Peierls instability. However, it is evident that if we have $U \gg |\beta|$, then the correlation gap is large, *ca. U*, very likely larger than the gap due to the lattice distortion, and the situation is reversed for $U < |\beta|$.

8.2. Finite Temperatures

Let us now consider the same question of the possible combined nature of the energy gap in the case of a finite temperature. Only the general method of calculations and the final results will be presented below. For details of calculations see [172].

To get the temperature dependence of all the values we are interested in the following procedure may be proposed: in all equations used the average over the ground state should be replaced by statistical average calculated as

$$\overline{\hat{A}} = Sp\hat{A}e^{-\hat{H}/kT} / Sp e^{-\hat{H}/kT}.$$
(293)

Bearing in mind that the Hamiltonian expressed in terms of the operators \hat{b}_k^+, \hat{b}_k at (276) – (282) is diagonal, standard equation (293) is reduced to

$$\bar{\hat{A}} = \sum_{k,l} \eta_{kl,\sigma}(T) \left\langle kl\sigma \left| \hat{A} \right| kl\sigma \right\rangle,$$
(294)

where η_{kl} is the average number of particles in the state (k,l) with k stands for the quasi-impulse and l – for the zone number. During all transformations the Fermi character of quasi-particles has been required (see Eq. 278), hence

$$\eta_{kl,\sigma}(T) = \{ \exp[\varepsilon_{kl,\sigma} / kT] + 1 \}^{-1}, \quad \varepsilon_{kl,\sigma} \equiv \lambda_{k\sigma} \,. \tag{295}$$

For the temperature dependent energy gap playing a central role in all the treatment using Eqs (278) and (294) one obtains

$$\left\langle \Delta_{\sigma} \right\rangle = \frac{1}{N} \sum_{kl} \eta_{kl} \left\langle \hat{B}^{+}_{k+\pi,\sigma} \hat{B}_{k\sigma} \right\rangle.$$
(296)

Substituting Eqs (295) and (276) – (280) into (296) and performing the calculations required which are very similar to those leading to (285) one obtains the following equation determining $\Delta_{\sigma}(T)$, namely:

$$\frac{U}{2\pi} \int_{0}^{\pi} \frac{\operatorname{th} E(k)/2kT}{E(k)} dk = 1,$$
(297)

where

$$E(k) = [(U\Delta)^2 + \varepsilon^2(k)]^{1/2}, \quad \varepsilon^2(k) = (\beta_1 - \beta_2)^2 + 4\beta_0^2 \cos^2 k.$$
(298)

Introducing the density of states, one can transform (297) into the form

$$\frac{U}{\pi} \int_{\Delta}^{\sqrt{\varepsilon^2 + \Delta^2}} \frac{\operatorname{th} \varepsilon / 2kT}{\sqrt{\varepsilon^2 + \Delta^2} \sqrt{\varepsilon_F^2 + \Delta^2 - \varepsilon^2}} d\varepsilon = 1, \qquad (299)$$

where the same assumption $\beta(\delta x) \approx \beta_0 e^{-\delta x}$ and notation $\varepsilon_F = |\beta_0|$ have been used, but now

$$\Delta^2 = |\beta_1 - \beta_2|^2 + \langle \Delta_\sigma \rangle^2.$$
(300)

Equation (299) may be considered in the same way as it has been done concerning Eq. (287). The one-electron energy levels which are now temperature dependent are also independent on δx and all the discussion following Eq. (291) may be repeated leading to the same conclusions at the finite temperature as were arrived at in the case of zero temperatute.

Let us now note that if our system is a Mott-type semiconductor with $(\beta_1 - \beta_2) = 0$ and $\langle \Delta_{\sigma} \rangle \neq 0$, then Eq. (299) becomes similar to the Peierls gap in the chain with bond alternation, namely, both of them are BCS-type gaps in superconductors. Unfortunately this does not provide us much information on the nature of metal – Mott semiconductor phase transition because low-lying triplet and singlet excitations should be taken into account before one treats the quasi-ionic states with higher energies; but only these later states may be considered using the standard UHF procedure.

9. Coexistence of Mott and Peierls Instabilities in Quasi-one-dimensional Systems

The quasi-one-dimensional conductors have so far being studied are of interest for both theoreticiants and experimentators. This interest, on the one hand, is due to advances in synthesis of polyacetylene (PA), polydiacetylene (PDA), organic crystalline conductors based on molecular donors and acceptors of electrons. On the other hand, 1d-conductors are nontrivial systems. Thus, 1d-metal is unstable to the transition into semiconducting state. As a result the 1d-metal with half-filled conduction band becomes the Mott semiconductor or Peierls semiconductor. The Peierls transition leads to dimerization of the uniform regular 1d lattice (bond alternation) and semiconducting energy gap is proportional to the dimerization amplitude. The Mott transition is a result of electron correlation and energy gap in the Mott semiconductor vanishes with decreasing electron – electron interaction strength. The semiconductor of the Mott and Peierls type possesses some interesting properties. For example, the Mott semiconductors are characterized bv antiferromagnetic structures [190], and in the Peierls semiconductors the kink-type excitations are possible [191, 192].

The influence of the Mott and Peierls instabilities on the properties of real quasione-dimensional systems have already long story. The main problem in theoretical studies consists in complications related to correct account of electron correlation effects. In ealier papers contradiction of the Mott and Peierls transitions was usually stated. Then it was shown that this contradiction is a result of one-electron approach in the RHF theory. The conclusion that the Mott and Peierls transitions coexist one with another was first made in [193]. This result was obtained due to more correct treatment of pair electron correlations using varying localized geminals (VLG) approach [194 – 196]. It was shown that electron – electron interaction can enhance the Peierls dimerization [193]. This somewhat surprising result initiates several theoretical studies [197 – 202] which conformed the conclusion that even account for a small electron – electron interaction leads to increase in dimerization. This conclusion has been received on the basis of perturbation theory for infinite chains using computations [200] and the Feynman diagram technique [201]. Numerical calculations of short polyene chains within the same geminals approach conformed this result slightly deformed by boundary conditions [193].

Thus, we can state now that the theory predicts coexistence of the Mott and Peierls instabilities in real systems. So, the experimental data on 1d-systems should not correspond to the simple picture of the Peierls or the Mott semiconductors. One must expore the more complicated theoretical model including the both phenomena. On this way only one can give correct description of real 1d materials. For example, we can now give the correct answer to the question what mechanism of the forbidden gap formation is more essential – the electron correlation or dimerization.

In this paragraph we shall study now the simultaneous effect of the Mott and Peierls instabilities on electronic spectra and lattice distortion in real 1d conductors such as organic donor – acceptor molecular crystals and conjugated polymers of PA type. These studies are based on the VLG approach [193 – 196].

9.1. The Method of Calculations and Qualitative Evaluations

Studying the electronic properties of organic 1d materials the following model of uniform chain with the adiabatic Hamiltonian is used:

$$\hat{H} = \sum_{\sigma,m=1}^{N} \beta_m (\hat{c}_{m\sigma}^+ \hat{c}_{m+1,\sigma} + \hat{c}_{m+1,\sigma}^+ \hat{c}_{m\sigma}) + \gamma \sum_m \hat{c}_{m\uparrow}^+ \hat{c}_{m\uparrow} \hat{c}_{m\downarrow}^+ \hat{c}_{m\downarrow} + \gamma_1 \sum_m n_m n_{m+1} + \frac{K_{\sigma}}{2} \sum_m (x_m - x_{m+1})^2 , (301)$$

where $n_{m\sigma} = \hat{c}_{m\sigma}^{+} \hat{c}_{m\sigma}$, number of sites $N \to \infty$, x_m is the *m*th site displacement, resonance integrals

$$\beta_m = -[\beta + (x_{m+1} - x_m)\beta'] = -\beta(1 + \Delta_m), \quad \beta, \beta' > 0,$$
(302)

 γ and γ' are the electron repulsion parameters, K_{σ} is the lattice elasticity constant.

Treatment below will be restricted by the most interesting case of half-filled conduction band with the number of electrons $N_e = N$. The Peierls deformation in this case reduces to the chain dimerization

$$x_{m+1} - x_m = (-1)^m x_0, \quad \beta_m = -\beta [1 + (-1)^m \Delta].$$
(303)

The experimental values of displacements x_0 are small as compared to the lattice constant *a*. For example, in PA $x_0 = 0.07A$ and a = 1.395 A [190, 203], for

[K⁺-TCNQ] complexes $x_0 = 0.18A$ and a = 3.6 A [204]. For small values of x_0 the linear dependence

$$\Delta = \frac{\beta'}{\beta} x_0 \tag{304}$$

is valid. The increase of displacement $x_0 \rightarrow a$ destroys the relation (304) as well as the harmonic adiabatic approach used in (301). Thus, the method used here is valid only for small values of $\Delta \ll 1$.

In this region Hamiltonian (301) is the Frohlich-type Hamiltonian with linear relative to displacements x_m electron – phonon interaction.

Thus, when $\Delta \ll 1$ the adiabatic approach is good enough and the problem of 1d instabilities is reduced to studying the ground state energy dependence on the value of Δ (304). In other words, we need the Δ -value optimizing the expression

$$\varepsilon_t(\Delta) = \varepsilon_{el}(\Delta) + \frac{1}{2} \frac{\Delta^2}{\kappa}, \qquad (305)$$

where ε_{el} is the electronic contribution into the ground state energy per an electron pair, and

$$\kappa = (\beta')^2 / (2K_{\sigma}\beta). \tag{306}$$

is the constant of electron – phonon interaction.

In order to calculate the electronic contribution into the ground state energy mentioned above the VLG approach will be used. The ground state wave function has the form

$$\Psi_{0} = \prod_{m=1}^{M} \hat{G}_{m}^{+} |0\rangle \equiv \prod_{m=1}^{M} (u \hat{f}_{m\uparrow}^{+} \hat{f}_{m\downarrow}^{+} + v \tilde{f}_{m\uparrow}^{+} \tilde{f}_{m\downarrow}^{+}) |0\rangle, \qquad (307)$$

where

$$\hat{f}_{m\sigma} = \sqrt{\frac{2}{N}} \sum_{|k| < K_F} \hat{A}_{k\sigma} e^{-ikR_m}, \quad \hat{\tilde{f}}_{m\sigma} = \sqrt{\frac{2}{N}} \sum_{|k| < K_F} \hat{\tilde{A}}_{k\sigma} e^{-ikR_m}, \quad (308)$$

$$\hat{A}_{k\sigma} = a_{k\sigma} \cos \theta_k + a_{\bar{k}\sigma} i \sin \theta_k,$$

$$\hat{a}$$
(309)

$$\tilde{A}_{k\sigma} = a_{\bar{k}\sigma} \cos \theta_k + a_{k\sigma} i \sin \theta_k,$$

$$a_{k\sigma} = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} c_{n\sigma} e^{-ikna} , \qquad (310)$$

$$u = \cos\varphi, \quad v = \sin\varphi, \tag{311}$$

$$2\theta_k = \arctan(\lambda tgka), \quad k = 2\pi l / Na, \quad (l = 0, \pm 1, \pm 2, ...)$$
 (312)

 φ and λ are the variational parameters, the Fermi operators $\hat{f}_{m\sigma}$ and $\tilde{f}_{m\sigma}$ correspond to the orbitals $f_{m\sigma}$ and $\tilde{f}_{m\sigma}$ which are partially localized near points

$$R_m = (2m + \delta)a. \tag{313}$$

The ground state energy in units of β per electron pair has the form

$$\varepsilon_{el} = 2t\cos 2\varphi - k_0 \sin 2\varphi - v_1 (\frac{2}{N} \sum_{l} |P_l|^2) \cos^2 2\varphi, \qquad (314)$$

where the kinetic energy average

$$t = \sum_{m} [1 + (-1)^{m} \Delta] f_{m}(n) f_{m}(n+1) = \langle 0 | \hat{f}_{m\sigma} \hat{T} f_{m\sigma}^{+} | 0 \rangle, \qquad (315)$$

$$\hat{T} = \sum_{m} (\hat{c}_{m\sigma}^{+} \hat{c}_{m+1,\sigma} + \hat{c}_{m+1,\sigma}^{+} \hat{c}_{m\sigma}), \qquad (316)$$

the exchange integral

$$K = \langle 0 | \hat{f}_{m\uparrow} \hat{f}_{m\downarrow} \hat{V}_{ee} f_{m\uparrow}^+ f_{m\downarrow}^+ | 0 \rangle = U \sum_n |f_0(n)|^4 - U_1 \sum_n |f_0(n)|^2 \cdot |f_0(n+1)|^2, \quad (317)$$
$$U = \gamma / \beta, \quad U_1 = \gamma_1 / \beta,$$

average of non-diagonal density or bond order

$$P_{l} = \left\langle \Psi_{0} \middle| \hat{c}_{l\sigma}^{+} \hat{c}_{l+1,\sigma} + \hat{c}_{l+1,\sigma}^{+} \hat{c}_{l\sigma} \middle| \Psi_{0} \right\rangle = \sum_{m} f_{m}^{*}(l) f_{m}(l+1) = \left[\frac{1}{\pi} + (-1)^{l} \frac{\lambda}{4\pi} \ln \lambda \right] \cos 2\varphi \,. \tag{318}$$

Now we consider the Hubbard approach $\gamma_1 = 0$ in (301). Then, variation of the energy (314) with respect to φ gives

$$\varepsilon_{el} = -\varepsilon_g + U/2, \tag{319}$$

where

$$\varepsilon_g = \sqrt{4t^2 + K^2}.$$
(320)

The values of t, K, P depend on the value of λ [193, 200], so

$$t(\lambda) = -\frac{4}{\pi} \left[E(1-x^2) + (4-\lambda)\frac{\partial E(1-\lambda^2)}{\partial \lambda} \right],$$
(321)

where the E(x) is the elliptic integral.

The explicit form of λ -dependence of *K*

$$K(\lambda) = \frac{U}{3} - \operatorname{Const} \cdot \lambda \cdot \ln \lambda.$$
(322)

can be obtained in the limit of small λ . We can see from (322) that when λ and, as a result, U are small the energy dependence (320) on λ is nonanalytic. Thus, we can suppose strong dependence of U on Δ_0 which minimizes the total energy. Results of

numerical study of U on λ will be given below. Now the evaluation of asymptotic behaviour in two limiting cases $U \rightarrow 0$ and $U \rightarrow \infty$ will be given.

When $U \rightarrow 0$ the non-interacting-electron model is valid and the energy is defined by the value of (321) and its optimization with respect to λ gives $\lambda = \Delta$. The energy minimum corresponds to

$$\Delta_0 = 4 \exp(-\pi / 8\kappa) \big|_{U \to 0} \tag{323}$$

due to the fact that [193]

$$\varepsilon_t = 2 \left(-\frac{4}{\pi} - \frac{2\Delta^2}{\pi} \ln \frac{4}{\Delta} \right) + \frac{\Delta^2}{2\kappa}.$$
 (324)

When $U \ge 4$ one can use the simpler approach instead of (312), namely:

$$\theta_k = \tilde{\lambda} k. \tag{325}$$

Using (325) one obtains [194, 195]

$$\tilde{t}(\lambda) = -\frac{4}{\pi} \frac{\cos \pi \,\tilde{\lambda}}{1 - 4 \,\tilde{\lambda}^2},\tag{321'}$$

$$\tilde{K}(\lambda) = \frac{U}{3} \left(1 + \frac{1}{2} \sin \pi \lambda \right).$$
(322')

Substituting (321') and (322') in (319) and (305) and optimizing Δ one obtains

$$\Delta_0 = \frac{8\kappa}{U} \left(1 - \frac{4}{U^2} \right). \tag{326}$$

We note that Eqs (321'), (322'), and (319) describe well the dependence of the total energy on U for any value of U > 0 [194, 195]. But, the correct description of the Peierls instability near the point U = 0 needs more precise relations due to the fact that the Peierls instability results from a logarithmic term. The latter just lost when passing from (312) to (325) [193].

Now we consider the effect of electron – electron interaction at neighboring sites resulting from the terms with γ_1 in (301). One can conclude from (314) and (318) that γ_1 -term increases the amplitude of dimerization. In the limiting case of weak interactions $U_1 < U \rightarrow 0$ one obtains

$$\Delta_0(U_1) = \Delta_0 |_{U_1=0} \times \exp(\frac{\pi U_1}{24\kappa^2}) = 4\exp(-\frac{\pi}{8\kappa}) \cdot \exp(\frac{\pi U_1}{24\kappa^2}).$$
(327)

Thus, we can see an exponential increase of Δ_0 with $U_1 > 0$.

In order to define the optimal value of Δ_0 we have to look for the minimum of the energy (305) taking into account (319) in the space of Δ_0 and λ variables, namely:

$$E(\lambda, \Delta, U) = -[4t^2(\lambda, \Delta) + K^2(\lambda, U)]^{1/2} + \frac{\Delta^2}{2\kappa}, \qquad (328)$$

where *t* and *K* are defined by (315) and (317), respectively. This task is not too complicated, but when $U \gg 1$ some difficulties arise with the increase of the chain length due to the logarithmic Δ -dependence of the electronic energies in (319) and (324). As a result we cannot use the standard method of quantum-chemical optimization of the bond lengths. This method is based on the linear relations between bond length and bond order resulting from the energy expansion

$$\varepsilon(\Delta) = \varepsilon_0 + \varepsilon' \cdot \Delta + \frac{1}{2} \varepsilon'' \cdot \Delta^2,$$

where

$$\varepsilon' \approx \frac{\beta'}{N} \sum_{l} P_l(x_l - x_{l-1}), \quad \varepsilon'' \approx K_{\sigma},$$

and, as a result,

$$\Delta_0 = \frac{\beta'}{N} \frac{P_l}{K_{\sigma}}.$$
(329)

Some calculations of PA chains based on formula (329) were performed. It was found that even for comparatively long chains with N = 70 the difference Δ between t_N and t_{∞} is just a few units of 10^{-4} . The Peierls contribution into the ground state energy $\Delta^2 \ln \Delta$ when $\Delta \leq 0.01$ is of the same order.

Let us consider now the contribution of dimerization and correlation effects in optical spectra of such organic materials like PA and PDA. For these conjugated polymers one can use the following parameter values:

$$\beta = 2.4 \, eV, \beta' = 4 \, eV/A, K_{\sigma} = 47 \, eV/A^2$$
 [205].

These values are consistent with the parameters available for small conjugated molecules [106, 205] and with frequencies of vibrations active in IR and Raman spectra of PA [205]. Using these values of parameters one obtains from (306) that $\kappa = 0.07$. It means that we are in the region of strong dependence of U on Δ_0 .

Now let us calculate the dielectric gap ΔE . According to [196] one can write

$$\Delta E = 2[\varepsilon_g - t_0(1 + U^2) + T_k U^2], \qquad (330)$$

where

$$T_{k} = \sum_{m} e^{ikm} \left\langle f_{n} \left| \tilde{T} \right| f_{n+m} \right\rangle.$$

The gap value (330) consists of two contributions: correlation contribution ΔE_{corr} and dimerization contribution ΔE_{dim} . When U is small one can assume

$$\Delta E_{corr} = 2\varepsilon_g - 2t_0, \quad \Delta E_{dim} = 4\beta \Delta_0,$$

where ε_{g} is determined by (320) and t_{0} – by (321').

The dependence of correlation ΔE_{corr} and dimerization contributions ΔE_{dim} on the value of *U* is shown on fig. 5.

Fig. 5. The *U*-dependence of the energy gap in electronic spectra of the Mott – Peierls semiconductors like PA or PDA: $\blacksquare - \Delta E_{dim}$, $\circ - \Delta E_{corr}$, $\bullet - \Delta E$.

It follows from fig. 5 that the dimerization contribution ΔE_{dim} to the forbidden zone ΔE exceeds the correlation contribution ΔE_{corr} when U < 2-3. This fact is due to the strong dependence (326) of Δ_0 on U. Using data of Fig. 7 one can now reevaluate the parameters of real organic conductors.

We can conclude from experimental data for trans-PA that $\Delta E = 1.9 \ eV$ [205]. Using the estimation of the electron – phonon interaction constant $\kappa = 0.07$ above one obtains U = 2.5, thus

 $\gamma = 6.2 \ eV$. It is interesting to note that in this region, according to fig. 4, $\Delta E_{corr} < \Delta E_{dim}$. Nearly the same situation occurs in PDA where $\Delta E = 2.5 \ eV$.

Now using data of Fig. 5 one can also easily understand why there are some differences in evaluation of correlation and dimerization contributions to the gap value. Namely, in the region of intermediate values 1 < U < 4 the ΔE_{corr} sharply increases, exceeding ΔE_{dim} after U = 3. Thus, the values of $U, \kappa < 0.1$ are strongly dependent on small perturbations such as the boundary conditions or chain length.

In such organic materials like [K⁺-TCNQ] we have instead $\Delta E = 0.9 \ eV$, $\kappa = 0.05$, $t = 0.15 \ eV$, which gives U > 6. Thus, the correlation contribution into ΔE is dominant and one can use (326) for the evaluation of Δ_0 .

One can conclude as well that the agreement of the calculated values of Δ_0 or x_0 in (304) can be obtained by different approaches. But it needs different values of parameters γ , β , β' , K_{σ} which depend on the model used in calculations of short or infinite chains as well as also chains with cyclic boundary conditions. Giving preference to either calculation model one must bare in mind different experimental data, not only the values of Δ_0 .

10. Conclusions & Perspectives

Advances in physics and chemistry of low-dimensional electron systems have been magnificent in the last few dacades. Hundreds of quasi-1d and quasi-2d systems have been synthesized and studied experimentally and theoretically. The unusual properties of these materials attract attention of physicists, chemists, and engineers.

The most popular representatives of real quasi-1d materials are polyacethylenes [106] and conducting donor – acceptor molecular crystals TTF-TCNQ [206]. One of the promising families of quasi-2d systems are new high temperature superconductors (HTSC) based on cooper oxides La_2CuO_4 , $YBa_2Cu_3O_{6+y}$ [207] and organic superconductors based on BEDT-TTF molecules [208].

Quantum processes in low-dimensional systems are characterized by a number of peculiarities. Thus, special and new theoretical approaches have been developed to study low-dimensional phenomena. We will be concerned further mostly with the 1dsystems. In one-dimensional physics and chemistry there is a number of difficulties and some of them are far from being overcome. On the one hand, equations of motion for 1d-systems are much simpler. This facilitates rigorous solutions of the model problems which are often impeded in case of the larger number of dimensions. On the other hand, manifestations of various interactions in 1d-systems are rather peculiar. This relates, in particular, to electron – electron and electron – phonon interactions. The standard perturbation theory is inapplicable for treating both interactions. Thus, electron – phonon interaction leads to the field localization of electron excitation in 1d-systems which results in soliton excitations and the Peierls deformations. Calculations of soliton excitation can not be done by decomposition in the series of electron – phonon coupling constants. Electron – electron interactions, even within the limit of a weak coupling constant, produces an energy gap in the spectrum od 1d-metal which initiate the Mott transition from metal to semiconducting state. In this case the standard perturbation theory is also not applicable.

Similar situation occurs in 1d-systems with respect to electron – impurity interactions. Started by Mott and Twose theoretical studies of this problem show that all one-electron states in 1d disordered system are localized and, as a result, cannot be calculated using the perturbation theory. State localization turns the direct current conductivity into zero.

Inapplycability of the perturbation theory is one of the main difficulties on the way to succeed in the theory of quasi-1d-systems. These difficulties were being partly surpassed in different ways.

Regardling electron – phonon interaction the most fruitful method is to reduce the set of corresponding equations into a completely integrable system like the nonlinear Schrodinger equation, the sine-Gordon equation, and others.

Advances in description of electron – electron interactions turned out to be less pronounced however. The major reason for it lies in the well known complications of the many-electron theory for systems with an infinitely large number of electrons.

Traditional quantum chemistry as one of the many applications of the general theory of many-electron systems is based upon the Hartee - Fock approximation which came first as "the word came first". Then various many-electron theories being developed where the wave function were not represented by one Slater determinant rather then an infinite series of the determinants. If the number of particles in the system grows as $N \rightarrow \infty$ then the number of terms in this infinite series must increase at least as e^{aN} , where a is a constant ≈ 1 . This particular infinite complication of the theory is the main hindrance in it wide applications in calculations. It is time now to say that these difficulties are often being considerably exaggerated. As a rule, having analyzed the Hamiltonian of the system under study using the many-electron theory one can reduce the problem to a simpler Hamiltonian or without any loss in quality construct multicinfigurational wave function of the system which can be factorized antisymmetrized product of one- or two-electron functions. into an As approximations for a wave function, besides the EHF approximation described in details in paragraph 3 above, the spinless fermion approximation in case of strong interactions [209] and the VLG approximation described in previous paragraph can be mentioned.

In the EHF and spinless fermion approaches a many-electron wave function is finally factorized into the product of one-electron functions (orbitals), but in the VLG approach the factorization into the product of two-electron functions (geminals) is performed.

Now we draw attention to another aspect of the theory of quasi-1d electron systems. Real systems with one-dimensional anisotropy are, in fact, threedimensional. In case of a theoretical study it is expedient to mentally separate a 1dsystem out of the real system using its specific properties. This separation of a quasi-1d-subsystem goes naturally through analysis of the total Hamiltonian represented by the sum

$$\hat{H} = \sum_{n} \hat{H}_{n} + \frac{1}{2} \sum_{n,m} \hat{V}_{nm} , \qquad (331)$$

where \hat{H}_n is the Hamiltonian of a *n*-th quasi-1d subsystem (filaments, needles, chains, stacks, *etc*), and the operators \hat{V}_{nm} describe its interactions with other quasi-1d subsystems.

Further it is usually assumed that the interaction operators do not include terms responsible for electron exchange between separate quasi-1d subsystems. Namely this predetermines the subdivision of the Hamiltonian into the sum (331). This approximation provides satisfactory description of PAs, donor – acceptor molecular conducting crystals as well as many other quasi-1d electron systems.

Before we consider particular expressions for the Hamiltonians for electron – phonon systems under study it is worthwhile to note the following. Most processes in quasi-1d systems are determined by the energy spectrum and the nature of elementary excitations. The low-energy region of the spectrum is mainly related to a small part of the total number of electrons in the system under study. This facilitates a rigorous enough description of electron processes occurring in these systems. As example, most interesting properties of polyenes, cumulenes, and polyacethylenes originate from the π -electron number equals or proportional to the number of carbon atoms and essentially less than the total number of all electrons in the system. Studying the most significant properties of donor – acceptor molecular conducting crystals it is sufficient to consider one electron only per a donor – acceptor pair. In case of TTF-TCNQ crystal it means that only one electron out of 208 is to be considered.

Despite of the simplifications mentioned above we are still have to restrict ourselves with semi-empirical models of quantum chemistry. For example, the well known Huckel – Pople (HP) Hamiltonian

$$\hat{H} = \sum_{m} \alpha \hat{C}_{m\sigma}^{+} \hat{C}_{m\sigma} + \sum_{mm'\sigma} \beta_{mm'} \hat{C}_{m\sigma}^{+} \hat{C}_{m'\sigma} + \frac{1}{2} \sum_{mm'\sigma} \gamma_{mm'} \hat{C}_{m\sigma}^{+} \hat{C}_{m\sigma} \hat{C}_{m'\sigma}^{+} \hat{C}_{m'\sigma}$$
(332)

is very popular and useful to study many properties of molecules with conjugated bonds.

As a rule, it is sufficient in (332) to account for resonance interaction (so called electron hopping) for the adjacent atoms only, namely:

$$\beta_{mm'} = \beta(R_{mm'})\delta_{m',m+1}.$$
(333)

As far as the electron interaction in (332) is conserned only the first several terms are usually accounted for. As an example, in the Hubbard – Anderson (HA) Hamiltonian

$$\gamma_{mn} = \gamma_0 \delta_{mn} \,. \tag{334}$$

Interaction between two neighbouring atoms is only often used:

$$\gamma_{mn} = \begin{cases} \gamma_0 \delta_{mn}, \\ \gamma_1 \delta_{m\pm 1,n}. \end{cases}$$
(335)

Accounting for the bond distance dependence of the resonance integrals it is often sufficient to use only the first term of the β -function expansion in the vicinity of $R_0 = 1.397A$ which corresponds to the C=C bond length in benzene

$$\beta(R) = \beta_0 - (R - R_0)\beta'.$$
(336)

To account for vibrational degrees of freedom the phonon Hamiltonian

$$\hat{H}_{ph} = \sum_{ki} \hbar \omega_{ki} (\hat{B}_{ki}^{+} \hat{B}_{ki} + \frac{1}{2})$$
(337)

is added to (332), where \hat{B}_{ki}^+ is a phonon creation operator for the *i*th mode with a quasimomentum *k*. Starting from (336), the operator of electron – phonon subsystem interactions may be chosen as suggested by Frohlich

$$\hat{H}_{e/ph} = \sum_{kq} \lambda_{qi} (\hat{B}_{q,i}^{+} - \hat{B}_{-q,i}) \hat{A}_{k,\sigma}^{+} \hat{A}_{k+q,\sigma}, \qquad (338)$$

where a constant λ is proportional to the β derivative with respect to R, that is β' in (336). Like in other cases, for quasi-1d systems it is often sufficient to use only the classical form of the phonon part of the Hamiltonian

$$\hat{H}_{ph} = \frac{1}{2} \sum_{mi} M_i \vec{R}_{mi}^2 + \frac{1}{2} \sum_{mi} K_i (\vec{R}_{mi} - \vec{R}_{m+1,i})^2, \qquad (339)$$

and

$$\hat{H}_{e/ph} = \sum_{m\sigma} (R_0 - R) \beta' (\hat{C}_{m+1,\sigma}^+ \hat{C}_{m\sigma} + h.c.).$$
(340)

The Hamiltonian (332) together with the expressions for the matrix elements (333) - (336) allows us to consider the properties of materials based on conjugated

polymers and of donor – acceptor molecular crystals with quasi-1d conductivity such as the crystals based on TTF-TCNQ and their derivatives like TSF, TST, and HTSC [106, 206 - 208].

The greatest interest with respect to newly synthesized quasi-1d and quasi-2d systems is attached to the compounds with high electric conductivity. But on the way to create good organic conductors the investigators encounter difficulties of not only technical but principal nature which relates to an electron instability of a conducting state. Their most important peculiarity lies in the fact that a metallic state of a quasi-1d crystal is unstable with respect to a transition into a dielectric or semiconductive state. The character of instability and its force strength which determines the metal – insulator transition temperature depends on structural features of the crystal.

Let us consider a system consisting of long needles packed into a 3d-crystal. The Hamiltonian of each needle is supposed to be the first term in the general expression (331)

$$\hat{H} = -\beta_0 \sum_{m\sigma} (\hat{C}^+_{m\sigma} \hat{C}^-_{m+1,\sigma} + h.c.), \qquad (341)$$

where the same notifications as in (332) are used and let the number of particles $N \rightarrow \infty$. The 1d-system with Hamiltonian (341) is a metal independently on the number of electrons in the conduction band N_e with density

$$\rho = \frac{N_e}{N} = \frac{1}{N} \sum_{m\sigma} \left\langle \hat{C}^+_{m\sigma} \hat{C}_{m\sigma} \right\rangle, \tag{342}$$

that is, with any filling of the conduction band $0 < \rho < 2$. In case when the number of electrons and sites coincides we have a half-filled conduction band, $N_e = N$ and the Fermi momentum is

 $k_F = \pi / 2a$ where *a* is a 1d-lattice parameter.

A 1d-metal with a half-filled conduction band is unstable with respect to the following metal – insulator transitions:

1) The Mott metal – insulator transition resulting from electron interactions. Instability of a 1d-metal with respect to this transition arises from the fact that electron – electron interactions produce the gap at $T = 0^{\circ} K$ even within a weak coupling constant $U = \gamma / \beta_0$ in the Hamiltonian (332).

2) The Peierls metal – insulator transition is connected with electron – phonon interactions. Alongside with the gap a periodic deformation of the crystal occurs with the period π/k_F .

3) The Anderson metal – insulator transition resulting from structure disordering of the crystal. The instability of a 1d-metal in this case is stimulated by localization of electron states even by a weak random field.

When coupling constant U is large the Wigner ordering of electrons in quasi-1d conductors appears.

Early theories of quasi-1d systems came to the conclusion that various instabilities in a 1d-metal are being competive [106]. However, further analysis have shown that, in fact, a coexistence of different instabilities is possible. Thus, in [193] it was shown that the Mott and Peierls instabilities coexist both at $\rho = 1$ and at $\rho = 1/2$. In other words, a 1d Mott insulator also undergoes lattice deformation with the period π/k_F .

If we want to obtain a good organic conductor or even superconductoe we should stabilize the system with respect to the above transitions. All history of quasi-1d metal systems is, in fact, the history of fighting the above instabilities.

One of the effective means to fight the metal – insulator transitions is to shift electron density

 ρ from the values approaching 1, $\frac{1}{2}$, $\frac{1}{3}$ and other fractions with small denominators. This can be achieved by crystal doping with electron donors of acceptors or by violation of a simple stoichiometric ratio. To understand why this simple and clear method is so efficient we shall discuss the instabilities and their descriptions for a system with a half-filled band with $\rho = 1$ in more details.

The Mott metal – insulator transition. A system with Hamiltonian (341) at $\rho = 1$ is a metal. Adding an Interaction operator like (331) to (341) we obtain the system with the Hubbard Hamiltonian

$$\hat{H} = \sum_{m\sigma} \{ (-\beta) [\hat{C}^{+}_{m\sigma} \hat{C}_{m+1,\sigma} + h.c.] + \frac{1}{2} \beta_0 U \hat{C}^{+}_{m\sigma} \hat{C}_{m\sigma} \hat{C}^{+}_{m,-\sigma} \hat{C}_{m,-\sigma} \}.$$
(343)

The spectrum of a cyclic chain with Hamiltonian (343) is the spectrum of an insulator at any U > 0, that is, the excitation of states with charge transfer requires an energy ΔE . For the first time a conclusion on the energy gap formation in such a system appeared in calculations by EHF method [106].

The Peierls metal – insulator transition. Let us consider a system with the Hamiltonian which can be represented as the sum of (339), (340), and (341)

$$\hat{H} = \sum_{m\sigma} \{-[\beta_0 + \beta'(\vec{R}_m - \vec{R}_{m+1})]\hat{C}^+_{m\sigma}\hat{C}^-_{m+1,\sigma} + h.c.\} + \frac{1}{2}k\sum_m(\vec{R}_m - \vec{R}_{m+1})^2.$$
(344)

The energy minimum of an infinite chain is reached with the Hamiltonian (344) when $R_m = R_0 \cos(Qam + \varphi_0),$ (345) where *a* is a non-deformed lattice parameter, φ_0 is the phase of bond deformation, $Q = 2k_F$, and $\hbar k_F$ is the Fermi momentum.

For a half-filled band $k_F = \pi / 2a$ and

$$R_0 = 2\frac{\beta_0}{\beta'} \exp\left[-\frac{\pi\beta k}{(\beta')^2}\right].$$
(346)

The energy spectrum of conduction electrons for a half-filled band is given by

$$\varepsilon_{1,2} = \pm 2\beta_0 \sqrt{\cos^2 k + 4 \left(\frac{\beta'}{\beta_0}\right) R_0^2 \sin^2 k},$$
(347)

where "–" sign corresponds to a completely filled conduction subband, and "+" sign corresponds to the vacant subband.

Thus, the gap in the one-particle spectrum is

$$\Delta E_g = 8\beta' R_0. \tag{348}$$

The ground state energy correction is

$$\Delta E_c = 4\beta R_0^2 \ln R_0 + \frac{1}{2}KR_0^2.$$
(349)

Some specific features of physics in one dimension remain valid also in two dimensions. Theoretical treatment of 2d-models is more complicated. For example, The Mott and Anderson metal – insulator transitions can occur also in quasi-2d systems. However, the Peierls transition in 2d case can appear only for special forms of the Fermi surface in the case of so called "nesting". Generally speaking, the conditions for the metal – insulator transitions in 2d-systems are stronger than those in 1d case. Passing to 2d-systems one can stabilize conducting and superconducting states.

References

- 1. G. F. Kventsel, Yu. A. Kruglyak. Local electronic states in long polyene chains, *Theor. chim. Acta*, v. 12: 1, 1 17 (1968).
- G. F. Kventsel. Local electronic states in bounded polyene chains, *Teor. Eksper. Khim.*, v. 4: 3, 291 – 298 (1968).
- 3. G. F. Kventsel. Double substitution in long polyene chains, *Teor. Eksper. Khim.* v. 5: 1, 26 31 (1969).
- 4. G. F. Kventsel. Local electronic states in chains with two atoms in the unit cell, *Teor. Eksper. Khim.*, v. 5: 4, 435 445 (1969).
- 5. I. I. Ukrainsky, Yu. A. Kruglyak. Generalized Hartree Fock method and its applications to calculation of the electronic shells of atoms, molecules, and polymers, In G. F. Filippov (ed.), *Modern problems in optics and nuclear physics*. Kiev: Naukova Dumka, 1974.
- 6. Yu. A. Kruglyak, I. I. Ukrainsky. Study of the electronic structure of alternant radicals by the DODS method, *Ukr. Fiz. Zh.*, v. 15: 7, 1068 1081 (1970).
- 7. I. I. Ukrainsky, G. F. Kventsel. Electronic structure of long polyene chains with an impurity atom, *Theor. chim. Acta*, v. 25, 360 371 (1972).
- 8. Yu. A. Kruglyak, G. G. Dyadyusha. Torsion barriers of end-groups in cumulenes. I. General consideration, *Theor. chim. Acta*, v. 10: 1, 23 32 (1968).
- 9. Yu. A. Kruglyak, G. G. Dyadyusha. Torsion barriers of end-groups in cumulenes. II. Results of calculations and discussion, *Theor. chim. Acta*, v. 12: 1, 8 28 (1968); Rotating barrier end groups in organic cumulenes, *Teor. Eksper. Khim.*, v. 4: 4, 431 437 (1968).
- I. I. Ukrainsky. Electronic structure of long cumulene chains, Intern. J. Quantum Chem., v. 6: 3, 473 – 489 (1972).
- 11. G. F. Kventsel. Peierls- and Mott-type instabilities in one-dimensional chains coexistence or contradiction, *Intern. J. Quantum Chem.*, v. 22: 4, 825 835 (1982).
- I. I. Ukrainskii, O. V. Shramko. Coexistence of Mott and Peierls instabilities in quasi-onedimensional organic conductors, In A. A. Ovchinnikov, I. I. Ukrainskii (eds), *Electron – electron correlation effects in low-dimensional conductors and superconductors*. Berlin: Springer Verlag, 1991.
- 13. A. A. Ovchinnikov, I. I. Ukrainskii. Introduction, In A. A. Ovchinnikov, I. I. Ukrainskii (eds), *Electron electron correlation effects in low-dimensional conductors and superconductors*. Berlin: Springer Verlag, 1991.
- 14. L. Salem. *The molecular orbital theory of conjugated systems*. New York: W.A.Benjamin, 1966.
- 15. R. E. Peierls. Quantum Theory of Solids. Oxford: Clarendon Press, 1955.
- 16. I. A. Misurkin, A. A. Ovchinnikov. Electronic structure of long molecules with conjugated bonds, *Teor. Eksper. Khim.*, v. 3: 4, 431 436 (1967).
- 17. I. A. Misurkin, A. A. Ovchinnikov. The electronic structures of large π -electron systems (graphite, polyacenes, cumulenes), *Teor. Eksper. Khim.*, v. 4: 1, 3 11 (1968).
- K. Ruedenberg. Quantum Mechanics of Mobile Electrons in Conjugated Bond Systems. I. General Analysis of the Tight-Binding Approximation, J. Chem. Phys., v. 34, 1861 – 1878 (1961).
- 19. J. N. Murell, L. Salem. Energies of excited electronic states as calculated with ZDO approximation, *J. Chem. Phys.*, v. 34, 1914 (1961).
- 20. I. M. Lifshits. About degenerate regular perturbations. 1. Discrete spectrum, *Zh. Eksper. Teor. Fiz.*, v. 17, 1017 (1947).
- 21. I. M. Lifshits. About degenerate regular perturbations. 2. Quasicontinuous spectrum, *Zh. Eksper. Teor. Fiz.*, v. 17, 1076 (1947).
- 22. I. M. Lifshits. On a problem of the theory of perturbations connected with quantum statistics, *Usp. Mat. Nauk.*, v. 7: 1(47), 171 180 (1952).
- 23. I. M. Lifshits. Some problems of the dynamic theory of non-ideal crystal lattices, *Nuovo cimento Suppl.*, v. 3, 716 734 (1956).
- 24. G. F. Koster, J. C. Slater. Wave functions for impurity levels, Phys. Rev., v. 95, 1167 (1954).
- 25. J. Koutecky. Contribution to the theory of the surface electronic states in the one-electron approximation, *Phys. Rev.*, v. 108, 13 (1957).
- 26. J. Koutecky. A contribution to the molecular-orbital theory of chemisorption, *Trans. Faraday Soc.*, v. 54, 1038 1052 (1958).
- 27. E. W. Montroll, R. B. Potts. Effects of defects on lattice vibrations, *Phys. Rev.*, v. 100, 525 (1955).
- Yu. A. Kruglyak et al, Methods of computations in quantum chemistry. Calculation of π-electronic molecular structure by simple molecular orbital methods. Kiev: Naukova Dumka, 1967.
- 29. J. A. Pople, S. H. Walmsley. Bond alternation defects in long polyene molecules, *Molec. Phys.*, v. 5: 1, 15 (1962).

- A. A. Berlin, L. A. Blumenfeld, M. I. Cherkashin, A. E. Kalmanson, O. G. Selskaia. Polymers with conjugated bonds in the macromolecular chains. II. Magnetic and some other properties of polyarylvinylenes, *Vysokomolek. Soed.*, v. 1: 9, 1361 – 1363 (1959).
- 31. L. A. Blumenfeld, V. V. Voevodsky, A. G. Semenov. *Application of electron paramagnetic resonance in chemistry.* Novosibirsk: AS USSR, 1962.
- 32. V. V. Pen'kovsky. Compounds with conjugated double bonds, *Usp. Khim.*, v. 33: 10, 1232 1263 (1964).
- 33. Yu. A. Kruglyak. The electronic properties of polyenes and polyphenylacetylenes.
 I. Ionization potentials, electron affinity, and energy of transition to the lowest triplet state, *Zhur. Strukt. Khim.*, v. 10: 1, 26 31 (1969).
- Yu. A. Kruglyak, V. V. Pen'kovskii. The electronic properties of polyenes and polyphenylacetylenes. II. Delocalization of the upaired electron and spin density, *Zhur. Strukt. Khim.*, v. 10: 2, 223 – 229 (1969).
- 35. V. V. Pen'kovskii, Yu. A. Kruglyak. The electronic properties of polyenes and polyphenylacetylenes. III. Intermolecular charge transfer in polymers with conjugated bonds and their ESR spectra, *Zhur. Strukt. Khim.*, v. 10: 3, 459 464 (1969).
- 36. L. A. Blyumenfel'd, V. A. Benderskii. States with charge transfer in organic systems, *Zhur. Strukt. Khim.*, v. 4: 3, 405 414 (1964).
- 37. L. A. Blyumenfel'd, V. A. Benderskii, P. A. Stunzhas. Charge transfer states in organic systems, *Zhur. Strukt. Khim.*, v. 7: 5, 686 693 (1966).
- 38. V. I. Lutoshkin, G. G. Dyadyusha, Yu. A. Kruglyak. Quantitative estimation of the bond alternation in polyenes, In A. I. Brodsky (ed.), *Structure of molecules and quantum chemistry*, Kiev: Naukova Dumka, 1970.
- V. I. Lutoshkin, Yu. A. Kruglyak, G. G. Dyadyusha. Calculation of electronic structure and force field of alternant radicals with allowance for deformation of the σ-core, *Teor. Eksper. Khim.*, v. 7: 5, 579 – 584 (1971).
- 40. D. R. Hartree. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods, *Proc.Cambridge Phil. Soc.*, v. 24: 1, 89 – 110 (1928).
- 41. D. R. Hartree. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion, *Proc.Cambridge Phil. Soc.*, v. 24: 1, 111 – 132 (1928).
- 42. V. A. Fock. An approximate method for solving the quantum many-body problem, *Z. Phys.*, v. 61: 1-2, 126 148 (1930).
- 43. D. E. Rutherford. Substitutional Analysis. London: Edinburgh University Press, 1948.
- 44. M. Hammermesh. *Group theory and its application to physical problems*. Reading: Addison-Wesley, 1962.
- 45. I. G. Kaplan. Symmetry of many-electron systems. Moscow: Nauka, 1969.
- 46. W. A. Goddard III. Improved quantum theory of many-electron systems: I. Construction of eigenfunctions of \hat{S}^2 which satisfy Pauli's principle, *Phys. Rev.*, v. 157: 1, 73 80 (1967).
- 47. W. A. Goddard III. Improved quantum theory of many-electron systems: II. The basic method, *Phys. Rev.*, v. 157: 1, 81 – 93 (1967).
- 48. W. A. Goddard III. Improved quantum theory of many-electron systems: III. The GF method, *J. Chem. Phys.*, v. 48: 1, 450 461 (1968).
- 49. W. A. Goddard III. Wavefunctions and correlation energies for two-, three-, and four-electron atoms, *J. Chem. Phys.*, v. 48: 3, 1008 1017 (1968).
- 50. W. A. Goddard III, "Improved quantum theory of many-electron systems: IV. Properties of GF wavefunctions", *Journal Chemical Physics*, vol. 48, no. 12, pp. 5337 5347, 1968.
- R. C. Ladner, W. A. Goddard III. Improved quantum theory of many-electron systems: V. The spin-coupling optimized GI method, J. Chem. Phys., v. 51: 3, 1073 – 1087 (1969).
- 52. W. A. Goddard III. The symmetric group and the spin generalized SCF method, *Intern. J. Quantum Chem.*, v. IIIs, 593 600 (1970).
- 53. J. C. Slater. The theory of complex spectra, *Phys. Rev.*, v. 34, 1293 1323 (1929).
- 54. J. C. Slater. Quantum theory of molecules and solids, Phys. Rev., v. 35: 2, 210 211 (1930).

- 55. C. C. J. Roothaan. New developments in molecular orbital theory, *Rev. Mod. Phys.*, v. 23, 69 (1951).
- 56. A. T. Amos, G. G. Hall. Single determinant wave functions, *Proc. Royal Soc.*, v. A263: 1315, 483 493 (1961).
- 57. I. I. Ukrainskii, Yu. A. Kruglyak, H. Preuss, R. Yanoshek. Projection of the wave function of the unlimited Hartree Fock method on the doublet state in the case of benzyl radical, *Teor. Eksper. Khim.*, vol. 8: 3, 299 308 (1971).
- 58. A. T. Amos. Some properties of π -ions and triplets, In O. Sinanoğlu (ed.), *Modern quantum chemistry*. New York: Academic Press, 1965.
- 59. J. A. Pople, R. K. Nesbet. Self-consistent orbitals for radicals, J. Chem. Phys., v. 22: 3, 571 – 572 (1954).
- 60. P.-O. Lowdin. Quantum theory of many-particle systems. III. Extension of the Hartree Fock scheme to include degenerate systems and correlation effects, *Phys. Rev.*, v. 97: 6, 1509 1520 (1955).
- 61. P.-O. Lowdin. Correlation problem in many-electron quantum mechanics. I. Review of different approaches and discussion of some current ideas, In I. Prigogine (ed.), *Advances in Chemical Physics*, vol. 2. New York: Interscience, 1959.
- 62. P.-O. Lowdin. Angular momentum wave functions constructed by projection operators, *Rev. Modern Phys.*, v. 36: 4, 966 976 (1964).
- 63. F. Sasaki, K. Ohno. Spin-component analysis of single-determinant wavefunctions, *J. Math. Phys.*, v. 4: 9, 1140 1147 (1963).
- 64. V. H. Smith. Projection of exact spin eigenfunctions, J. Chem. Phys., v. 41: 1, 277 (1964).
- 65. K. M. Sando, J. E. Harriman. Spin-projected and extended SCF calculations, *J. Chem. Phys.*, v. 47, 180 (1967).
- 66. F. Harris. On the calculation of spin densities, J. Molec. Phys., v. 11, 243 256 (1966).
- 67. R. Pauncz. Alternant Molecular Orbital Method. London: W. B. Saunders, 1967.
- P.-O. Lowdin. Band theory, valence band and tight-binding calculations, J. Appl. Phys. Suppl., v. 33: 1, 251 – 280 (1962).
- R. Pauncz, J. de Heer, P.-O. Lowdin. Studies of the alternant molecular orbital method. I. General energy expression for an alternant system with closed-shell structure, *J. Chem. Phys.*, v. 36, 2247 – 2256 (1962).
- 70. R. Pauncz, J. de Heer, P.-O. Lowdin. Studies of the alternant molecular orbital method. II. Application to Cyclic Systems, *J. Chem. Phys.*, v. 36, 2257 – 2265 (1962).
- 71. E. Hückel. Zur Quantentheorie der Doppelbindung, Z. Phys., v. 60: 7 8, 423 456 (1930).
- 72. E. Hückel. Quantentheoretische Beiträge zum Benzolproblem, Z. Phys., v. 70: 3 – 4, 204 – 286 (1931).
- 73. C. A. Coulson, H. C. Longuet-Higgins. The electronic structure of conjugated systems. I. General theory, *Proc. Royal Soc.*, v. A191, 39 60 (1947).
- 74. A. Brickstock, J. A. Pople. Resonance energies and charge distributions of unsaturated hydrocarbon radicals and ions, *Trans. Faraday Soc.*, v. 50, 901 911 (1954).
- 75. T. A. Koopmans. Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms, *Physica*, v. 1, 104 113 (1933).
- 76. L. Brillouin. La méthode du champ self-consistent, *Actual. Scien. Indust.*, n. 71. Paris: Hermann, 1933.
- 77. L. Brillouin. Les champs "self-consistents" de Hartree et de Fock, *Actual. Scien. Indust.*, n. 159. Paris: Hermann, 1934.
- E. V. Mozdor, Yu. A. Kruglyak, and V. A. Kuprievich. Matrix elements of the physical value operators on single-configurational functions for radicals, *Teor. Eksper. Khim.*, v. 5: 6, 723 – 730 (1969).
- Yu. A. Kruglyak, E. V. Mozdor, and V. A. Kuprievich. Study of the electronic structure of radicals by the CI method. I. Matrix elements of the physical value operators, *Croatica Chem. Acta*, v. 43, 15 – 22 (1971).

- 80. N. A. Popov. Symmetry properties of one-electron orbitals in the method of different orbitals for different spins, *Zh. Strukt. Khim.*, v. 11: 4, 727 733 (1970).
- 81. E. A. Hylleraas. Neue berechnung der energie des Heliums im grundzustande, sowie des tiefsten terms von ortho-helium, Z. Phys., v. 54, 347 366 (1929).
- 82. C. Ekkart. The theory and calculation of screening constants, *Phys. Rev.*, v. 36, 878 892 (1930).
- 83. H. Shull, P.-O. Lowdin. Superposition of configurations and natural spin orbitals. Applications to the He problem, *J. Chem. Phys.*, v. 30, 617 626 (1959).
- 84. D. P. Chong. Different orbitals for different spins. Singlet ground state of Helium, *J. Chem. Phys.*, v. 45, 3317 3318 (1966).
- 85. L. Green, M. Lewis, M. Mulder *et al.* Correlation energies and angular components of the wave functions of the ground states of H⁻, He, and Li⁺, *Phys. Rev.*, v. 93, 273 (1954).
- 86. R. A. Bonham, D. A. Kohl. Simple correlated wavefunctions for the ground state of Heliumlike atoms, *J. Chem. Phys.*, v. 45, 2471 (1966).
- 87. M. D. Dolgushin. Splitted orbitals and correlation energies for ground state of two-electron atoms, In A. Jucys (ed.), *Theory of electronic shells in atoms and molecules*. Vilnius: Mintis, 1971.
- S. Fraga, B. J. Ransil. Studies in molecular structure. VI. Potential curve for the interaction of two hydrogen atoms in the LCAO MO SCF approximation, *J. Chem. Phys.*, v. 35, 2471 (1967).
- 89. W. Kolos, L. Wolniewicz. Accurate adiabatic treatment of the ground state of the hydrogen molecule, *J. Chem. Phys.*, v. 41, 3663 (1964).
- 90. J. D. Swalen, J. de Heer. Many-parameter alternant molecular orbital calculations for large cyclic systems with closed-shell structure, *J. Chem. Phys.*, v. 40, 378 (1964).
- 91. G. G. Hall, A. T. Amos. Molecular orbital theory of the spin properties of conjugated molecules, In D. Bates, I. Estermann (eds), *Advances in Atomic and Molecular Physics*, v. 1. New York: Academic Press, 1965.
- J. A. Pople, D. L. Beveridge, P. A. Dobosh. Molecular orbital theory of the electronic structure of organic compounds. II. Spin densities in paramagnetic species, *J. Amer. Chem. Soc.*, v. 90, 4201 (1968).
- 93. Yu. A. Kruglyak, H. Preuss, R. Yanoshek. Non-empirical computation of the electronic structure of benzyl radical, *Ukr. Fiz. Zh.*, v. 15: 6, 977 985 (1970).
- 94. Yu. A. Kruglyak, H. Preuss, R. Yanoshek. Calculation of the electron shells of the benzyl radical by the unrestricted Hartree Fock method on a Gaussian basis, *Zh. Strukt. Khim.*, v. 12: 4, 689 696 (1971).
- 95. Yu. A. Kruglyak, I. I. Ukrainskii, H. Preuss, R. Yanoshek. An orbital analysis of the *ab initio* electron and spin populations of the atoms in the benzyl radical, *Teor. Eksper. Khim.*, v. 7: 6, 815 819 (1970).
- 96. A. Carrington, I. C. P. Smith. The electron spin resonance spectrum and spin density distribution of the benzyl radical, *Molec. Phys.*, v. 9: 2, 137 147 (1965).
- 97. H. G. Benson, A. Hudson. On the spin density distribution in the benzyl radical, *Molec. Phys.*, v. 20: 1, 185 187 (1971).
- R. V. Lloyd, D. E. Wood. Free radicals in adamantane matrix. EPR and Indo study of the benzyl, aniline, and phenoxy radicals and their fluorinated derivatives, *J. Amer. Chem. Soc.*, v. 96: 3, 659 665 (1974).
- H. M. McConnell. Electron densities in semiquinones by paramagnetic resonance, J. Chem. Phys., v. 24: 3, 632 (1956).
- 100.H. M. McConnell. Indirect hyperfine interactions in the paramagnetic resonance spectra of aromatic free radicals, *J. Chem. Phys.*, v. 24: 4, 764 (1956).
- 101.R. W. Fessenden, R. H. Schuler. Electron spin resonance studies of transient alkyl radicals, *J. Chem. Phys.*, v. 39: 9, 2147 (1963).

- 102. Yu. A. Kruglyak, E. V. Mozdor, V. A. Kuprievich. Full configuration interaction of the benzyl radical, *Ukr. Fiz. Zh.*, v. 15: 1, 47 57 (1970).
- 103.Yu. A. Kruglyak, G. Hibaum, N. E. Radomyselskaya. Electronic structure of the ground state of the benzyl radical in equilibrium geometry,
 - *Rev. Roumaine Chim.*, v. 17: 5, 781 799 (1972).
- 104.Yu. A. Kruglyak, E. V. Mozdor. Study of the electronic structure of radicals by the CI method. 3. Excited states of the benzyl radical, *Theor. chim. Acta*, v. 15, 374 384 (1969).
- 105.Yu. A. Kruglyak, I. I. Ukrainskii. About calculation of spin density in the method of splitted orbitals, In A. Jucys (ed.), *Theory of electronic shells in atoms and molecules*. Vilnius: Mintis, 1971.
- 106.A. A. Ovchinnikov, I. I. Ukrainskii, G. F. Kventsel. Theory of one-dimensional Mott semiconductors and the electronic structure of long molecules with conjugated bonds, *Usp. Fiz. Nauk*, v. 108: 1, 81 111 (1972).
- 107.K.-F. Berggren, B. Johansson. A field theoretical description of states with different orbitals for different spins, *Intern. J. Quantum Chem.*, v. 2: 4, 483 508 (1968).
- 108.B. Johansson, K. F. Berggren. Itinerant Antiferromagnetism in an Infinite Linear Chain, *Phys. Rev.*, v. 181, 855 (1969).
- 109.H. Fukutome. Spin density wave and charge transfer wave in long conjugated molecules, *Prog. Theor. Phys.*, v. 40: 5, 998 (1968).
- 110.H. Fukutome. Spin density wave and charge transfer. Wave in long conjugated molecules, *Prog. Theor. Phys.*, v. 40: 6, 1227 1245 (1968).
- 111.I. A. Misurkin, A. A. Ovchinnikov. Electronic structure of large π -electron systems (graphite, polyacenes, cumulenes), *Theor. chim. Acta*, v. 13, 115 124 (1969).
- 112.E. H. Lieb, F. Y. Wu. Absence of Mott transition in an exact solution of the short-range, oneband model in one dimension, *Phys. Rev. Lett.*, v. 20, 1445 – 1448 (1968).
- 113.A. D. McLachlan. Self-consistent field theory of the electron spin distribution in π -electron radicals, *Molec. Phys.*, v. 3, 233 252 (1960).
- 114.M. W. Hanna, A. D. McLachlan, H. H. Dearman, H. M. McConnell. Radiation Damage in Organic Crystals. III. Long Polyene Radicals, *J. Chem. Phys.*, v. 37: 2, 361 367 (1962).
- 115.Yu. A. Kruglyak. Configuration Interaction in the Second Quantization Representation: Basics with Applications up to Full CI, *ScienceRise*, v. 4: 2(4), 98 – 115 (2014).
- 116.E. W. Fenton. Overhauser Phase and Bond Alternation in Long-Chain Molecules, *Phys. Rev. Lett.*, v. 21: 20, 1427 (1968).
- 117.K. Ruedenberg. Quantum Mechanics of Mobile Electrons in Conjugated Bond Systems.I. General Analysis of the Tight-Binding Approximation,J. Chem. Phys., v. 34, 861 1878 (1961).
- 118.J. N. Murrell, L. Salem. Energies of Excited Electronic States as Calculated with the Zero Differential Overlap Approximation, *J. Chem. Phys.*, v. 34: 6, 1914 (1961).
- 119.P. G. Lykos. The Pi-Electron Approximation, In *Advances in Quantum Chemistry*, v. 1. New York: Academic Press, 1964.
- 120.N. N. Bogolyubov. О новом методе в теории сверхпроводимости, *Zh. Eksper. Teor. Fiz.*, v. 34, 58, 73 (1958).
- 121.N. N. Bogolyubov, V. V. Tolmachev, D. V. Shirkov. *New Method in Theory of Superconductivity*. Moscow: Publ. House AS USSR, 1958.
- 122.E. Janke, F. Emde, F. Losch. Tafeln Hoherer Funktionen. Stuttgart: D. G. Teubner, 1960.
- 123.L. D. Landau, E. M. Lifshits. Quantum Mechanics. Moscow: Fizmatgiz, 1963.
- 124.J. E. Harriman. Natural Expansion of the First-Order Density Matrix for a Spin-Projected Single Determinant, J. Chem. Phys., v. 40, 2827 2839 (1964).
- 125.G. M. Fichtengolts, Course of Differential and Integral Calculus, vol. 2, GITTL, Moscow, 1951, pp. 93, 349.
- 126.G. M. Fichtengolts. *Course of Differential and Integral Calculus*, v. 1. Moscow: Fizmatgiz, 1962.

- 127.V. A. Fock. On wave functions of many electron systems, *Zh. Eksper. Teor. Fiz.*, v. 10: 9 10, 961 979 (1940).
- 128.J. N. Murrell. *The Theory of Electronic Spectra of Organic Molecules*. New York: Springer, 1963.
- 129.H. C. Longuet-Higgins, L. Salem. Alternation of Bond Lengths in Long Conjugated Chain Molecules, *Proc. Royal Soc. (London)*, v. A251, 172 185 (1959).
- 130.Y. Ooshika. A Semi-empirical Theory of the Conjugated Systems II. Bond Alternation in Conjugated Chains, J. Phys. Soc. Japan, v. 12, 1246 1250 (1957).
- 131.N. A. Popov. The alternation of bonds and the nature of the energy gap in the π -electronic spectrum of long polyenes, *J. Strukt. Chem.*, v. 10: 3, 442 448 (1969).
- 132.G. F. Kventsel, I. I. Ukrainsky. Local states and nature of energy gap in polyene chains, *Ukr. Fiz. Zh.*, v. 16: 4, 617 620 (1971).
- 133.A. A. Maradudin, F. W. Montroll, G. M. Weiss. *Theory of Lattice Dynamics in the Harmonic Approximation*. New York: Academic Press, 1963.
- 134.R. A. Harris, L. M. Falicov. Self-Consistent Theory of Bond Alternation in Polyenes: Normal State, Charge-Density Waves, and Spin-Density Waves, *J. Chem. Phys.*, v. 51, 5034 (1969).
- 135.J. I. Musher, L. Salem. Energy of Interaction between Two Molecules, J. Chem. Phys., v. 44, 2934 (1966).
- 136.R. A. Harris, L. M. Falicov. Two-Electron Homopolar Molecule: A Test for Spin-Density Waves and Charge-Density Waves, J. Chem. Phys., v. 51, 3153 (1969).
- 137.F. A. van Catledge, N. L. Allinger. Organic quantum chemistry. XXI. Structure and spectrum of cyclooctadecanonaene ([18]annulene), J. Amer. Chem. Soc., v. 91: 10, 2582 2589 (1969).
- 138.J. R. Platt. Wavelength Formulas and Configuration Interaction in Brooker Dyes and Chain Molecules, J. Chem. Phys., v. 25, 80 (1956).
- 139. R. Ya. Levina, E. A. Viktorova. Успехи синтеза диеновых углеводородов с кумулированной системой двойных связей (алленов), *Usp. Khim.*, v. 27: 2, 162 (1958).
- 140.P. Cadiot, W. Chodkiewicz, J. Rauss-Godineau. Cumulenes (review), *Bull. Soc. Chim.*, 2176 (1961).
- 141.H. Fischer. The Chemistry of Alkenes (ed. S. Patai). New York: Interscience, 1964.
- 142.J. A. Januszewski, R. R. Tykwinski. Synthesis and properties of long [n]cumulenes $(n \ge 5)$, *Chem. Soc. Rev.*, v. 43, 3184 3203 (2014).
- 143.Yu. A. Kruglyak, H. Preuss, R. Yanoshek. Electronic structure of allene in the ground and excited states 1A₁ and 1A_g, *Teor. Eksper. Khim.*, v. 7: 3, 291 301 (1971).
- 144.J. D. Dunitz, L. E. Orgel. Influence of Chain Length on the Symmetry of Conjugated Molecules, J. Chem. Phys., v. 20, 1328 (1952).
- 145.N. A. Popov. Calculation of the rotation barrier of end groups of a cumulative system, *J. Struct. Chem.*, v. 5: 1, 141 142 (1964).
- 146.J. H. van't Hoff. *Die Lagerung der Atome im Raume*. Braunschweig: F. Vieweg und Sohn, 1877.
- 147.R. Pariser, R. G. Parr. A Semi-Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. I, II, *J. Chem. Phys.*, v. 21, 466 - 471, 767 – 776 (1953).
- 148.J. A. Pople. Electron Interaction in Unsaturated Hydrocarbons, *Trans. Faraday Soc.*, v. 49, 1375 (1953).
- 149.J. Hinze, H. H. Jaffe. Electronegativity. I. Orbital Electronegativity of Neutral Atoms, *J. Amer. Chem. Soc.*, v. 84: 4, 540 – 546 (1962).
- 150.M. Goeppert-Mayer, A. L. Sklar. Calculations of the Lower Excited Levels of Benzene, *J. Chem. Phys.*, v. 6, 645 652 (1938).
- 151.C. A. Coulson, G. S. Rushbrooke. Note on the method of molecular orbitals, *Proc. Cambridge Phil. Soc.*, v. 36: 2, 193 200 (1940).
- 152.M. M. Woolfson. The structure of 1:1:6:6 tetraphenylhexapentaene, *Acta Crystallogr.*, v. 6: 11 12, 838 841 (1953).

- 153.M. J. S. Dewar, G. J. Gleicher. Ground States of Conjugated Molecules. II. Allowance for Molecular Geometry, III. Classical Polyenes, *J. Amer. Chem. Soc.*, v. 87: 4, 685 696 (1965).
- 154.A. A. Ovchinnikov. Excitation spectrum in the one-dimensional Hubbard model, *Zh. Eksper. Teor. Fiz.*, v. 30: 6, 1160 (1970).
- 155.R. Pauncz. Studies on the Alternant Molecular Orbital Method. IV. Generalization of the Method to States with Different Multiplicities, *J. Chem. Phys.*, v. 37, 2739 (1962).
- 156.G. H. Hardy, J. E. Littlewood, G. Polya. *Inequalities*. Cambridge: Cambridge Univ. Press, 1934.
- 157.P. van Leuven. An alternative derivation of the properties of the Alternant Molecular Orbital wave function, *Physica*, v. 45: 1, 86 94 (1969).
- 158.P. van Leuven. Gaussian overlap approximation in the projected Hartree–Fock method, *Intern. J. Quantum Chem.*, v. 4, 355 363 (1970).
- 159.J. E. Lennard-Jones. Electronic Structure of Some Polyenes and Aromatic Molecules, *Proc. Roy. Soc. (London)*, v, A158, 280 296 (1937).
- 160.N. F. Mott. The basis of the electron theory of metals, with special reference to the transition metals, *Proc. Phys. Soc. (London)*, v. A62, 416 422 (1949).
- 161.N. F. Mott. Recent advances in the electron theory of metals, *Prog. Metal. Phys.*, v. 3, 76 114 (1956).
- 162.N. F. Mott. On the transition to metallic conduction in semiconductors, *Can. J. Phys.*, v. 34, 1356 1368 (1956).
- 163.N. F. Mott, The transition from the metallic to the non-metallic state, *Nuovo Cimento Suppl.*, v. 7, 312 328 (1958).
- 164.N. F. Mott. The transition to the metallic state, *Philos. Mag.*, v. 6: 62, 287 309 (1961).
- 165.G. Austin, N. F. Mott. Metallic and Nonmetallic Behavior in Transition Metal Oxides, *Science*, v. 168, 71 77 (1970).
- 166.N. F. Mott. The transition from the metallic to the non-metallic state, *Usp. Fiz. Nauk*, v. 105, 321 327 (1971).
- 167.N. F. Mott. Metal Insulator Transitions. London: Taylor and Francis, 1974.
- 168. One-Dimensional Conductors, Lecture Notes in Physics, v. 34 (ed. H. G. Schuster). Berlin: Springer, 1974.
- 169.B. H. Brandow. Electronic structure of Mott insulators, Adv. Phys., v. 26, 651 (1977).
- 170.A. J. Epstein, S. Etemad, A. F. Garito, A. J. Heeger. Metal-Insulator Transition and Antiferromagnetism in a One-Dimensional Organic Solid, *Phys, Rev.* v. B5, 952 (1972).
- 171.W. Dieterich. Ginzburg Landau theory of phase transitions in pseudo-one-dimensional systems, *Adv. Phys.*, 25: 6, 615 655 (1976).
- 172.M. J. Rice, S. Strassler. Theory of a quasi-one-dimensional band-conductor, *Solid State Commun.*, v. 13: 1, 125 128 (1973).
- 173. Low-Dimensional Cooperative Phenomena, ed. H. J. Keller. New York: Plenum, 1975.
- 174.J.-L. Calais, M. Dugay, G. Debarge. AMOS and insulator-to-metal transitions,
- Intern. J. Quantum Chem., v. 11: 6, 1021 1033 (1977).
- 175.J. Paldus, J. Cizek. Stability Conditions for the Solutions of the Hartree-Fock Equations for Atomic and Molecular Systems VI. Singlet-Type Instabilities and Charge-Density-Wave Hartree-Fock Solutions for Cyclic Polyenes, *Phys. Rev.*, v. A2: 6, 2268 – 2283 (1970).
- 176.J. Paldus, J. Cizek. Stability Conditions for the Solutions of the Hartree-Fock Equations for Atomic and Molecular Systems V. The Non-Analytic Behavior of the Broken-Symmetry Solutions at the Branching Point, *Phys. Rev.* v. A3: 2, 525 527 (1971).
- 177.J. Paldus, J. Cizek. Stability Conditions for the Solutions of the Hartree–Fock Equations for Atomic and Molecular Systems. II. Simple Open-Shell Case, J. Chem. Phys., v. 52, 2919 (1970).
- 178.J. Paldus, J. Cizek. Stability Conditions for the Solutions of the Hartree–Fock Equations for Atomic and Molecular Systems. III. Rules for the Singlet Stability of Hartree–Fock Solutions of π -Electronic Systems, J. Chem. Phys., v. 53, 821 (1970).

- 179.J. Paldus, J. Cizek, B. A. Reating. Stability Conditions for Maximum-Overlap (Brueckner) Independent Particle Wave Functions, *Phys. Rev.* v. A8: 2, 640 – 649 (1973).
- 180.A. Laforgue, J. Cizek, J. Paldus. Study of the correlation effects in a three-electron model system using the projected Hartree-Fock method and the natural spin orbital formalism, *J. Chem. Phys.*, v. 59, 2560 (1973).
- 181.H. Fukutome. Theory of the Unrestricted Hartree-Fock Equation and Its Solutions. I, *Prog. Theor. Phys.*, v. 45: 5, 1382 1406 (1971).
- 182.H. Fukutome. Theory of the Unrestricted Hartree-Fock Equation and Its Solutions II: Classification and Characterization of UHF Solutions by Their Behavior for Spin Rotation and Time Reversal, *Prog. Theor. Phys.*, v. 52: 1, 115 – 130 (1974).
- 183.H. Fukutome. Theory of the Unrestricted Hartree-Fock Equation and Its Solutions. III: Classification of Instabilities and Interconnection Relation between the Eight Classes of UHF Solutions, *Prog. Theor. Phys.*, v. 52, 1766 – 1783 (1974).
- 184.H. Fukutome. Theory of the Unrestricted Hartree-Fock Equation and Its Solutions. IV: Behavior of UHF Solutions in the Vicinity of Interconnecting Instability Threshold, *Prog. Theor. Phys.*, v. 53: 5, 1320 – 1336 (1975).
- 185.A. W. Overhauser. Structure of Nuclear Matter, Phys. Rev. Lett., v. 4, 415 (1960).
- 186.A. W. Overhauser. Specific Heat of Indium Below 1°K, Phys. Rev. Lett., v. 4, 460 (1960).
- 187.W. A. Little. Possibility of Synthesizing an Organic Superconductor, *Phys. Rev.* v. A134, 1416 (1964).
- 188.Y. A. Bychkov, L. P.Gor'kov, I. E. Dzyaloshinsky. Possibility of Superconductivity Type Phenomena in a One-dimensional System, *Zh. Eksper. Teor. Fiz.*, v. 50, 738 (1966).
- 189.J. M. Andre, J. Leroy. All-electrons band structure of Polyene,
- *Intern. J. Quantum Chem.*, v. 5: 5, 557 563 (1971).
- 190.A. A. Ovchinnikov. Multiplicity of the ground state of large alternant organic molecules with conjugated bonds, *Theor. chim. Acta*, v. 47: 4, 297 304 (1978).
- 191.W. P. Su, J. B. Schrieffer, A. J. Heeger. Soliton excitations in polyacetylene, *Phys. Rev.* v. B22, 2099 (1980).
- 192.S. A. Brazovskii. Self-localized excitations in the Peierls-Fröhlich state, *Zh. Eksper. Teor. Fiz.*, v. 78, 677 (1980).
- 193.I. I. Ukrainskii. Effect of electron interaction on the Peierls instability, *Zh. Eksper. Teor. Fiz.*, v. 76, 760 (1979).
- 194. I. I. Ukrainskii. Новая вариационная функция в теории квазиодномерных металлов, *Teor. Mat. Fizika*, v. 32: 3, 392 400 (1977).
- 195.I. I. Ukrainskii. New variational function in the theory of quasi-one-dimensional metals, *Theor. Math. Physics*, v. 32:3, 816 822 (1977).
- 196.I. I. Ukrainskii. Effective electron electron interaction in conjugated polymers, *Phys. Stat. Sol.*, v. 106: 1, 55 62 (1981).
- 197.S. Mazumbar, S. N. Dixit. Coulomb Effects on One-Dimensional Peierls Instability: The Peierls Hubbard Model, *Phys. Rev. Lett.*, v. 51, 292 (1983).
- 198.S. N. Dixit, S. Mazumbar. Electron-electron interaction effects on Peierls dimerization in a half-filled band, *Phys. Rev.* v. B29, 1824 (1984).
- 199.J. E. Hirch. Effect of Coulomb Interactions on the Peierls Instability, *Phys. Rev. Lett.*, v. 51, 296 (1983).
- 200.D. Baeryswyl, K. Maki. Electron correlations in polyacetylene, *Phys. Rev.* v. B31, 6633 (1985).
- 201.V. Ya. Krivnov, A. A. Ovchinnikov. Correlation functions of one-dimensional systems, *J. Exp. Theor. Phys.*, v. 55: 1, 162 (1982).
- 202.V. A. Kuprievich. Electron correlation and bond length alternation in polyene chains, *Teor. Exper. Khim.*, v. 22: 3, 263 270 (1986).
- 203.C. R. Fincher, C.-E. Chen, A. J. Heeger *et al.* Structural Determination of the Symmetry-Breaking Parameter in trans-(CH)_x, *Phys. Rev. Lett.*, v. 48, 100 (1982).

- 204.A. Hoekstra, T. Spoelder, A. Vos. The crystal structure of rubidium-7,7,8,8tetracyanoquinodimethane, Rb-TCNQ at -160°C, *Acta Crystallogr*. V. B28, 14 (1972).
- 205.A. A. Ovchinnikov, A. E. Belinskii, I. A. Misurkin. Peierls instability and vibrational spectra of polyacetylene, *Intern. J. Quantum Chem.*, v. 22: 4, 761 774 (1982).
- 206. *Physics in One Dimension*, J. Bernasconi, T. Schneider (eds), Springer Series in Solid-State Sciences, v. 23. Berlin: Springer, 1981.
- 207.J. C. Bednorz, K. A. Muller. Possible high Tc superconductivity in the Ba–La–Cu–O system, *Z. Phys.* v. B64: 1, 189 – 193 (1986).
- 208.E.B. Yagubskii, I.F. Schegolev, V.N. Laukhin, P.A. Kononovich, M.V. Kartsovnik, A.V. Zvarykina, L.I. Bubarov. Normal-pressure Superconductivity in organic metal (BEDT-TTF)₂I₃ [bis(ethylenedithiolo)tetrathiafulvalene triiodide], *Zh. Eksper. Teor. Fiz., Pisma*, v. 39, 12 (1984).
- 209.Yu. A. Kruglyak. The Generalized Hartree Fock Method and Its Versions: From Atoms and Molecules to Polymers, *ScienceRise*, v. 5: 5(3), 6 21 (2014).

Chapter 10. Modeling of the Short-Range Order for Polymers by the Ideal Peak Method

From the series of publications in the field of polymer modeling [1 - 6] one may note as most important result the development of the ideal peak method to model of the short-range order in polymers which is presented below in details [2, 6].

10.1. Introduction

The structure of liquid and amorphous polymers is presently the object of intent attention and numerous discussions [7 - 10]. This fact is conditioned by the necessity of using models which reflect quite adequately the character of the short-range ordering in such polymers. As is known, the existing structural models use different approaches and have major differences. In particular, the model of statistical coils [11] is based on a superposition about the complete mutual interpenetration of macromolecules which are in statistically independent conformations. The combination of ordered regions formed by parallel chains [12, 13] with irregular regions between them is the basis of the folded-chain fringed-micellar grain model [14]. This model as well as others proposed in the past [15 - 20] assume a certain degree of two-phase structure in liquid polymers. Finally, the meander model (model of kink isomers) regards the crystal as the initial state and introduces defects (kink isomers) [21 - 25]. With a certain concentration of kinks, the initial structure is destroyed, but some parallelness of the chains remains. Thus the current models quite differently interpret two of the more important aspects of the structure of polymers: the presence or absence of short-range order and heterogeneity of structure. No one model suggested so far has received decisive priority [7, 26].

As is known, the main source of information concerning the degree of order in amorphous polymers is the data from diffraction experiments. However, due to uncertainty in the interpretation of experimental data, the situation has taken such a turn that often the same radial distribution functions (RDF) are explained in completely contrasting ways by various authors, leading to essentially contradictory conclusions as to the structure of amorphous solid and liquid polymers. For example, in [27, 28] the results of polyethylene investigations by diffraction methods are presented as strong evidence of the complete lack of any structure. At the same time, on the basis of RDF analysis of amorphous polyethylene, the conclusion has been drawn [29, 30] that in this polymer there exist some ordered microregions with parallel packed chain fragments. Such uncertainty leads to the necessity of adequate analysis of diffraction experiment data; the use of methods of theoretical modeling of RDF seems the most promising. In particular, the methods of modeling the experimental RDF were used in [31 - 35]. A very interesting method of RDF

modeling was proposed by Gupta and Yeh [35] in the framework of the paracrystalline theory developed by Hosemann and Bagchi [36]. Unfortunately, in all these works the calculations have been done for molecules in conformations which are inherent to the crystalline state. However, it is well known that when flexible chain polymers transfer from the crystalline state into an amorphous one, conformational transitions play a very important role in structure changes and should influence the shape of RDF correspondingly.

One more factor to take into account when modeling RDF is the possibility of appearance of "spurious" oscillations [37]. This phenomenon is connected with the finite value of experimentally determined vectors in reciprocal space. Until the present, the effect of this factor on analysis and calculations of RDF was taken into account only qualitatively, thus influencing the correctness of conclusions as to the structure of substances.

In the present study we aimed to solve some questions connected with determining the character of short-range in liquid polymers with flexible chains. To understand the character of the origin and type of short-range ordering in polymers, it is desirable to make detailed structural investigation of the liquid state in a series of the polymers, beginning from low molecular weight oligomers up to high molecular weight polymers, which are capable of crystallizing at room temperature. The above comments explain our choice of the oligomeric analogs of polytetramethylene oxide. Structurally this material has additional interest not only because it gives the possibility to compare the short-range ordering of chains of the same chemical nature, but also because this oligomer is a constituent part of chains of such polymers as segmented polyurethanes and polyurethane networks. In our study oligomers with molecular weights in the range 500 - 2500 were used. Some of them can exist at room temperature, both in liquid and crystalline states, thus giving a fine opportunity to compare structural peculiarities in these substances in various phase states at the same temperature. It may be said that the short-range ordering in polymers is determined by mutual arrangements of adjacent macromolecular fragments in the range of 2 - 3 coordination spheres and by the conformational state of segments consisting of 10 - 15 chemical bonds. All oligomers under investigation have chain lengths above the values mentioned. Such oligomers may be described within the framework of concepts of persistent chains [38]. The question unresolved is whether the peculiarities of the structural state of oligomers may be transferred to high polymers. In accordance with current theories, the appearance of pure polymeric effects is due to the presence of a molecular network of entanglements [39]. In the oligoglycols such transition take place at molecular weight 1000 [40]. Therefore, in the molecular weight range 500 - 2500 there is the possibility not only to describe the structure of liquid polymers with flexible chains but to compare data for oligomers with molecular weights below and above a critical one.

From the physical point of view polytetramethylene glycols are of special interest. It is known that their high molecular weight analog - polytetramethylene oxide – has the minimal melting point in the series [41]. As distinct from other members polymethylene oxide, in the series polyethylene oxide, and polyoxacyclobutane polytetramethylene glycol (PTMG) has a stable *trans* configuration for the chain in the crystalline state (Fig. 1).

Fig. 1. Fragment of the PTMG chain.

This conformation is the least stable in the series; however, crystallization in a helix conformation is not possible for this polymer, unlike the polymer homologs with a lesser number of methylene groups in the monomeric unit. Therefore the changes in structure and conformation during the transition of this polymer into the liquid state are of importance.

10.2. Experimental and computation methods

Polytetramethylene glycols with viscosity average molecular weights 500, 1350, and 2500 were used; the first is a liquid at room temperature, and the others are crystalline substances but capable of remaining in a liquid supercooled state for a long time. Due to this ability, they were investigated in both the liquid and crystalline states. The x-ray diffraction curves were obtained on an automatic diffractometer designed in our laboratory for investigations of polymers. Monochromatic molybdenum radiation was achieved using a graphite monochromator in the incident beam. An x-ray scientillation detector BDS-6 with pulse height analyzers VAV-100 in the main and monitor channels was used. Diffractograms were taken by stepscanning the detector over scattering angles $2\theta = 1.5 - 70^{\circ}$.

Taking of diffractograms was performed using a vacuum camera placed on the goniometer GUR-4. Samples under investigations were placed in a curvet with polyethelene terephthalate film windows in the center of the camera. The full angle interval was divided into three parts and diffractograms were taken in these parts independently at different experimental conditions. In the first angle interval $1.5^{\circ} - 18^{\circ}$

the width of the detector slit was 0.28° , and the scanning step was 0.5° . In the interval $14^{\circ} - 30^{\circ}$ and $26^{\circ} - 70^{\circ}$, these values were, respectively, 1.12° and 1° , and 2.24° and 1° . The total number of impulses stored for each point was 20,000 - 400,000. The intensity of scattering by the empty cuvet does not exceed 1% of the scattering by the sample.

Analysis of the resolution ability of our camera, based on the correction function in reciprocal space and information zone in physical space [36], has shown that the width of the correction function is 0.5 in the range of comparatively small scattering angles; this includes the main part of the information concerning molecular packing. As a result, using molybdenum radiation, the radius of the information zone in physical space for our diffractometer does not exceed 13 Å. It is evident that the corresponding scattering functions have information in the region of this zone only. Therefore the results of Fourier transformation of the intensity function reflect the true distribution of atomic centers in the sphere of radius mentioned. Due to this, analysis of RDF has physical meaning only in the interval of distances up to 13 Å. While it is probable that these functions have some peculiarities at greater distances, the interpretation of these results is questionable.

The initial treatment of the data consist of:

- 1. Statistical analysis of scattering data by cuvet alone cuvet with sample;
- 2. Introduction of the cuvet material, their absorbtion and polarization;
- 3. Smooting out of the intensity curves for any angle interval;
- 4. Formation of the total intensity curve from its different parts.

The statistical analysis of scattering data was performed by usual methods to give the more probable values of intensity for each point of the curve [42]. The corrections for absorption of x rays in a plane sample were introduced [43, 44]. The smoothing out of the intensity curves has been done by the least-squares method using polynomials of various powers for any part of the diffraction curve [45].

The calculation of RDF for atomic centers was performed using the formula

$$4\pi r^2 \rho(r) = 4\pi r^2 \rho_0 + \frac{2r}{\pi} \int_0^{s_{\text{max}}} S \cdot I(S) \sin(Sr) dS, \qquad (1)$$

where ρ_0 is the macroscopic density of the substance, *r* is the radial distance to any atom of the substance, $S = 4\pi \sin \theta / \lambda$, S_{max} is the maximum value of *S*, 2θ is scattering angle, λ is the wave length,

$$I(S) = J(S) - \frac{\sum_{k=1}^{n} \alpha_k f_k^2(S)}{\left(\sum_{k=1}^{n} \alpha_k f_k(S)\right)^2}$$
(2)

is the structure-sensitive part of the intensity curve, J(S) is the intensity of diffraction normalized to the average atom of sort k, α_k is the partial molar quantity of atoms of sort k, n is the number of sorts of atoms in a monomer unit of a polymer, $f_k(S)$ is the form factor of atoms of sort k.

The normalization of the intensity function to scattering by an average atom was done using a method developed in [44, 46]. To eliminate the low-frequency errors connected with incorrect values of form factors and absorption coefficients at different angles, the double Fourier transformation was used [47]. In calculating the RDF, the value S_{max} was taken such that I(S) equals zero at corresponding *S* values. On the basis of the RDF of atomic centers, experimental correlation functions of interatomic distances were calculated (normalized RDF) according to

$$g(r) = \frac{4\pi r^2 \rho(r)}{4\pi r^2 \rho_0}.$$
 (3)

The functions g(r) are the initial data for comparison with correlation functions based on various models. Curves g(r) characterize the degree of comparative excess of the atomic local density value at distance *r* relative to the arbitrary chosen atom above the level of macroscopic density (Figures 2 and 3).

The first maximum of these curves is conditioned by the averaged contributions of the distances between all pairs of the valence-bonded atoms. The second maximum relates to the averaged distances between atoms divided by two chemical bonds. Both curves given are identical in the range of the first two maxima. In interval 3 - 10 Å, these curves are essentially different.

The important feature of the curve for crystal (Fig. 3) consists of two intensive peaks in the range 4.1 to 5 Å with feebly marked maxima along this part of the curve. Curve g(r) for liquid is characterized by the set of weak peaks against a background of appreciable curve increase in the range 4 - 6 Å and the curve lowering in the range 7 - 9 Å. It follows from experimental data on crystal structure of PTMG that the surrounding of each molecule of this polymer consists of two molecules located at a distance of 4 Å and four molecules at a distance equal to 5 Å: see Fig. 4 where the basic plane of the PTMG crystal lattice is shown.

These distances are close the maxima positions on g(r) for the crystal. However, almost the same values of the distances are characteristic for third and fourth neighbors in the conformation of the fully straightened chain ($r_3 = 3.88$, $r_4 = 4.94$). This leads to uncertainties in the interpretation of the maxima nature: it is not clear to what extent these maxima reflect features of molecular packing, and to what extent they reflect their conformational state.

Fig. 2. Curves of the correlation of the interatomic distances for liquid PTMG:
(---): experimental curve. Conformational states: *T - trans*, *G - gauche*;
(---): theoretical curve for *TTTTT* conformational state of the PTMG chain;
(---): theoretical curve for *TGTGT* conformational state of the PTMG chain;
(---): differential curve for *TTTTT* conformational state of the PTMG chain;
(---): differential curve for *TGTGT* conformational state of the PTMG chain;

The interpretation of g(r) for the liquid state of PTMG is even less meaningful in this interval of distance since the short-range order model has to be developed on the basis of the g(r) curve. According to one point of view [58 – 60] the shape of this curve is determined only be the correlation of mutual positions of molecules. On the contrary, some authors suppose that the locations of many weak peaks are caused by intramolecular distances from different conformers without any intermolecular effects [61, 62].

Fig. 3. Curves of the correlation of the interatomic distances for crystalline PTMG: (--): experimental curve; (---): theoretical curve; (--): differential curve.

Fig. 4. Basic plane of the crystalline lattice of PTMG.

Such differences in the interpretation of the polymer RDF are connected with the lack of an objective method for their analysis. One may say that it is possible to make only one definite conclusion in this case: during the transition from the crystalline to the liquid state, the PTMG short-range order changes essentially. One must conclude that there is practically only one way to interpret RDF more fruitfully for such compounds – to perform model calculations.

10.3. Methods of conformational and modeling calculations

To estimate the conformational state of micromolecules , we apply a theoretical conformation analysis for the molecular fragment of PTMG shown in Figs 1 and 5.

Fig. 5. Fragment of the PTMG chain.

The potential energy was calculated as a sum of torsion potential and nonvalence interactions for all atoms with distances between them no more than 10Å. Foe the potential functions between nonbonded atoms, a Lennard-Jones potential with parameters proposed by Scott and Sheraga was used [48]. Thus the potential energy function had the following form:

$$E(\tau_i, \tau_{i+1}) = \sum_{m < n}^{N} \left(\frac{B}{r_{mn}^{12}} - \frac{a}{r_{mn}^{6}} \right) + \frac{U_0(i)}{2} \left[1 + \cos\left(3\tau_i\right) \right] + \frac{U_0(i+1)}{2} \left[1 + \cos\left(3\tau_{i+1}\right) \right], \quad (4)$$

where $U_0(i)$ is the internal rotation barriers of the bond *i*, τ_i is the internal rotation angle , and *N* is the number of atoms. To calculate the torsion potential, values $U_0 = 3 \text{ kcal/mol}$ and 1.07 kcal/mol were taken for bonds C–C and C–O, reppectively. The geometry calculation for the molecular fragment was done using standard bond lengths CC = 1.54, CO = 1.43, CH = 1.1 Å and all valence angles were takes as 109.5°.

The ideal peak method [49 - 51] can be taken as a basis for model calculations. This method makes it possible to evaluate the profile of the maximum of RDF for the atomic pairs that are on the distance given; moreover, parameters of atomic vibrations for this distance and influence of the upper limit in integral (1) on the shape of the maximum which depends on "false" oscillations also being taken into account. Such methods of the synthesis of the RDF have been realized for some molecular liquids [52 - 55]. The main difficulty of such calculations for polymers consists in the

necessity to consider several thousand interatomic distances which becomes possible only with the use of computers. The modeling of the short-range order for polymers proposes the realization of the following computing procedures: (i) construction of the model and computation of all atomic coordinates, (ii) computation of all interatomic distances, and (iii) computation of the profile of the ideal peak for each atomic pair and integration of these peaks to construct the theoretical RDF.

The normalized RDF g(r) for PTMG were computed by summing the maximum profiles, corresponding to the contributions of all distances between atoms belonging to one molecule in a model structure. The simplest form for such maxima in computed RDF occurs for well-defined atomic positions. For this case the profile of the maximum corresponding to the interatomic distance r_{ij} and the amplitude of atomic displacement from the equilibrium position β_{ij} may be expressed as

$$T_{ij}(r) = \frac{r}{\sqrt{\pi}r_{ij}\beta_{ij}} \left\{ \exp\left[-\frac{\left(r-r_{ij}\right)^2}{\beta_{ij}^2}\right] - \exp\left[-\frac{\left(r+r_{ij}\right)^2}{\beta_{ij}^2}\right] \right\}.$$
(5)

As the real values of S_{max} are not infinite, eqn. (5) gives an approximate estimation of the contribution of interatomic distances to the RDF. It is known [36] that

$$\beta > 2.3 S_{\text{max}}.$$
 (6)

Eqn. (5) may be used to find the profile of maxima of RDF. At smaller values, one should use more complicated approaches to find the profiles; in particular, eqn. (7) may be used [51], namely:

$$T_{ij}(r) = \frac{r}{\pi r_{ij}} \int_{0}^{S_{\text{max}}} \frac{f_i(S) f_j(S) \{ \cos[S(r - r_{ij})] - \cos[S(r + r_{ij})] \}}{\exp\left(\frac{\beta_{ij} S^2}{2}\right) \left(\sum_{k=1}^{n} \alpha_k f_k(S)\right)^2} dS,$$
(7)

where r_{ij} is the interatomic distance and β_{ij} is the parameter determining the amplitudes of the atomic vibrations. Now, the RDF for the model is computed by the expression

$$4\pi r^2 \rho(r) = \frac{1}{N} \sum_{j>i=1}^N T_{ij}(r),$$
(8)

where N is the number of atoms in the model chosen and theoretical value of normalized RDF is computed by eqn. (3) using eqn. (8) for its numerator.

When modeling the structure of PTMG, the total number of interatomic distances may be divided into intermolecular and intramolecular ones. The intramolecular distances are of two types – those nondependent on the conformational state of the macromolecule and those which are dependent on conformation. For conformation-nondependent, β_{ij} is in the same range of values as for low molecular weight substances, namely, 0.04 - 0.09 Å [56]; their contribution to the RDF can only be estimated using eqn. (5). For conformation-dependent intrachain distances, β_{ij} is of the order of some 0.1 Å. In this case the more rough approximation may be used. The same is valid for the distances between atoms of different chain.

In the present study all computational and modeling work were performed using computer BESM-6 with FORTRAN programs developed by N. E. Kruglyak [4].

10.4. Experimental data and results of calculations

The intensity curves I(S) for all PTMG under investigation have a very intense broad maximum at $2\theta = 9^{\circ}$ and three gradually smoothing maxima at 19° , 35° , and 55°. One of these curves is shown in Fig. 6 as curve A for PTMG with a molecular weight of 1350.

Fig. 6. Intensity curves of the x-ray diffraction for liquid and crystalline PTMG.

The difference between the intensity curves for the various oligomers is only in the halfwidth and degree of asymmetry of the main maxima. The values of asymmetry degree are given in Table 1.

It is seen that increasing the molecular weight from 500 to 2500 leads to a decreasing degree of asymmetry of the main maxima.

The intensity curves for PTMG-1350 and PTMG-2500 in the crystalline state are identical. The most intense reflections on the diffraction curve for the crystalline oligomer PTMG-1350 (Fig. 6, curve B) are at 9° and 11°.

Table 1 The asymmetry characteristics of the main maxima for PTMG-500, PTMG-1350, and PTMG-2500*

Substance	h / h_m		
	1/3	1 / 2	3/4
PTMG-500	1.0	1.6	1.27
PTMG-1350	1.0	1.4	1.13
PTMG-2500	1.0	1.4	1.13

* h – height of asymmetry determination, h_m – height of the main maximum.

These are the reflections from planes (020) and (110) of the crystalline lattice of polytetramethylene oxide [57]. The position of the (020) maximum is close to the position of the main maximum on the curves for the liquid oligomers, its wigth for the liquid being much greater than the (020) reflection for the crystal. At the same time, in the interval of angles corresponding to reflection from (110) planes, there no traces of the crystalline reflection.

The experimental interatomic correlation curves $g_{exp}(r)$ for the liquid oligomers are essentially the same. Therefore, as a basis for the analysis, the data for PTMG-1350 were used. The correlation curves are shown in Fig. 7 for two values of S_{max} : 6.4 and 8.7 \mathring{A}^{-1} . The curve with $S_{max} = 8.9 \mathring{A}^{-1}$ is for the crystalline material.

The comparison of correlation curves for various S_{max} shows that with an increase in S_{max} the first two maxima become narrower and higher. There are some differencies for the curves with essentially the same S_{max} in the interval 3 - 10 Å; the curves with $S_{\text{max}} = 8.7$ and $S_{\text{max}} = 8.9 \text{ Å}^{-1}$ have more maxima than curves with $S_{\text{max}} = 6.4 \text{ Å}^{-1}$, and the maxima have different positions on 8.7 and 8.9 Å^{-1} S_{max} curves.

There are intense, broad maxima in the interval 3.5 - 6.5 Å, broad minima in the interval 6.5 - 8.5 Å, and less intense maxima in the interval 8.5 - 10 Å in the crystalline 8.9 Å⁻¹ S_{max} curve.

Correlation curves for liquid and crystalline PTMG are identical in the interval 1 - 3 Å, whereas at distances of more than 3 Å the curves for liquid oligomer have less pronounced maxima in comparison with the curve for the crystal.

Fig. 7. Experimental interatomic distance correlation curves for liquid (A: $S_{\text{max}} = 6.4 \text{ } \text{Å}^{-1}$ and B: $S_{\text{max}} = 8.7 \text{ } \text{Å}^{-1}$) and crystalline (C: $S_{\text{max}} = 8.9 \text{ } \text{Å}^{-1}$) PTMG.

10.5. Results of conformational and modeling computations

Figure 8 shows the potential energy maps (PEM) for different pairs of chemical bonds in the fragment of the PTMG chain (fig. 2). It follows from the molecular symmetry that PEM for the pairs of angles τ_2/τ_3 and τ_3/τ_4 may be obtained from each other by reflection across the diagonal plane. It is seen from Fig. 8a that there is possibility of realization of all probable *trans* (*T*) and *gauche* (*G*) conformers. However, the pairs G^+G^- and G^-G^+ are less probable. The most advantageous pairs of

conformers are: TG^- , TG^+ for angles τ_3/τ_4 , and G^+T , GT^- for angles τ_2/τ_3 . The succession of conformers *GTG* is evidently most advantageous for the angles τ_2, τ_3, τ_4 . For the angle pairs τ_1/τ_2 and τ_4/τ_5 the PEM also may be transformed into another by reflection across the diagonal planes. One of these maps is shown in Fig. 8b. It is seen that the successions of conformers G^+G^- and G^-G^+ for these bonds are practically forbidden. The most probable state for the bonds O–C–C is *TG*. For C–O–C bonds the successions of the conformers *GT* and *TG* are less probable and *GG* are impossible (Fig. 8c).

maps (a), (b), and (c) correspond to (fig. 5) $\tau_5/\tau_1, \tau_2/\tau_3$, and τ_4/τ_5 dihedral angle pairs, respectively: (---): 1 kcal/mol; (---):3 kcal/mol; (.....):10 kcal/mol.

For the bond pairs C–C–C the minima of the potential energy are narrow, with barriers which are equal to 3.5 *kcal/mol*. On the contrary, for bond pairs C–O–C the magnitude of the barriers between minima is half as large (1.7 *kcal/mol*), and the PEM may be described as a plate with a great hollow in the center, with gentle brims and with the four small hollows in these brims. It is seen from Fig. 8 that the lowest energy conformations for the bonds O–C–C–C–O are *TGTGT* or *TTTTT* (the energy of the first one is slightly lower). In accordance with the value of the minima, there is a certain probability of the realization of other successions of bond conformation, too, but all the same, the conformations *TTTTT* and *TGTGT* prevail.

For these conformations of the PTMG chain the theoretical curves of the correlation of the intramolecular interatomic distances $g_{theor}(r)$ have been computed. Values were taken in the range 0.05 - 0.5 Å to best coincide with the maxima profile for the theoretical and experimental curves. These curves for the chain containing 92 atoms are shown in Fig. 9.

Optimum values of β_{ij} for these curves are given in Table 2. It is seen that for the interchain conformation-nondependent distances, the values are in good agreement with literature data for analogous compounds [63].

The comparison of model and experimental curves of the intramolecular distance correlation shows coincidence in the region of the first two maxima.

Fig. 9. Theoretical curves of the correlation of intramolecular interatomic distances: A and C – TTTTT conformation of PTMG chain; B - TGTGT conformation of PTMG chain.

Table 2

The values of the amplitudes of the atomic displacement from the equilibrium positions β_{ij} for atomic pairs with different distances r_{ij} between atoms used in calculation of the RDF of the PTMG chain, Å

Atomic pair	r_{ij}	$eta_{_{ij}}$
First neighbors	1.6	0.08
Second neighbors	2.6	0.10
Third neighbors	4.1	0.20
Forth, fifth, neighbors	4.1	0.50

At radial distances above 3 Å the theoretical curves are generally lower than experimental ones. Curves A and C (Fig. 9), which correspond to calculations for

conformation with $S_{\text{max}} = 8.7$ and $S_{\text{max}} = 6.4 \text{ Å}^{-1}$, are different. At the same time, curves A and B, calculated for various conformations with the same S_{max} , are different only in the interval of radial distances 2.8 - 10 Å, i. e., in the region of conformation-dependent distances.

The difference correlation curves for the interatomic distances are shown in Fig. 10. They are the result of substraction of model correlation curves for TTTTT and TDTDT conformation from experimental curves for crystalline PTMG.

Fig. 10. Difference correlation curves of the interatomic distances $g_{exp}(r) - g_{theor}(r)$ for crystalline PTMG:

A – subtraction of *TTTTT* chain conformation from the experimental curve;

B – subtraction of *TGTGT* chain conformation from the experimental curve.

Figure 11 shows the difference curves for liquid PTMG. Comparing these difference curves with corresponding experimental and model curves for interatomic distances, one can note two important facts.

The first is the similarity of the curves for the same conformations with different S_{max} , which suggests the absence of spurious oscillations on the complete experimental curves.

The second fact is the absence of slight maxima in the interval 3 - 10 Å for difference curves as compared with experimental and model ones.

10.6. Discussion

It is known that the high molecular weight analog of PTMG, polytetramethylene oxide (PTMO), crystallizes in space group C2/c, in a monoclinic lattice. The molecular chains of PTMO have the *TTT* conformation and are packed parallel to the (100) plane. The identity period along the c axis includes two monomers.

Fig. 11. Difference correlation curves of the interatomic distances $g_{exp}(r) - g_{theor}(r)$ for liquid PTMG:

The distance between the planes of the molecular chains is slightly less than the sum of the van der Waals radii of CH₂ groups. The molecules are displaced along the c axis so that oxygen atoms are separated as much as possible. The most intense reflections of the diffractograms of the crystalline PTMG (Fig. 6) typify the base planes of the crystalline lattice: the reflection 020 (d = 4.46 Å) is connected with the periodicity along the b axis and reflection 110 (d = 3.65 Å) is caused by the distances between the diagonal planes.

As is known, if compounds contain hydroxylic groups, molecular association takes place due to H-bond formation. It is possible that the terminal OH groups in PTMG also may lead to their formation. In this case, two modes of association are probable – interaction between two terminal groups and participation in H-bonding of hydrogen atoms of one of the OH groups with an electron-donor oxygen of the main chain. Due to these two possibilities it is interesting to compare the structure peculiarity of PTMG with its high molecular weight analog.

Comparison of our diffraction curve of crystalline PTMG with literature data for PTMO shows that the presence of terminal OH groups in PTMG with a molecular weight of 1350 does not influence the molecular ordering in crystals. At the same time, the transition to liquid oligomers results in a slight difference in position of the main intensity maxima. The larger width and asymmetry of the main maxima for PTMG-500, as compared with other oligomers, may be explained by some increase in the structural defects due to an increase in H-bond concentration for shorter chains. Above molecular weight 1350 this effect is absent, thus enabling us to say that structures of PTMG-1350 and PTMG-2500 and their high molecular weight analogs in the liquid state are very similar.

The presence of only one symmetric diffuse maximum on the intensity curves of liquid oligomers, instead of the two observed crystalline reflections, shows that for PTMG in the melt, only one preferential distance is realized. Here the average value of interplanar distance in the base plane of the paracrystalline lattice in liquid PTMG is equal to 4.46 Å. From the theory of x-ray scattering for substances with paracrystalline ordering, it is known [36] that if there is only one maximum of intermolecular interference on the intensity curve, the fluctuation in periodicity is on the order of 17.5 - 35 %. Since on the intensity curve for the PTMG melt we observed only one maximum, we can use the fluctuation mentioned to suggest the packing of PTMG chain fragments as a paracrystalline lattice of hexagonal type with average interplanar distance 4.46 Å and fluctuations in the range 3.68 – 5.24 Å as a minimum and in the range 2.9 - 6.0 Å for maximum fluctuations. Assuming a perfect hexagonal lattice with interplanar distance 4.46 Å, the average value of distances between the adjacent macromolecular axes will be equal to 5.1 Å. The packing of nearest-neighbor molecular fragments in liquid PTVG cannot be represented as the result of crystalline lattice disordering. The data show that in the melt there is only one preferential distance between adjacent chains, whereas in the crystal there are two such distances.

As a first approximation, let us consider the base plane of the paracrystalline lattice of liquid PTMG as resulting from displacement of the 100 plane to a distance equal to 4.46 Å, with constant distance between 010 planes (Fig. 12).

The possibility of such changes follows from the temperature dependence of the lattice constant 0f PTMG; the coefficient of expansion along the a axis is at least an order of magnitude larger than that along the b axis. The model of chain

arrangements (Fig. 12) in the paracrystalline lattice is in good agreement with the interplanar distance found experimentally.

Fig. 12. Basis plane of crystalline PTMG and model basis plane of liquid PTMG.

It is worth noting that the average intermolecular distances in the model are in concordance with the position of the most intense maximum on the difference curves of interatomic distance correlation.

The variety and contradictions of the character of the models proposed by others for liquid (amorphous) polymers force us to consider the results of the structural investigations in the framework of the alternative models. At least three of them have been used with the most success for the explanation of the physical properties of amorphous polymers with flexible chains.

According to the statistical coil model, the macromolecules have unperturbed gaussian conformation; they do not "feel" their neighbors and do not change their conformations to achieve dense packing. Therefore this suggests no correlation of the mutual dispositions of the molecular fragments, this being in contradiction to the presence of the intense maximum of the intermolecular interference. As was noted, such maxima are caused by the existence of correlations between the positions of the molecular fragments in the framework of the distorted paracrystalline lattice.

The absence of correlation between the molecular fragments in the model of statistical coils results, in particular, in the ability to obtain a rather dense packing, with a conformer distribution which is nearly gaussian in spite of the use of montecarlo calculations. The intensity curve maxima calculated for this model have lower intensity and are more diffuse as compared with experimental curves [28].

In the framework of the statistical coil model it is difficult to explain the presence of intense maxima of intermolecular interference, the latter being typical for liquid PTMG. Thus, the statistical coil model in its present form does not conform to results of the structural experiments.

This deficiency in the model is absent in the two other models based on the supposition of local ordering of the molecular fragments. In the model of fringed-micellar grains formed by folded chains, a quasi-crystalline structure of ordered microdomains is postulated which exist together with disordered microregions. The "ordered" microdomains are distributed in the more irregular medium. It is evident that a qualitative distinction between ordered and disordered regions consists in the presence in liquid PTMG of some fragments of fully extended chains in *TTTTT* conformation and of some fragments formed by sequence of *T* and *G* conformers. In such a case, during melting of the oligomer the maximal change in the specific volume for the ordered regions cannot exceed a value equal to $(V_1 - V_c)/V_c$, where V_1 is the specific volume of the liquid, and V_c is the specific volume of the crystal. Since during melting the length of chains in the ordered domains and their conformational state do not change, the increase in specific volume may be connected with the increased cross-section area occupied by one molecular fragment.

In this case the value $(S_1 - S_c)/S_c$, where S_1 and S_c are the cross-section areas of one molecule in liquid and crystal, respectively, should not exceed the value $(V_1 - V_c)/V_c$. Our calculations show that the relative change in specific volume of PTMG during melting, obtained from measurements of microscopic density, is close to 0.131, while the change in area of the base plane passing from crystal to paracrystal equals 0.307. As is seen, the latter value is more than two times the increase in the specific volume calculated from density data.

Thus, if we accept, in accordance with the model of micellar grains, that the main maximum on the intensity curve for the liquid oligomer is connected with the periodicity of the ordered microdomains, this model does not agree with the experimental results.

As a third possibility, we consider the development of kink isomers during melting. If we used the concept that the structure of liquid/amorphous polymers is

based on an increase in the equilibrium concentration of kink isomers in the melt, as compared to the crystal, there is no need to use two-phase models.

The kink-isomer model was used for a detailed study of polyethylene [23, 24]. It is known that introduction of the kink *GTG*, so called 2g1 kink, into a polyethylene chain in the *trans* conformation leads to a shortening of its length by 1.26 Å and to an increase of the average size of the chain in the vicinity of the defect by 1.8 Å (in the plane parallel to the zigzag plane). It is suggested that for ordered regions with such defects, the ratio $(V_1 - V_c)/V_c$ can be less than $(S_1 - S_c)/S_c$, because of the decrease in extended chain length. Hence, the character of the change in density during melting does not put strict restrictions on the values of the intermolecular distances in the polymer melt. To apply this model to the description of the structure of liquid PTMG, let us consider the conformational properties of the chains. As follows from conformation analysis, they consist of the following:

1. PTMG chains may have fewer conformers than polyethylene chains. Specifically, for the succession of bonds C–C–C the conformations TT, TG, and GG can be realized, while the bonds C–O–C the conformation TT is most probable and the possibility of realization of conformations TG is much less.

2. In spite of this fact, the gentle character of the minima (Fig. 8c) withnesses to the shallowness of their slopes; i. e., large deviations from equilibrium positions are allowed. It must be reflected in large amplitudes of vibration of the C and O atoms.

In spite of the lower probability of gauche conformers in PTMG chains as compared to polyethylene chains, there are a certain number in the melt. This follows from the difference correlation curves (Figures 11, 12). These curves reflect the real picture of interatomic distance distribution only when the corresponding theoretical curves of intermolecular distances (subtracted from experimental curves) are calculated for conformations really present in the melt. If, in calculating theoretical curves, we underestimate the number of G (or T) conformers, it reflects in the correlation curve in the distance region along the chain to the third nearest neighbors for given conformers. This statement becomes clear if we compare the difference curves for crystalline PTMG, which may be considered as a model substance with well known structure and conformational state. As shown in Fig. 10, there are marked differences in the region 3 - 10 Å between the two curves which were obtained by subtracting the model curves calculated for TTTTT and TGTGT conformations from the experimental curves. It is worth noting that curve B represents in fact a nonreal situation because to obtain it, the theoretical curve for a chain with a great many gauche conformers was subtracted from the experimental curve for a crystal with few gauche conformers. Curve A (Fig. 10), on the contrary, corresponds to the curve of correlation of distances between atoms of different molecules for the real model of crystalline PTMG. The most marked differences between curves A and B are observed in the radial distance region 2.7 - 3.9 Å. Curve A has no pronounced maxima or minima in this region. This fact shows that here there are no such preferential distances between atoms of different chains in crystalline PTMG. As distinct from curve A, curve B gas a minimum at 2.8 Å, which is in the region of negative values. This minimum is presumed to be the result of overestimating the number of G conformers in the chain of crystalline PTMG. The maximum at r = 3.6 Å may be considered to appear due to underestimating the number of T conformers in the chain.

Let us now discuss the difference correlation curves for liquid PTMG (Fig. 11). Curves A and B show small maxima in the region 2.8 Å. As the probability of appearance of such small distances between "heavy" atoms (C or O) in liquid oligomer is negligible, this maximum may be attributed to the contribution from *G* conformers in the liquid. Curve C (conformation *TGTGT*) has no maximum in this region but has a shoulder at 3.7 Å. This latter fact reflects underestimating the contribution of *T* conformers. Thus, all three curves, A, B, and C, show the effect of not taking into account in the calculation of intramolecular curves the correct number of *G* or *T* isomers. These curves cannot therefore, be considered as "pure" intermolecular curves. Curve D (Fig. 11) is the sum of curves A and C equally weighted. This curve is smooth in the region of characteristic conformationdependent intramolecular distances and may be considered as a good approximation of the true curve of intermolecular distance correlation for liquid PTMG.

Taking into account the structure of the crystal when discussing the structure of the liquid oligomer, it may be supposed that kinks of the 2g1 type can be generated by introducing conformers TG^+TG^-T and TG^-TG^+T into the crystal lattice. As these sequences of conformers have nearly the same energy as an all-*trans* conformers, a conclusion can be drawn that for the free chain, the ratio of bonds in *G* and *T* conformation equals 4:11.

If we accept that for the PTMG chain there is possible mainly the sequences of *TTTTT* and *TGTGT* conformers, we can see that kinks of the 2g1 type may be formed by introducing TG^+TG^-T and TG^-TG^+T conformers into the lattice. Taking into account that the probability of these sequences and sequences of the *TTTTT* type is approximately the same, it may be calculated that in the chain fragment in a paracrystalline lattice, the ratio of *T* and *G* conformers may be as large as 11:4.

Figure 13 shows:

(a) chain segments with one kink, formed by conformer sequences G^+TG^- and G^-TG^+ for bonds C–C–C–C; and (b) segments with two kinks $G^+TG^-TTG^-TG^+$ and $G^-TG^+TTG^+TG^-$ for bonds C–C–C–C–C–C–C–C–C.

Fig. 13. Segments of PTMG chain with kinks.

Conformers of the *TTGTGT* type for bonds C–O–C–C–C–C–O–C (Fig. 13c) do not fit the lattice. It is probable that their appearance leads to the local distortion of the paracrystalline lattice of PTMG. The result of introducing the 2g1 kink into the PTMG lattice is shown in Fig. 14. This introduction leads to an increase of the a axis spacing from the value shown by the solid line (axis b of crystal) to the value shown by the dashed line (axis b of paracrystal). Simple calculations show that the shortening of the chain segment, consisting of 15 bonds (11 *T* and 4 *G*), equals 2.5 Å.

Fig. 14. Results of the introduction of 2g1 kinks into the crystalline lattice of PTMG.

In this case, the change in specific volume calculated corresponding to the change in distance between the molecules equals 0.134. This value is in good agreement with the value calculated from the density change during melting, namely 0.131; the ratio T and G conformers (11 : 4) is in good agreement with the ratio used for calculating the difference curve D in Fig. 11, the latter curve being the best approximation to the real correlation curve for distances between atoms of different molecules for liquid PTMG. Thus, the kink-isomer model allows a reasonable explanation of the diffraction data obtained for liquid PTMG.

Consider once more the fact that the difference curves (Fig. 11) for the same conformational state but with different S_{max} are very similar, whereas the corresponding primary experimental curves are markedly different. The similarity of difference curves for various S_{max} in the range of radial distances 3 - 10 Å shows that the influence of the termination effect on the correlation curves is fully eliminated when one subtracts curves of intramolecular distances. The latter fact is a result of the large amplitude of deviation of distances between atoms of different chains from average values. As a result, the maxima in the RDF, corresponding to such distances, may be described by Eqn. (5), as distinct from maxima determined by intramolecular conformation-independent distances.

A great number of such maxima in a small range of radial distances, and the resulting overlap of many maxima at each value of radial distance, allow us to simplify their form when modeling the intermolecular part of the correlation curves. In the present case, the distances between atoms i and j can be described by a rectangle with height equal to

$$f_i(S)f_j(S) / \left[\sum_{i=1}^n \alpha_i f_i(S)\right]^2 4\pi r^2 \rho_0 N.$$

For the size of the rectangle, the value of amplitude of deviation of interatomic distances from their equilibrium position (β) was taken. The value β was was varied by calculation of model correlation curves to give the best agreement between model and difference curves of intermolecular distance correlation. The atomic coordinates which were necessary for the calculation were taken from x-ray data for crystalline PTMO. For liquid PTMG, the atomic coordinates were calculated from the parameters of the paracrystalline lattice (Fig. 12). To calculate the model curve of correlation for crystalline PTMG, β values were varied in the range 0.3 – 1.5 Å; the best fit was achieved at 0.5 Å. Model curves of correlation for the crystal are shown in Fig. 15 in comparison with the difference curves. The calculation of model curves for crystal, i. e., for a substance with a well known crystalline structure, has been done to estimate the degree of approximation of the model curve to the difference for the ideal case.

It is seen from Fig. 15 that the model curve calculated on the basis of atomic coordinates in the crystal differs slightly from the experimental curve for crystalline PTMG. These differences may be connected with the presence of some amorphous phase in crystalline PTMG. On the basis of wide-angle x-ray diffractograms, we have estimated the crystallinity of "crystalline" PTMG-1350, using usual methods [46], to be 80%. Therefore to obtain a more correct model curve for crystalline PTMG, it would be necessary to take into account this amorphous part.

Figure 12 shows model correlation curves for distances between atoms of different molecules in the paracrystalline lattice of liquid PTMG, in comparison with the optimum difference curve (see curve D in Fig. 11).

Fig. 16. Histogram for liquid PTMG.

To calculate this curve, values β were taken in the range 0.5 – 2.0 Å, the best concordance being obtained at $\beta = 1.5$ Å. Figure 16 shows that the model curve represents fairly well both the peculiarities of the difference curve for liquid PTMG and specific features of those changes which take place during the transition from crystalline state to liquid state. This result allows the conclusion to be drawn that the proposed model of short-range ordering in liquid PTMG describes quite satisfactorily the peculiarities of the structural state of the oligomer under consideration.

On the basis of model curves for crystalline and amorphous (liquid) PTMG, and taken into account the degree of crystallinity, we have calculated the additive model correlation curve. This is shown in Fig. 15 as curve B in comparison with the difference curve. It is seen that taken into account the amorphous part of the oligomer results in better agreement between model and difference curves. The latter fact may be considered as an additional argument showing the correctness of our model calculations of a paracrystalline lattice of the liquid oligomer.

Using characteristic values for the parameters β for liquid PTMG and the periodicity in the base plane, it is possible, on the basis of paracrystal theory [36], to estimate the zone of interaction. This value is known to be equal to the ratio of the period of the paracrystalline lattice to the value of the average square of this period fluctuation. For parameters estimated by us, for the structure model of liquid PTMG, the extent of the interaction zone is 60 Å. It is worth noting that the concept of the interaction zone essentially differs from the concept of the dimension of ordered regions. The interaction zone determines the distance at which the molecular fragments of liquid or amorphous polymer np longer "feel" each other. The extent of the interaction zone represents in this way the maximal distance at which there still exists correlation in the disposition of molecular fragments.

10.7. Conclusion

The study of the structural state of liquid PTMG in the interval of molecular weight 500 – 2500 shows that with increasing molecular weight 500 to 1350, the near-range ordering changes only slightly, the structure of PTMG-1350 being more perfect. No further change in degree of order occurred with further increase of molecular weight. Therefore the structure of the higher molecular weight oligomers in the liquid state is very close to the structure of their high molecular weight polymer analogs. Comparison of the scattering data with results of conformational and model calculations for liquid and crystalline PTMG at the same temperature shows marked changes in the degree of short-range ordering of molecular fragments during melting. The presence of two types of distances between neighboring chains is typical for the crystal, whereas the packing of neighboring fragments in the melt is close to hexagonal.

The amplitude of displacement of molecular axes from their equilibrium positions in the paracrystalline lattice increases during melting by several times. The molecular chains are presumed to contain approximately one-quarter gauche conformers.

The peculiarities of the near-range ordering of PTMG correspond best to a onephase model based on the concept of kink isomers.

References

- 1. Н. Е. Кругляк, В. В. Шилов. Программа для расчета кривых радиального распределения по методу идеальных пиков, *Ж. структ. хим.*, т. 20: 4, 763 764 (1979).
- 2. V. V. Shilov, N. E. Kruglyak, Yu. S. Lipatov. Modeling of the Short-Range Order for Polymers by the Ideal Peak Method, *Intern. J. Quantum Chem.*, v. XVI, 799 808 (1979).
- 3. В. В. Шилов, Н. Е. Кругляк, В. В. Цукрук, Ю. С. Липатов. Рентгенографическое исследование политетраметиленгликоля в жидком состоянии, *Высокомол. coed.*, т. 22А: 11, 2422 2434 (1980).
- 4. Н. Е. Кругляк. Ближняя упорядоченность в некоторых жидких олигомерных гликолях, Канд. дисс., ИХВС АН УССР, Киев, 1981.
- 5. Ю. С. Липатов, В. В. Шилов, Ю. П. Гомза Н. Е. Кругляк. *Рентгенографические методы* изучения полимерных систем. Киев: Наукова думка, 1982.
- 6. V. V. Shilov, N. E. Kruglyak, Yu. S. Lipatov. Study of the short-range order of liquid polytetramethylene glycol, *J. Macromol. Sci.-Phys.*, v. B22: 1, 79 109 (1983).
- 7. R. F. Boyer. General reflections on the symposium on physical structure of the amorphous state, *J. Macromol. Sci.-Phys.*, v. B12: 2, 253 301 (1976).
- 8. G. S. Y. Yeh. Int. Symp. Macromol. Chem. Abstracts. Tashkent, 1978.
- 9. P. Corradini. Int. Symp. Macromol. Chem. Abstracts. Tashkent, 1978.
- 10. P. J. Flory. Int. Symp. Macromol. Chem. Abstracts. Tashkent, 1978.
- 11. P. J. Flory. Principles of Polymer Chemistry. Ithaka: Cornell Univ. Press, 1953.
- 12. R. E. Robertson. Polymer order and polymer density, J. Phys. Chem., v. 69, 1575 (1965).
- 13. В. П. Привалко, Ю. В. Пасечник, Л. И. Безрук *et al.* О складывании макромолекул в блочных полимерах, *Высокомол. coed.*, т. Б15: 5, 381 (1973).
- 14. G. S. Y. Yeh., *J. Macromol. Sci.-Phys.* Order in amorphous polystyrenes as revealed by electron diffraction and diffraction microscopy, v. B6, 451 463 (1972).
- 15. С. А. Аржаков, Н. Ф. Бакеев, В. А. Кабанов. Надмолекулярная структура аморфных полимеров, *Высокомол. соед.*, т. А15, 1154 (1973).
- 16. В. А. Каргин, А. И. Китайгородский, Г. Л. Слонимский. О строении линейных полимеров, *Коллоид. ж.*, т. 19: 2, 131 132 (1957).
- Th. G. F. Schoon, R. Kretschmer. Versuch einer Deutung der bei der elektronenmikroskopischen Untersuchung von festen Polymeren auftretenden mikromorphologischen Struktureinheiten, *Kolloid. Z. Z. Polym.*, v. 211: 1, 53 – 62 (1966).
- Th. G. F. Schoon, G. Reeber. Theorie des Ultraschall-Abbaus von Polymeren in Lösung auf der Grundlage des Perlschnurmolekül-Modells, *Angew. Makromol. Chem.*, v. 15, 263 – 270 (1971).
- 19. Th. G. F. Schoon, H. Stutz. Zur frage der gegenseitigen durchdringung von polymerknäueln in konzentrierten lösungen, *Angew. Makromol. Chem.*, v. 3, 182 189 (1968).
- B. Vollmert, H. Stutz, J. Stemper. Über das Deformationsverhalten von nur intermolekular vernetzten Gelen und Kautschuken, ein Beitrag zur Struktur von nicht-kristallinen Polymeren, *Angew. Makromol. Chem.*, v. 25, 187 – 191 (1972).
- 21. S. Blasenbrey, W. Pechhold. Theorie der Phasenumwandlung in Polymeren, *Ber. Bunsenges. Phys. Chem.*, v. 74: 8-9, 784 796 (1970).
- 22. W. Pechhold, S. Blasenbrey. Molekülbewegung in Polymeren. III. Teil: Mikrostruktur und mechanische Eigenschaften, *Kolloid. Z. Z. Polym.*, v. 241: 1, 955 976 (1970).
- 23. W. Pechhold, E. Liska, A. Baumgartner. Defektkristall und Mäandermodell, *Kolloid. Z. Z. Polym.*, v. 250: 11, 1017 1025 (1972).
- 24. W. Pechhold, M. E. T. Hauber, E. Liska. The meander model of condensed polymers, *Kolloid. Z. Z. Polym.*, v. 251: 11, 818 828 (1973).
- 25. L. Beck, P. C. Hägele. Semiempirical atomistic calculations of kink isomers in the isotactic polystyrene chain, *Colloid Polymer Sci.*, v. 254: 2, 228 236 (1976).
- 26. В. П. Привалко. Сб. Структурные особенности полимеров. Киев: Наукова думка, 1978.
- I. Voigt-Martin, F. C. Mijlhoff. Interatomic distance functions obtained by electron diffraction from the polyethylene melt: Possible errors in the interpretation of radial distribution functions, *J. Appl. Phys.*, v. 46, 1165 – 1177 (1975).
- 28. П. Коррадини. Некоторые результаты конформационного анализа полимерных цепей, *Высокомол. соед.*, т. А21: 11, 2486 (1979).
- 29. Ю. К. Овчинников, Г. С. Маркова. Исследование структуры расплава полиэтилена электронографическим методом, *Высокомол. coed.*, т. А9: 2, 449 (1967).
- 30. G. S. Markova, Yu. K. Ovchinnikov, E. B. Bokhyan. *J. Polym. Sci. Polym. Symp.*, v. 42, 671 (1973).
- 31. A. Bjornhaug, O. Ellefsen, B. A. Tonnesen. An approach to the solution of structure problems of organic chain polymers, *J. Polym. Sci.*, v. 12: 1, 621 632 (1954).
- G. D. Wignall, G. W. Longmann. Investigation of short range ordering in polymers by means of radial distribution functions derived from X-ray diffraction. Part 1. Bisphenol-A polycarbonate, *J. Mater. Sci.*, v. 8, 1439 (1973).
- 33. C. S. Wang, G. S. Y. Yeh. DRDF analysis of wide-angle x-ray scattering of natural rubber, *J. Macromol. Sci.-Phys.*, v. B15: 1, 107 – 118 (1978).
- 34. S. M. Wecker, T. M. Davidson. J. B. Cohen. A structural study of glassy polystyrene, *J. Mater. Sci.*, v. 7, 1249 – 1259 (1972).
- M. Gupta, G. S. Y. Yeh. Application of paracrystalline lattice theory to the analysis of differential radial distribution function of amorphotized polyethylene, *J. Macromol. Sci.-Phys.*, v. B16: 2, 225 – 241 (1979).
- 36. R. Hosemann, S. N. Bagchi. *Direct analysis of diffraction by matter*, New York: North Holland, 1962.
- R. Hosemann, K. Lemm, H. Krebs. The termination effect and its influence on the atomic distribution curves of amorphous materials and liquids, *Z. Phys. Chem.*, v. 41, 121 – 132 (1964).
- 38. G. Porod. Zusammenhang zwischen mittlerem endpunkt-sabstand und kettenlange bei fadenmolekulen, *Monatsh. Chem.*, v. 80, 251 255 (1949).
- 39. Г. В. Виноградов, А. Я. Малкин. Реология полимеров. Москва: Химия, 1976.
- 40. В. П. Привалко, В. Ф. Шумский, Ю. Ю. Липатов. Вязкостные свойства расплавов простых и сложных олигоэфиров, *Высокомол. соед.*, т. А14: 4, 764 (1972).
- 41. Wunderlich. *Macromolecular Physics. v. 1, Crystal structure, Morphology, Defects.* New York: Academic Press, 1973.
- 42. Л. И. Миркин. Справочник по рентгеноструктурному анализу поликристаллов. Москва: Физматгиз, 1961.
- 43. H. P. Klug, L. E. Alexander. *X-ray diffraction procedures for polycrystalline and amorphous materials*. New York: Wiley, 1962.
- 44. N. Norman. The Fourier Transform Method for Normalizing Intensities, *Acta Cryst.*, v. 10: 6, 370 (1957).
- 45. В. В. Шилов, Г. И. Баталин. Generalized program for the integral analysis of intensity curves in the X-ray diffraction of liquids, *Ж. структ. хим.*, т. 12: 6, 1125 1126 (1971).
- 46. J. A. Krogh-Moe. Method for Converting Experimental X-ray Intensities to an Absolute Scall, *Acta Cryst.*, v. 9: 10, 951 954 (1956).

- 47. A. A. Levy, M. D. Danford, A. N. Narten. *Data collection and evaluation with x-ray diffractometer designed for the study of liquid structure*. Oak Ridge: ORNL-3960, 1966.
- 48. R. A. Scott, H. A. Sheraga. Conformational Analysis of Macromolecules. III. Helical Structures of Polyglycine and Poly-L-Alanine, *J. Chem. Phys.*, v. 45, 2091 (1966).
- 49. J. Waser, V. Schomaker. The Fourier inversion of diffraction data, *Rev. Mod. Phys.*, v. 25, 671 (1953).
- 50. R. F. Kruh. Diffraction studies of the structure of liquids, *Chem. Rev.*, v. 62, 319 342 (1962).
- 51. Т. В. Горбунова, В. В. Шилов, Г. И. Баталин. Рентгенографическое исследование некоторых нитрилов карбоновых кислот в жидком состоянии, *Журн. физ. химии*, т. 48: 10, 2571 2572 (1974).
- 52. R. W. Gruebel, G. T. Glauton. X-Ray Diffraction Study of Liquid Bromine, *J. Chem. Phys.*, v. 47, 175 (1967).
- 53. R. W. Harris, G. T. Clayton. X-Ray Diffraction Study of Argon and Xenon in the Liquid State near Their Triple Points, *Phys. Rev.*, v. 153, 229 (1967).
- 54. C. T. Rutledge, G. T. Glauton. X-Ray Diffraction Study of Liquid Silicon Tetrachloride, *J. Chem. Phys.*, v. 52, 1927 (1970).
- 55. В. В. Шилов, Г. И. Баталин. The structure of benzene and naphthalene in the liquid state, *Ж. структ. хим.*, т. 15: 4, 593 599 (1974).
- 56. S. J. Cyvin. Molecular vibration and mean square amplitudes. Amsterdam: Elsevier, 1968.
- 57. M. Cesari, G. Perego, A. Mazzei. The crystal structure of polytetrahydrofuran, *Makromol. Chem.*, v. 83, 196 206 (1965).
- 58. Ю. К. Овчинников, Н. Н. Кузьмин, Г. С. Маркова *et al*. Рентгенодифракционное исследование структурных особенностей аморфной составляющей в кристаллическом полиэтилене, *Высокомол. соед.*, т. Б18: 2, 131 132 (1976).
- 59. Ю. К. Овчинников, Г. С. Маркова. Исследование структуры расплавов полимеров электронографическим методом, *Высокомол. coed.*, т. A11: 2, 329 (1969).
- 60. Э. Б. Бохян, Ю. К. Овчинников, Г. С. Маркова *et al*. Рентгенографическое исследование структуры каучуков в аморфном состоянии, *Высокомол. соед.*, т. А13: 8, 1805 (1971).
- 61. I. Voigt-Martin, F. C. Mijlhoff. Interatomic distance functions obtained by electron diffraction from the polyethylene melt: Possible errors in the interpretation of radial distribution functions, *J. Appl. Phys.*, v. 46, 1165 (1975).
- E. W. Fischer, J. H. Wendorff, M. Dettenmaier *et al*. Chain conformation and structure in amorphous polymers as revealed by X-ray, neutron, light and electron diffraction, *J. Macromol. Sci.-Phys.*, v. B12: 1, 41 59 (1976).
- 63. S. Kabayashi, K. Murakami, Y. Chatani *et al.* Line-broadness in X-ray diffraction of polytetrahydrofuran, *J. Polymer Sci.: Polym. Lett. Ed.*, v. 14, 591 594 (1976).

Chapter 11. Excursus to chemical topology

From the series of our studies in the field of chemical topology [1 - 13] one may note as most important the following results – System of coding of polycyclic molecules [10], Formulae for enumeration of isomers of planar molecules [9], and New invariants of weighted graphs for calculating the critical properties of freons [13], russian version of which [12] is reproduced in Appendix Π -9.

11.1. Coding system for quasi-polycyclic structures

11.1.1. Introduction to the coding system

During the process of developing coding system for chemical compounds, one aspect, namely the coding of polycyclic structures (PCS), presents considerable difficulties [14, 15].

First we shall consider an important class of PCS, the benzenoids. It is convenient to describe the structure of a benzenoid by a hexagonal polyomino [16] (a polyhex) which is built on a hexagonal lattice as a connecting part of a flat hexagonal mosaic. Let us mark the sides of the regular hexagon which corresponds to the benzenoid ring by the first six letters of the alphabet:

This marking resembles the marking of the benzene ring by numbers [17, 18], but our method does not lead to the boundary code, so that it may be used in cases of compounds with "holes".

Let us select arbitrarily an initial hexagon in a polyomino; then build an arbitrary cover of adjacent graphs of polyomino hexagons by an oriented tree with the root in the initial hexagon selected. Going around this tree, we mark every hexagon by the letter which corresponds to that side of the previous hexagon which is used in a junction of these hexagons.

Descriptions of all the branches except the last shall be put in parentheses. As a result we get a sequence of letters a, b, ..., f and parentheses. We shall consider this sequence as a formal description of a polyhex. Such a description depends on the orientation of the polyhex, on the selection of the root and the covering tree and on the direction around the tree. This description is therefore not uniquely determined: for example, descriptions aa, (d)a, a(d), dd correspond to anthracene and a(f)b, e(f)d etc correspond to triphenylene.

The canonical description which would correspond uniquely to a polyhex can be obtained in this way. The polyhex is oriented according to the nomenclature rules of IUPAC [19], but these rules sometimes do not ensure unambiguity of orientation, as for example in the case of the benzenoid

For these cases we have made an algorithmic modification of the nomenclature rule A22, which ensures unambiguity of orientation [7]. The first hexagon on the left in the main horizontal row is chosen as the root. First of all, to obtain the covering tree, the adjacent hexagons of the main horizontal row are numbered and subsequently connected by branches oriented from a lower to a higher number. We then number, and subsequently connect with the first hexagon, those hexagons which are adjacent to it and are not yet numbered (in the lexicographical order of connecting sides). Following this the procedure is continued for the second hexagon, then the third one etc., although all the hexagons will not be joined to the tree. The branches are numbered in the opposite order to the lexicographical one.

It should be noted that the construction of a covering tree for a polyhex for the purpose of coding is currently under investigation [20]. Our method of construction of the covering tree differs from the one mentioned in [20]. Examples of canonical descriptions (codes) of some benzenoids are given in the table 1.

11.1.2. Coding of substituted benzenoids

We propose to code substituted benzenoids in the following way. Let us mark the vertices of the regular hexagon which corresponds to the benzene ring by numbers 1 - 6 as follows

In the case of homosubstitution (only one type of substituent), the code for substituted benzenoids may be obtained by putting the numbers enumerating the sights of substitution in the corresponding fragments of the code for unsubstituted benzenoids. This is carried out only on condition that the type of substituent is known. Otherwise one can proceed as in the case of heterosubstitution (different types of substituents). In this case we suggest putting a mark indicating the substituted atom (or group) after every number in the code of the substituted compound. Examples of codes for substituted benzenoids are given in Table 2.

We suggest coding PCS, which contain cycles with lengths differing from six in this way. We shall first consider the relation of a complete ordering which operates on the set of polyhexes.

Table 1

Codes of some benzenoids								
Benzenoid	Code	Explanation						
Naphthalene	a							
Phenanthrene	ab							
Triphenylene	a(f)b	ate						
Pyrene	b(ab)							
Perylene	(f)a(b)a							
Benzo[e]pyrene	a(f)(b)a							
Dibenzo[a,k]perylene	a(b(c)ba)a	a + a + a + a + a + a + a + a + a + a +						

Lexicographical comparison of the codes can be used as such as a complete ordering. We then enlarge the coding alphabet by the use of square brackets and the symbols "+" and "-" which will be placed in order of priority after the letters, figures and parentheses. The method of unambiguous construction of a polyhex corresponding to a given PCS is as follows.

(1) The longest linear row of cycles of the future polyhex should be established.

(2) This row should be oriented so that it starts from the left-hand side with the largest number of hexagons.

Benzenoid	Code	Derivative	Code of derivative
a+	a	N N N	46a1
		N S N	46Na1S
	(b)ab		4(b6)ab23
	(f)a(b)a	S S S S S S S S S S S S S S S S S S S	6S(f)a2N(b2P)a

Codes of some substituted and heteroderivatives of benzenoids

Table 2

(3) An initial mixed polyomino (with cycles of different length) should be transformed into a polyhex by the addition of vertices (in the case of 3-, 4- and 5-cycles) or by the elimination of vertices (in the case of \geq 7-cycles) using, if necessary, for unambiguity, the IUPAC nomenclature rule A22. Then the initial PCS should be coded using the obtained polyhex with the modification of the algorithm described previously: added (eliminated) vertices should be described at the appropriate place in the code by their numbers in square brackets. Added vertices should be described by the "–" sign and eliminated vertices by the "+" sign.

(4) If, however, the procedure described in points (1) - (3) does not ensure unambiguity, one should choose a polyhex which gives the smallest code in the lexicographical sence.

It should be noted that points (1) - (3) were introduced only for simplicity and routine of algorithm in most cases; an algorithm consisting only of point (4) should not admit manual coding.

Some examples of PCS codes containing cycles of lengths differing from six and their substituted and heteroanalogues are given in Table 3.

We shall now consider compounds with structures which can be represented by any connected part of the hexagonal lattice (i. e. by a polyhex missing some of its edges). Such a compound should be coded in the following way. The edges of a fragment of the hexagonal lattice should be dichotomized: (i) the edges that belong to some complete hexagonal cycle (an elementary cell of a polyhex); (ii) the rest of the fragments's edges.

Table 3

Codes of some PCS, their substituted compounds and heteroderivatives

Let us construct two hexagons on each edge of the second group and add them to the initial polyomino. Let us canonically orient the obtained polyhex according to the rules of orientation. Note that if we make a choice we prefer the orientation with the maximum quantity of edges of the first group, or, as a second choice, that of the second group. After renumbering the hexagons of the polyhex as in the case of the benzenoids, place each edge of the second group next to the hexagon of the two hexagons incident to this edge, which has the lower number. Then construct a tree which should cover the polyhex as in the case of the benzenoid. Remove from the obtained polyhex the hexagons meeting the following conditions simultaneously: (i) The hexagon does not wholly consist of edges belonging to the first group; (ii) No edge of the second group is placed next to this hexagon; (iii) It is impossible to reach any hexagon, which does not meet conditions (i) or (ii), when moving from the given hexagon along our oriented covering tree.

We then enlarge our alphabet by the use of braces, placing them in order of priority after the square brackets. We then code the initial compound by the code of the transformed polyhex added to the description of the edges of the second group. This description should be enclosed by the braces and put in the appropriate place of the code. The abovementioned description is constructed from letters a - f being preceded by the "+" sign. The only exception is the case when the quantity of edges of the first and second groups of edges is less than the quantity of edges of this hexagon, which belongs to the second group. Then this complement should be marked in the description, being preceded by the "–" sign. For example, consider the carbon skeleton of papaverine

Mark the edges of the first group by thick lines and the edges of the second group by thin lines, namely:

Construct the covering polyhex (the edges which do not belong to the first group or to the second one are marked by broken lines), namely:

Its canonical orientation is

The transformed covering polyhex is

Thus, the code of the initial compound is $(bc\{+a\})a\{-b\}(b\{+ac\})aa\{+c\}$.

Now consider the next class of quasi-PCS that may be coded: PCS joined with one or several fragments of a hexagonal lattice. For these compounds we suggest the following coding method.

The mixed polyomino that corresponds to the given PCS should be oriented at the plane and replaced by a polyhex with marked vertices according to the rules of PCS coding. The obtained polyhex should be completed by the given fragments of the hexagonal lattice.

If the fragments of the hexagonal lattice joined to the PCS reduce the symmetry of the polyhex, the vertices of the latter should be marked for subsequent lexicographical regulation by the code of the fragment joined with this vertex.

Consider, as an example, a fragment of a frame of 6-aminopenicillic acid

The polyhex corresponding to the PCS is

The completed polyhex is

Its transformation is

And finally, the code is $\{+f\}(f\{+a\})a[-36](b[-6])a\{+ab\}a\{+c\}$.

The next class of compounds to be considered is formed by quasi-polycyclic structures which are the result of joining several PCS by fragments of the hexagonal lattice. In this case, fragments of hexagonal lattice mentioned should be completed to form covering polyhexes; the latter should be joined with the initial mixed polyomino. The resultant mixed polyomino should be coded according to the rules of PCS coding. Consider as an example the following compound

The corresponding PCS is

This can be developed into a polyhex in two ways, namely:

with code $a[-4]a\{+c\}b[-1]a$ and

with code $a[-4]a\{+c\}b[-3]b$. As the first code precedes the second one in the lexicographical order, the first code is the canonical one for the compound.

The final class of compounds considered includes PCS which have pairs of cycles with more than one common edge. For coding compounds of this class one should cut the unions of the cycles with two or more common edges along surplus common edges. The obtained, mixed polyominos should be coded according to the general rules of PCS with special marking of the separated vertices.

Let us now enlarge our alphabet by use of the symbols " < " and " = ", and placing them after the " – " sign. We shall code "divorced" vertices in this way. On reaching the last hexagon in a code which contains a divorced vertex, we open the square brackets and enter the number of the divorced vertex in the hexagon. Following this we code a path from the given hexagon to the hexagon containing the vertex divorced from the given one. This path must be along the tree which covers

the polyhex. On reverting by one step we place the symbol " < " (one should revert to a minimum number of steps). After completing the reverse movement we describe the motion along the tree as usual. On arrival at the appropriate hexagon we place the symbol " = " and a code for the divorced vertex in this hexagon.

Each method of cutting has its own code. We choose the smallest of these codes in the lexicographical order as a canonical code for the initial compound.

Consider as an example a fragment of strychnine

which gives rise to polyominos

with code aa[1 < = 1]. The latter code is the canonical one.

11.2. Analytical formulae for the enumeration of substitutional isomers of planar molecules

11.2. 1. Introduction

Polya's theorem [21] is a powerful means of enumerating the substitutional isomers of chemical compounds [22 - 37]. However, its direct use of calculating the number of isomers leads to an opening of brackets and a reduction in the number of terms expressing the generating function of the number of isomers. This procedure may be rather cumbersome for complicated compounds and, moreover, when passing from one compound to another it requires that the entire procedure be repeated [3].

In the present study we derived formulae for the direct calculation of the number of substitutional isomers that avoid the need for computations using the corresponding generating functions. The derived formulae may easily be programmed into a computer. For small parameter values the formulae allow one to make manual calculations. The use of these formulae for the analytical investigation of the correlations between the number of isomers is illustrated.

In the present paragraph we use the terms "homosubstitution" and "heterosubstitution" to designate the cases of one or several substituents respectively. In addition, we introduce the following notation: Z – the searching number of substitutional isomers; N – the general number of real substitutions; n – the number of types of substituent; N_i – the number of substituents of type i used; G – the number of atoms or groups of atoms which can substitute formally (number of vacancies); G' – the number of vacancies which lie on the axes of symmetry of the molecule; S – the symmetry group of the molecule.

The following formula for calculating *Z* shows that *Z* is a function of $\{N_i\}$ (or, in the case of homosubstitution, *N*), *G*, *G*['] and *S* only:

$$Z = Z(\{N_i\}, G, G', S).$$

11.2. 2. The case when G' = 0

Let us consider the case of homosubstitution. In this case it is not difficult to calculate the cycle index which is equal to

$$\frac{1}{m} \sum_{K/m} \phi(K) f_K^{G/K}, \quad \text{if } S \text{ is } C_{mh} \text{ or } C_{mv} (m=2)$$

$$\frac{1}{2m} \sum_{K/m} \phi(K) f_K^{G/K} + \frac{1}{2} f_2^{G/2}, \quad \text{if } S \text{ is } D_{mh} \qquad (1)$$

where the summation should be carried out over all divisors *K* of the natural number *m*, and $\phi(K)$ is Euler's function which is equal to the number of positive integers which are less than *K* and relatively prime to *k*.

According to Polya's theorem, the searching number of isomers Z(N,G,0,S) is equal to the coefficient x^N in the expression which is obtained by substituting $f_K = 1 + x^K$ into eqn (1). This substitution gives

$$Z(N,G,0,S) = \begin{cases} \frac{1}{m} \sum_{K/(m,G,N)} \phi(K) C_{G/K}^{N/K}, & \text{if } S \text{ is } C_{mh} \text{ or } C_{mv} \ (m=2) \\ \frac{1}{2m} \sum_{K/(m,G,N)} \phi(K) C_{G/K}^{N/K} + \frac{1}{2} C_{G/2}^{N/2}, & \text{if } S \text{ is } D_{mh} \end{cases}$$
(2)

where C_n^i is the number of combinations of *i* elements chosen from *n*. The summation should be carried out over all the divisors *K*, which are common to *m*, *G* and *N*; the addendum $\frac{1}{2}C_{G/2}^{N/2}$ appears only in the case of even *G* and *N*. These limitations may be cancelled out if we take C_p^r equal to zero in the case of fractional *p* or *r*.

For the case of heterosubstitution and G' = 0, Polya's theorem can be used to obtain the following formulae by analogy with the procedure for obtaining eqn (2):

$$Z(N_{1}, N_{2}, ..., N_{h}, G, 0, S) = \begin{cases} \frac{1}{m} \sum_{K/m} \phi(K) P\left(\frac{N_{1}}{K}, \frac{N_{2}}{K}, ..., \frac{N_{n}}{K}, \frac{G-N}{K}\right), \text{ if } S \text{ is } C_{mh} \text{ or } C_{mv} \ (m=2) \\ \frac{1}{2m} \sum_{K/m} \phi(K) P\left(\frac{N_{1}}{K}, \frac{N_{2}}{K}, ..., \frac{N_{n}}{K}, \frac{G-N}{K}\right) + \frac{1}{2} P\left(\frac{N_{1}}{2}, \frac{N_{2}}{2}, ..., \frac{N_{n}}{2}, \frac{G-N}{2}\right), \text{ if } S \text{ is } D_{mh} \end{cases}$$
(3)

where $P(r_1, r_2, ..., r_n)$ are polynomial coefficients:

$$P(r_1, r_2, ..., r_n) = \frac{r!}{r_1!, r_2!, ..., r_n!} \cdot \left(\sum_{i=1}^n r_i = r\right)$$

 $P(r_1, r_2, ..., r_n)$ is considered to be equal to zero in eqn. (3) if some of the r_i terms are fractional.

11.2. 3. The case when $G' \neq 0$

This situation can occur for a planar molecule if the symmetry group of a molecule is $C_{2\nu}$ or D_{mh} ($m \ge 2$). As for G = 0, it is not difficult to find the cycle index for the case when $G' \ne 0$, but the presence of the addendum containing the product of powers of f_1 and f_2 in the expression of the cycle index makes it more difficult to obtain the enumeration formulae directly. Thus Z(N,G,G',S) with $G' \ne 0$ was calculated using the following scheme. Using direct combinatorial reasoning which is based on the solution of a necklace problem with m beads of two colours [29], one can obtain recurrent formulae of the type

$$Z(N,G,G',S) = Z(N,G-\tau,G'-\tau,S) + Z(N-\tau,G-\tau,G'-\tau,S) + \sum_{i} \sum_{j \le \tau} C_{ij} Z(N-j,G-\tau,G'_{i},S_{i}), \quad (4)$$

where

$$\tau = \begin{cases} 1, & \text{if } S \text{ is } C_{2\nu} \\ m, & \text{if } S \text{ is } D_{mh} \end{cases}$$

 $0 \le G'_i \le G' - \tau$, S_i is a symmetry group of one order less than S and $||C_{ij}||$ is a (0,1) matrix.

Using these recurrent formulae (4), it is possible to obtain formulae that express Z(N,G,G',S) from $Z(N_j,G_j,G',S)$ and $Z(N_i,G_i,G'_i,S_i)$, where $N_i \leq N, G_i \leq G, N_j \leq N$, and $G_j \leq G$. Substituting eqns. (2) and the previously obtained

formulae for $Z(N,G,G',S_j)$ (group $C_{2\nu}$ terms containing $Z(N_j,G_j,G'_j,S_j)$ are absent) into eqn. (3), we obtain the required formulae for Z(N,G,G',S), namely:

$$Z(N,G,G',C_{2\nu}) = \frac{1}{2} \sum_{n=0}^{G'} C_{G'}^n \Big(C_{G-G'}^{N-n} + C_{(G-G')/2}^{(N-n)/2} \Big),$$
(5)

$$Z(N,G,G',D_{2h}) = \frac{1}{4} \sum_{i=0}^{p} \sum_{j=1}^{2} C_{p}^{i} C_{(G-2p)/j}^{(N-2i)/j} + \frac{1}{2} \sum_{i=0}^{p} C_{p}^{i} C_{(G-2p)/2}^{(N-2i)/2} + \frac{1}{2} \sum_{i=1}^{p} \sum_{k=0}^{i-1} \sum_{p=1}^{2} \sum_{j=1}^{2} C_{i-1}^{k} C_{2(p-i)}^{n} C_{(G-2p)/j}^{(N-2K-n-1)/j},$$
(6)

$$Z(N,G,G',D_{3h}) = \frac{1}{6} \sum_{i=0}^{p} \sum_{j/3} \phi(j) C_{p}^{i} C_{(G-3p)/j}^{(N-3i)/j} + \frac{1}{2} \sum_{i=0}^{p} C_{p}^{i} C_{(G-3p)/2}^{(N-3i)/2} + \frac{1}{2} \sum_{i=1}^{p} \sum_{k=0}^{i-1} \sum_{n=0}^{p-i} \sum_{m=1}^{2} \sum_{j=1}^{2} C_{i-1}^{k} C_{p-i}^{n} C_{(G-p-2i)/j}^{(N-3K-n-m)/j}.$$
(7)

Analogous reasoning can be used to obtain the formulae for $Z(\{N_i\}, G, G', S)$. The formulae for $m \ge 4$ and $n \ge 2$ are not presented here because of their unwieldiness.

In eqns (6) and (7), p = G / m. In addition, it is considered that $C_r^q = 0$ when *r* and *q* are fractional and when q < 0. Equation (6) is obtained under the condition that vacancies are not situated on all the symmetry axes of the molecule.

If the substitution occurs inside some fragment of the molecule, then the enumeration formulae can be used after determining the parameters $N(N_i)$, *G* and *G*' for this fragment only. The symmetry and the elements of symmetry should be determined for the whole molecule.

An important application of the derived formulae is the enumeration of the substitutional isomers of benzenoid compounds (§11.1).

Below we give some illustrations of particular cases of eqns. (5) and (6) when G' = 2, namely:

$$Z(N,G,2,C_{2\nu}) = \frac{1}{2} \Big[C_{G-2}^{N} + 2C_{G-2}^{N-1} + C_{G-2}^{N-2} + C_{(G-2)/2}^{N/2} + 2C_{(G-2)/2}^{(N-1)/2} + C_{(G-2)/2}^{(N-2)/2} \Big], \tag{8}$$

$$Z(N,G,2,D_{2h}) = \frac{1}{4} \Big[C_{G-2}^{N} + 2C_{G-2}^{N-1} + C_{G-2}^{N-2} + 3C_{(G-2)/2}^{N/2} + 2C_{(G-2)/2}^{(N-1)/2} + 3C_{(G-2)/2}^{(N-2)/2} \Big].$$
(9)

Equation (9) may be used, for example, for polyacenes, which contain an odd number (2K + 1) of fused benzene rings. As in this case G - 2 = 4(K + 1), eqn. (9) takes the form

$$Z = \frac{1}{4} \Big[C_{4(K+1)}^{N} + 2C_{4(K+1)}^{N-1} + C_{4(K+1)}^{N-2} + 3C_{2(K+1)}^{N/2} + 2C_{2(K+1)}^{(N-1)/2} + 3C_{2(K+1)}^{(N-2)/2} \Big].$$
(10)

11.2.4. Calculations

In order to facilitate doing calculations using the formulae derived herein, we have written a computer program in FORTRAN. Calculations of the number of isomers of homosubstitution and the number of isomers of heterosubstitution for two types of substituent are given in Tables 4 and 5, respectively, for some benzenoid and

topologically related compounds. The calculations were done under the condition of substitution of the CH group.

Table 4 contains values of Z(N,G,G',S) for $N \leq [G/2]$ only (where [x] indicates the largest integer which is not greater than x). Values of Z(N,G,G',S) for N > [G/2]can be obtained the condition

$$Z(N,G,G',S) = Z(G-N,G,G',S).$$

Table 4

	Compounds	S	G	G						Ν			
	Compounds				1	2	3	4	5	6	7	8	9
1	1 Benzo[<i>a</i>]antracene		12	0	12	66	220	495	792	924			
2	Benzo[a]naphthacene	C_{1h}	14	0	14	91	364	1001	2002	3003	3432		
3	Acenaphthylene	C_{2v}	8	0	4	16	28	38					
4	Phenanthrene, Benzocyclooctatriene	C_{2v}	10	0	5	25	60	110	126				
5	Benzo[<i>c</i>]phenanthrene, Benzo[<i>e</i>]pyrene, Benzo[<i>k</i>]fluoranthene, Chrysene	C_{2v}	12	0	6	36	110	55	396	472			
6	Dibenzo[<i>a</i> , <i>j</i>]antracene	C_{2v}	14	2	8	49	188	11	1016	1519	1736		
	Dibenzo[c,g]phenanthrene										1716		
7	Benzocoronene, Picene, Rubicene	$C_{2\nu}$	14	0	7	49	182	11	1001	1519			
8	Naphthalene, Biphenylene	D_{2h}	8	0	2	10	14	22					
9	Antracene	D_{2h}	10	2	3	15	32	60	66				
10	Naphthacene, Perilene	D_{2h}	12	0	3	21	55	135	198	246			
11	Tribenzo[a,g,n]triphenylene	C_{3h}	18	0	6	51	276	1020	2856	6198	10608	14586	16220
12	Triphenylene	D_{3h}	12	0	2	14	38	90	132	166			
13	Coronene	D_{6h}	12	0	1	9	19	50	66	90			

The number of homosubstitutional isomers

Table 5 contains values of $Z(N_1, N_2, G, 0, S)$ for N_1 and N_2 satisfying the system of inequalities: $N_1 \ge 1$; $N_2 \ge N_1$; and $N_1 + 2N_2 \le G$.

Values of $Z(N_1, N_2, G, 0, S)$ for other pairs (N_1, N_2) may be obtained as follows. When $N_1 = 0$, one should use Table 4. When $N_2 < N_1$, one should use the correlation

$$Z(N_1, N_2, G, G', S) = Z(N_2, N_1, G, G', S).$$

11.2. 5. Analytical dependences

The results of the calculations indicate that the number of isomers Z depends only weakly on G'. Therefore, if

$$\varepsilon(N,G,G',S) = Z(N,G,G',S) - Z(N,G,0,S),$$

the relative error that occurs on substituting $Z(N,G,0,C_{2\nu})$ for $Z(N,G,2,C_{2\nu})$ is as shown in Table 6.

Table 5

	$N_1 = 1$	1	1	1	1	1	2	2
Comp*	$N_2 = 1$	2	3	4	5	6	2	3
1	132	660	1980	3960	5544		2970	7920
2	182	1092	4004	10010	18018	24024	6006	20020
3	28	84	140				216	280
4	45	180	420	630			640	1260
5	66	330	990	1980	2772		1500	3960
6	92	552	2008	5020	9024	12032	3024	10040
7	91	546	2002	5005	9009	12012	3024	10010
8	14	42	70				144	140
9	23	92	212	318			330	636
10	33	165	495	990	1386		765	1980
12	22	110	330	660	924		510	1320
13	11	55	165	330	462		265	660
						T	able 5 (co	ntinued)
		0	C	2	3	3	4	4
Comn*	$N_1 = 2$	2	Z	3	5	5		=
Comp*	$N_1 = 2$ $N_2 = 4$	5	6	3	4	5	4	5
Comp*	$N_1 = 2$ $N_2 = 4$ 13860	2 5 16632	6	3 18480	4 27720	5	4 34650	5
Comp* 1 2		2 5 16632 72072	2 6 84084	3 18480 60060	4 27720 120120	5 168168	4 34650 210210	5 252252
Comp* 1 2 4	$N_1 = 2 N_2 = 4 13860 45045 1950$	5 16632 72072	6 84084	3 18480 60060 2100	4 27720 120120	5 168168	4 34650 210210	5 252252
Comp* 1 2 4 5	$N_1 = 2$ $N_2 = 4$ 13860 45045 1950 6960	2 5 16632 72072 8316	2 6 84084	3 18480 60060 2100 9240	4 27720 120120 13860	5 168168	4 34650 210210 17370	5 252252
Comp* 1 2 4 5 6	$N_1 = 2$ $N_2 = 4$ 13860 45045 1950 6960 22575	2 5 16632 72072 8316 36096	2 6 84084 42112	3 18480 60060 2100 9240 30060	4 27720 120120 13860 60120	5 168168 84144	4 34650 210210 17370 105210	5 252252 126126
Comp* 1 2 4 5 6 7	$N_1 = 2$ $N_2 = 4$ 13860 45045 1950 6960 22575 22575	2 5 16632 72072 8316 36096 36036	2 6 84084 42112 42112	3 18480 60060 2100 9240 30060 30030	4 27720 120120 13860 60120 60060	5 168168 84144 84084	4 34650 210210 17370 105210 105210	5 252252 126126 126126
Comp* 1 2 4 5 6 7 9	$N_1 = 2$ $N_2 = 4$ 13860 45045 1950 6960 22575 22575 810	2 5 16632 72072 8316 36096 36036	2 6 84084 42112 42112	3 18480 60060 2100 9240 30060 30030 1056	4 27720 120120 13860 60120 60060	5 168168 84144 84084	4 34650 210210 17370 105210 105210	5 252252 126126 126126
Comp* 1 2 4 5 6 7 9 10	$N_1 = 2$ $N_2 = 4$ 13860 45045 1950 6960 22575 22575 810 3510	2 5 16632 72072 8316 36096 36036 4158	2 6 84084 42112 42112	3 18480 60060 2100 9240 30060 30030 1056 4620	4 27720 120120 13860 60120 60060 60930	5 168168 84144 84084	4 34650 210210 17370 105210 105210 8730	5 252252 126126 126126
Comp* 1 2 4 5 6 7 9 10 12	$N_1 = 2$ $N_2 = 4$ 13860 45045 1950 6960 22575 22575 810 3510 2340	2 5 16632 72072 8316 36096 36036 4158 2772	2 6 84084 42112 42112	3 18480 60060 2100 9240 30060 30030 1056 4620 3084	4 27720 120120 13860 60120 60060 6930 4620	5 168168 84144 84084	4 34650 210210 17370 105210 105210 8730 5820	5 252252 126126 126126
Comp*	$N_1 = 2$ $N_2 = 4$ 13860 45045 1950 6960 22575 22575 810 3510 2340 1190	2 5 16632 72072 8316 36096 36036 4158 2772 1386	2 6 84084 42112 42112	3 18480 60060 2100 9240 30060 30030 1056 4620 3084 1542	4 27720 120120 13860 60120 60060 60060 6930 4620 2310	5 168168 84144 84084	4 34650 210210 17370 105210 105210 8730 5820 2940	5 252252 126126 126126

Number of heterosubstitutional isomers for two different types of substituent

Table 6The relative errors that occur on substituting $Z(N,G,0,C_{2\nu})$ for $Z(N,G,2,C_{2\nu})$

C	N									
G	1	2	3	4	5	6	7	8	9	
10	16.7	0	6.3	0	4.6					
12	14.2	0	4.4	0	2.5	0				
14	12.5	0	3.2	0	1.5	0	1.2			
18	10.0	0	1.9	0	0.7	0	0.4	0	0.3	

It can be seen from Table 6 that as G increases the errors become smaller. Therefore, it can be assumed that for large values of G (it should be noted, however, that calculations for such values are more timeconsuming) Z(N,G,G',S) behaves almost as $Z_0 \equiv Z(N,G,0,S)$, but the calculation of Z_0 is much easier and even manual calculations of Z_0 are possible.

Using analytical expressions of Z and Z_0 , we proved the following limit correlation:

$$\lim_{G \to \infty} \frac{Z(N, G, G', S)}{Z(N, G, 0, S)} = 0.$$
 (11)

In what follows we summarize the scheme of perfoming the proof for the case when *S* is $C_{2\nu}$. Substituting the formulae for the *Z* and Z_0 into $\varepsilon(N,G,G',C_{2\nu})$ and carrying out transformations, gives

$$\varepsilon(N,G,G',C_{2\nu}) = \frac{1}{2} \left[\sum_{n=0}^{G'} C_{G'}^n C_{(G-G')/2}^{(N-n)/2} - C_{G/2}^{N/2} \right]$$

and

$$\frac{\varepsilon(N,G,G',C_{2\nu})}{Z(N,G,G',C_{2\nu})} = \frac{\sum_{n=0}^{G'} C_{G'}^n C_{(G-G')/2}^{(N-n)/2} - C_{G/2}^{N/2}}{C_G^N + \sum_{n=0}^{G'} C_{G'}^n C_{(G-G')/2}^{(N-n)/2}}.$$
(12)

As $C_G^N = G!/[N!(G-N)!]$, then, according to Stirling's formula, when $G \to \infty$, C_G^N behaves as

$$\frac{G^{G}C^{-G}\sqrt{2\pi G}}{N!(G-N)^{G-N}C^{-(G-N)}\sqrt{2\pi(G-N)}} = \frac{C^{N}}{N!}\sqrt{\frac{G}{G-N}}\frac{G^{G}}{(G-N)^{G-N}}.$$
 (13)

It is obvious that eqn. (13) is in fact behaves as $O(G^N)$. Thus, when $G \to \infty$, C_G^N behaves as $O(G^N)$. Analogously, when $G \to \infty$, $C_{(G-G')/K}^{(N-n)/K}$ behaves as $O(G^{(N-n)/K})$. In this way, when $G \to \infty$, the numerator in eqn. (12) behaves as $O(G^{N/2})$ and the denominator behaves as $O(G^N)$. Therefore,

$$\lim_{G\to\infty}\frac{\varepsilon(N,G,G',C_{2\nu})}{Z(N,G,G',C_{2\nu})}=0.$$

When *S* is D_{2h} , the method of mathematical induction can be used to obtain the following formula:

$$\varepsilon(N,G,G',D_{2h}) = \frac{1}{2} \sum_{i=1}^{G'/2G'-2i} C_{G'-2i}^n C_{[G-G'+2(i-1)]/2}^{(N-n-1)/2}.$$
 (14)

Then, using eqn. (14), as in the case when *S* is $C_{2\nu}$, we find that when $G \to \infty$, $\varepsilon(N,G,G',D_{2h})$ behaves as $O(G^{(N-1)/2})$ and $Z(N,G,G',D_{2h})$ behaves as $O(G^N)$, so that

$$\lim_{G\to\infty}\frac{\varepsilon(N,G,G',D_{2h})}{Z(N,G,G',D_{2h})}=0.$$

Equation (11) can be proved in the same manner for any other S.

References

- 1. Ю. А. Кругляк, И. В. Передунова. Новые инварианты взвешенных графов и их использование для расчета критических свойств фреонов, Деп. УкрНИИНТИ, Одесса, 5.07.88, № 1767-Ук88.
- 2. И. В. Передунова, Ю. А. Кругляк. Пакет программ для установления связи «структура свойство» гетероатомных молекул с использованием инвариантов взвешенных графов, *Ж. структ. химии*, т. 29: 1, 174 – 175 (1988).
- 3. Ю. А. Кругляк, М. Э. Дохтманов. К перечислению изомеров замещения плоских молекул органических соединений, *Ж. орг. хим.*, т. 35: 9, 1817 1825 (1989).
- М. Э. Дохтманов, Ю. А. Кругляк. Кодирование бензоидных конденсированных соединений и их производных, *Реакц. способн. орган. соединений*, т. 26: 3-4, 247 – 255 (1989).
- 5. M. E. Dokhtmanov, Yu. A. Kruglyak. Coding of benzenoid aromatic compounds and their derivatives. *Organic reactivity*, v. 26: 3-4, 250 258 (1989).
- 6. И. В. Передунова. Инварианты взвешенных графов в расчетах критических свойств алканов, фреонов и их Si-аналогов, Канд. дисс., Новосибирский институт органической химии, Новосибирск, 1990.
- М. Э. Дохтманов, Ю. А. Кругляк. О неоднозначности ориентации бензоидных конденсированных соединений с помощью номенклатурного правила А22 ИЮПАК по химии и способе преодоления этой неоднозначности, *Ж. общ. хим.*, т. 60: 1, 3 – 5 (1990).
- Ю. А. Кругляк, М. Э. Дохтманов. Система кодирования квазициклических структур, Сб. *Расчетные методы исследования в химии*, ред. Ю. Г. Папулов. Тверь: Тверской гос. ун-т, 1990.
- 9. Yu. A. Kruglyak, M. E. Dochtmanov. Analytical formulae for the enumeration of substitutional isomers of planar molecules, *J. Mol. Struct.*, v. 233, 13 20 (1991).
- Yu. A. Kruglyak, M. E. Dochtmanov. Coding system for quasi-polycyclic structures, J. Mol. Struct., v. 258, 199 – 208 (1992).
- Ю. А. Кругляк, И. В. Передунова. Прогнозирование критических свойств фреонов с использованием новых инвариантов взвешенных графов, *ScienceRise*, т. 3: 2(3), 73 – 88 (2014).
- 12. Ю. А. Кругляк, И. В. Передунова. Новые инварианты взвешенных графов для расчета критических свойств фреонов, $\mathcal{K}\Phi X$, т. 89: 12, 1825 1840 (2015).
- 13. Yu. A. Kruglyak, I. V. Peredunova. New invariants of weighted graphs for calculating the critical properties of freons, *Russian J. Phys. Chem.*, v. 89: 12, 2159 2173 (2015).
- 14. J. E. Banks. Naming organic compounds. Toronto: W. B. Saunders and Co, 1976.
- 15. R. C. Read. A new system for the designation of chemical compounds. 2. Coding of cyclic compounds , *J. Chem. Inf. Comput. Sci.*, v. 25, 116 128 (1985).
- 16. S. B. Golomb. Checkerboards and polyominoes, *Amer. Math. Monthly*, v. 61, 675 682 (1954).
- J. V. Knop, K. Szymanski, Z. Jericevic *et al.* Computer enumeration and generation of benzenoid hydrocarbons and identification of bay regions, *J. Comput. Chem.*, v. 4: 1, 23 – 32 (1983).

- 18. W. R. Muller, K. Szymanski, J. V. Knop *et al.* On the enumeration and generation of polyhex hydrocarbons, *J. Comput. Chem.*, v. 11, 223 235 (1990).
- 19. IUPAC, Nomenclature Rules for Organic Compounds. London: Butterworths, 1965.
- 20. M. Randic, S. Nikolic, N. Trinajstic. Compact molecular codes for polycyclic systems, *J. Mol. Struct. (Theochem)*, v. 165, 213 – 228 (1988).
- G. Polya. Kombinatorische Anzahlbestimmungen fur Gruppen und chemische Verbindungen, Acta Math., v. 68, 145 – 254 (1937); G. Polya, R. C. Read. Combinatorial Enumeration of Groups, Graphs and Chemical Compounds. Berlin: Springer, 1987.
- 22. I. V. Krivoshei. The determination of the number of stereoisomers of complex compounds, *J. Struct. Chem.*, v. 4: 5, 695 698 (1964); *Zh. Strukt. Khim.*, v. 4: 5, 757 761 (1963).
- I. V. Krivoshei. Calculation of numbers of isomers in complex chelates, J. Struct. Chem., v. 6: 2, 304 – 305 (1965); Zh. Strukt. Khim., v. 6: 2, 322 – 323 (1965).
- I. V. Krivoshei. Methods of calculating the numbers of isomers in the stereochemistry of complex compounds II. Chelate complex compounds with one bidentate ligand, *J. Struct. Chem.*, v. 7: 3, 406 412 (1966); *Zh. Strukt. Khim.*, v. 7: 3, 430 438 (1966).
- 25. I. V. Krivoshei. Methods of calculating the number of isomers in the stereochemistry of complex compounds. III. Complex compounds with one ligand having k > 2 and identical coordinating atoms,

J. Struct. Chem., v. 7: 4, 601 – 603 (1967); Zh. Strukt. Khim., v. 7: 4, 636 – 638 (1966).

- M. Yu. Kornilov. Number of structural isomers in the adamantane series, J. Struct. Chem., v. 16: 3, 466 – 468 (1975); Zh. Strukt. Khim., v. 16: 3, 495 – 498 (1975).
- 27. A. T. Balaban. Methods for the Enumeration of Isomers, *MATCH* (*Commun. Math. Comp. Chem.*), v. 1, 123 124 (1975).
- 28. O. E. Polansky. Polya's method for the Enumeration of Isomers, *MATCH* (*Commun. Math. Comp. Chem.*), v. 1, 11 31 (1975).
- 29. Ю. Г. Папулов. *Статистическая стереохимия и конформационный анализ*. Калинин: Калининский гос. ун-т, 1978.
- 30. Ю. Г. Папулов. Симметрия молекул. Калинин: Калининский гос. ун-т, 1979.
- 31. J. V. Knop, K. Szymanski. On the Total Number of Polyhexes, *MATCH (Commun. Math. Comp. Chem.)*, v. 16, 119 134 (1984).
- 32. J. V. Knop, K. Szymanski, L. Klasinc et al. Computer enumeration of substituted polyhexes, *Comput. Chem.*, v. 8: 2, 107 115 (1984).
- 33. J. R. Dias. A periodic table for polycyclic aromatic hydrocarbons. 4. Isomer enumeration of polycyclic conjugated hydrocarbons, *J. Chem. Inf. Comput. Sci.*, v. 24, 124 (1984).
- 34. J. S. Garavelli, J. E. Leonard. Improvements in the computer enumeration of permutation isomers, *Comp. & Chem.*, v. 9, 133 147 (1985).
- 35. J. Brocas. Double cosets and enumeration of permutational isomers of fixed symmetry, *J. Amer. Chem. Soc.*, v. 108, 1135 1145 (1986).
- 36. W. C. He, W. J. He. Generation and enumeration of planar polycyclic aromatic hydrocarbons, *Tetrahedron*, v. 42, 5291 (1986).
- M. Yu. Kornilov, V. I. Zamkovoy. Calculating the number of isomers and coding for condensed polycyclic systems: Enumeration of the polybenzenes, *Theor. Exper. Chem.*, v. 23: 1, 50 – 57 (1987).
- 38. A. T. Balaban, V. Baciu. Chemical Graphs. XXXV. Application of Polya's Theorem to Catamantanes, *MATCH* (*Commun. Math. Comp. Chem.*), v. 4, 131 159 (1978).

Приложения

Приложение П-1. Фундаментальные постоянные и энергетические эквиваленты физических величин

Таблица 1

Постоянная	Обозначение	Значения
Скорость света в вакууме	С	2.997 924 58×10 ⁸ м/с
Заряд протона	е	1.602 176 53(14) × 10 ⁻¹⁹ Кл
Число Фарадея	F	96 485.3383(83) Кл/моль
Постоянная Больцмана	k	1.380 650 5(24)×10 ⁻²³ Дж/К
Газовая постоянная	R	8.314 472(15) Дж/(К · моль)
Постоянная Планка	h	6.626 0693(11) $\times 10^{-34}$ Дж $\cdot c$
	\hbar	$1.054\ 571\ 68(18) \times 10^{-34}\ \mbox{\varDelta 2mc$$}\cdot c$
Постоянная Авогадро	N _A	6.022 1415(10) ×10 ⁻²³ моль ⁻¹
Единица атомной массы	U	$1u \equiv m_u = 1.66053886(28) \times 10^{-27} \kappa c$
Масса электрона	m _e	9.109 3826(16)×10 ⁻³¹ кг
		$5.4857990945(24) \times 10^{-4} u$
Масса протона	m _p	1.672 621 71(29)×10 ⁻²⁷ кг
		1.007 276 466 88(13) u
Магнетон Бора	$\mu_{\scriptscriptstyle B} = \frac{e\hbar}{2m_{\scriptscriptstyle e}}$	927.400 949(80)×10 ⁻²⁶ Дж/Т
Ядерный магнетон	$\mu_{N} = \frac{e\hbar}{2m_{p}}$	5.050 783 43(43) ×10 ⁻²⁷ Дж/Т
Боровский радиус	a_0	$0.5291772108(18) \times 10^{-10} \text{M}$
Постоянная Ридберга	R_{∞}^{-1}	$10973731.568525(73){}_{\mathcal{M}}^{-1}$
Энергия Хартри	E_h	4.359 744 17(75)×10 ⁻¹⁸ Дж
		27.211 3845(23) эВ
		627.509 ккал · моль ⁻¹
g-фактор электрона	g_e	-2.002 319 304 3719(75)

Фундаментальные постоянные

Часто приходится пользоваться (табл. 2) энергетическими эквивалентами согласно

$$E = mc^2 = hv = \frac{hc}{\lambda} = kT .$$

Таблица 2

	Дж	КГ	\mathcal{M}^{-1}	<i>c</i> ⁻¹	эВ	E_{h}
Дж	1	$1.1127 \cdot 10^{-17}$	$5.0341 \cdot 10^{24}$	$1.5092 \cdot 10^{33}$	$6.2415 \cdot 10^{18}$	$2.2937 \cdot 10^{17}$
КГ	$8.9876 \cdot 10^{16}$	1	$4.5244 \cdot 10^{41}$	$1.3564 \cdot 10^{50}$	$5.6096 \cdot 10^{35}$	$2.0615 \cdot 10^{34}$
м ⁻¹	$1.9864 \cdot 10^{-25}$	$2.2102 \cdot 10^{-42}$	1	2.99792458	$1.2398 \cdot 10^{-6}$	$4.5563 \cdot 10^{-8}$
<i>c</i> ⁻¹	$6.6261 \cdot 10^{-34}$	$7.3725 \cdot 10^{-51}$	$3.3356 \cdot 10^{-9}$	1	$4.1357 \cdot 10^{-15}$	$1.5198 \cdot 10^{-16}$
эВ	$1.6022 \cdot 10^{-19}$	$1.7827 \cdot 10^{-36}$	$8.0655 \cdot 10^5$	$2.4180 \cdot 10^{14}$	1	$3.6749 \cdot 10^{-2}$
E_h	$4.3597 \cdot 10^{-18}$	$4.8509 \cdot 10^{-35}$	$2.1947 \cdot 10^7$	$6,5797 \cdot 10^{15}$	27.2113834	1

Энергетические эквиваленты физических величин

Приведенные в табл. 2 численные значения основаны на данных [1].

Литература

1. P. J. Mohr, B. N. Taylor. CODATA values if the fundamental constants 2002. *Rev. Modern Phys.*, v. 77: 1 (2005).

Приложение П-2. Формализм дираковских векторов «бра» и «кет»

В дираковском формализме [1] волновым функциям состояний φ, ψ сопоставляются кет-векторы $|\varphi\rangle, |\psi\rangle$ и для каждого из них вводятся сопряженные бра-векторы $\langle \varphi |, \langle \psi |$. Следование кет-вектора $|\psi\rangle$ за бра-вектором $\langle \varphi |$ образует скалярное произведение $\langle \varphi | \psi \rangle$, или иначе интеграл перекрывания этих волновых функций. Эта система обозначений практичная и компактная, в том числе и при работе с проекционными операторами. Формальные правила очень просты:

1. Операторы действуют на кет-векторы слева, а на бра-векторы – справа:

$$\begin{cases} |\psi_1\rangle = \hat{A}|\varphi_1\rangle, \\ \langle\psi_2| = \langle\varphi_2|\hat{B}. \end{cases} \end{cases}$$
(1)

2. Между угловыми скобками имеем скаляр, а между вертикальными линиями – оператор:

$$\begin{cases} \langle s | \Leftrightarrow | t \rangle &- \text{ скаляр,} \\ | s \rangle \Leftrightarrow \langle t | &- \text{ оператор,} \end{cases}$$
(2)

где в случае скаляра вставка ⇔ обозначает операторы или скаляры, а в случае оператора вставка ⇔ может содержать выражения с операторами, но в целом вставка должна быть скаляром.

Открытые слева выражения являются кет-векторами, а открытые справа – бра-векторами:

$$\begin{cases} \Leftrightarrow |t\rangle - \text{ кет-вектор,} \\ \langle s| \Leftrightarrow - \text{ бра-вектор.} \end{cases}$$
(3)

3.Бра- и кет-векторы можно менять местами, а выполнив сопряжение – получать соответствующие эквивалентные выражения:

	векторы	arphi angle	\leftrightarrow	$\langle arphi $	кет ↔ бра	
ł	скаляры	a	\leftrightarrow	a *	комплексное сопряжение	(4)
	операторы	Â	\leftrightarrow	\hat{A}^{\dagger}	эрмитово сопряжение	

Пример: скалярное произведение:

$$\langle s | t \rangle \leftrightarrow \langle t | s \rangle = \langle s | t \rangle^*.$$

Пример: эквивалентность записи уравнения на собственные значения:

$$\hat{A} | \varphi \rangle = \lambda | \varphi \rangle \leftrightarrow \langle \varphi | \hat{A}^{\dagger} = \lambda^* \langle \varphi |,$$

если же оператор \hat{A} эрмитов, то

$$\hat{A} | \varphi \rangle = \lambda | \varphi \rangle \leftrightarrow \langle \varphi | \hat{A} = \lambda \langle \varphi |.$$

В соответствии с эрмитовым сопряжением произведения двух операторов

$$(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$$

имеем

$$(|s\rangle\langle t|)^{\dagger} = |t\rangle\langle s|.$$
(5)

В общем случае при записи сопряженных форм более сложных выражений нужно следовать правилу «справа – налево», например,

$$(\hat{B}|s\rangle\langle\varphi|\hat{A}|\psi\rangle\langle a|b\rangle\langle t|)^{\dagger} = |t\rangle\langle b|a\rangle\langle\psi|\hat{A}|\varphi\rangle\langle s|\hat{B}^{\dagger} = Q|s\rangle\langle t|\hat{B}^{\dagger} = P\hat{X}\hat{Y}\hat{B}^{\dagger}, \qquad (6)$$

где скаляры $Q = \langle b | a \rangle \langle \psi | \hat{A} | \varphi \rangle$, $P = \langle \psi | \hat{A} | \varphi \rangle$, операторы $\hat{X} = |t\rangle \langle b|$, $\hat{Y} = |a\rangle \langle s|$, и очевидно, что \hat{A} – эрмитов, а \hat{B} – неэрмитов оператор. Цепочку равенств (6) можно, естественно, продолжить.

Дираковский формализм особенно удобен при работе с проекционными операторами. По определению, проекция функции $\psi(x)$ на нормированную функцию $\varphi(x)$ задается интегральным оператором

$$\hat{P}_{\varphi}\psi(x) = \varphi(x)\int \varphi^*(x')\psi(x')dx' = \int P_{\varphi}(x,x')\psi(x')dx'$$
(7)

с ядром $P_{\varphi}(x, x') = \varphi(x)\varphi^*(x')$. Вместе с тем левый интеграл есть скалярное произведение этих двух функций, а именно:

$$\int \varphi^*(x')\psi(x')\,dx' = \left\langle \varphi \middle| \psi \right\rangle,\tag{8}$$

тогда

$$\hat{P}_{\varphi}|\psi\rangle = |\varphi\rangle\langle\varphi|\psi\rangle, \qquad (9)$$

или, иначе говоря, проекционный оператор есть

$$\hat{P}_{\varphi} = \left| \varphi \right\rangle \left\langle \varphi \right|. \tag{10}$$

Дираковский формализм аналогичен матричному формализму, которым мы обычно пользуемся в случае, когда функции и операторы выражены в полном ортонормированном базисе. Переписать различные выражения из одного формализма в другой просто.

Пусть кет-вектор $|\varphi\rangle$ соответствует вектор-столбцу *с*, образованному из коэффициентов разложения по ортонормированному базису { $|\chi_i\rangle$ }, а именно:

$$\left|\varphi\right\rangle = \sum_{i} c_{i} \left|\chi_{i}\right\rangle. \tag{11}$$

Тогда бра-вектор $\langle \varphi |$ соответствует вектор-строке c^{\dagger} , сопряженной к c. Скалярное произведение $\langle \varphi | \psi \rangle$ соответствует матричному скалярному произведению $c^{\dagger}d$, где вектор-столбец d соответствует кет-вектору $|\psi\rangle$.

Операторы соответствуют матрицам в том же базисе, например,

$$|\varphi\rangle\langle\varphi|\leftrightarrow cd^{\dagger} = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ c \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} (\cdots d^{\dagger} \cdots)$$
(12)

$$\langle \psi | \varphi \rangle \leftrightarrow d^{\dagger}c = (\cdots d^{\dagger} \cdots) \begin{pmatrix} \cdot \\ \cdot \\ \cdot \\ c \\ \cdot \\ \cdot \\ \cdot \end{pmatrix}$$
 (13)

есть скаляр.

Возьмем вектор-столбец (11)

$$|\varphi\rangle = \sum_{i} c_{i} |\chi_{i}\rangle = \left|\sum_{i} c_{i} \chi_{i}\right\rangle \leftrightarrow c$$

и вектор-строку

$$\langle \psi | = \sum_{i} d_{i}^{*} \langle \chi_{i} | = \left\langle \sum_{i} d_{i}^{*} \chi_{i} \right| \leftrightarrow d^{\dagger}.$$

Тогда их оба произведения таковы:

$$\langle \psi | \varphi \rangle = \left\langle \sum_{i} d_{i}^{*} \chi_{i} \left| \sum_{j} c_{j} \chi_{j} \right\rangle = \sum_{i,j} d_{i}^{*} \left\langle \chi_{i} \right| \chi_{j} \right\rangle c_{j} = \sum_{i,j} d_{i}^{*} \delta_{ij} c_{j} = \sum_{i} d_{i}^{*} c_{i} = \boldsymbol{d}^{\dagger} \boldsymbol{c},$$

$$|\varphi \rangle \langle \varphi | = \left| \sum_{i} c_{i} \chi_{i} \right\rangle \left\langle \sum_{j} d_{j}^{*} \chi_{j} \right| = \sum_{i,j} c_{i} \left| \chi_{i} \right\rangle \left\langle \chi_{j} \right| d_{j}^{*} = \sum_{i,j} c_{i} \delta_{ij} d_{j}^{*} = \sum_{i} c_{i} d_{i}^{*} = \boldsymbol{c} \boldsymbol{d}^{\dagger}.$$

$$(14)$$

Для проекционного оператора (10) имеем:

$$\hat{P}_{\varphi} = \left|\varphi\right\rangle \left\langle\varphi\right| = \left|\sum_{i} c_{i} \chi_{i}\right\rangle \left\langle\sum_{j} c_{j}^{*} \chi_{j}\right| = \sum_{i,j} c_{i} c_{j}^{*} \left|\chi_{i}\right\rangle \left\langle\chi_{j}\right| = \boldsymbol{c}\boldsymbol{c}^{\dagger} = \boldsymbol{P}_{\varphi}.$$
(15)

Действительно, проекция функции $|\psi\rangle = \sum_{j} d_{j} |\chi_{j}\rangle$ на функцию $|\varphi\rangle = \left|\sum_{i} c_{i}\chi_{i}\right\rangle \leftrightarrow c$, согласно (9), равна $\hat{P}_{\varphi} |\psi\rangle = |\varphi\rangle \langle \varphi |\psi\rangle =$ $= \left|\sum_{i} c_{i}\chi_{i}\right\rangle \langle \sum_{j} c_{j}^{*}\chi_{j} |\sum_{k} d_{k}\chi_{k}\rangle = \sum_{i,j,k} c_{i}c_{j}^{*}d_{k} |\chi_{i}\rangle \langle \chi_{j} |\chi_{k}\rangle =$ (16) $= \sum_{i,j,k} c_{i}c_{j}^{*}\delta_{jk}d_{k} |\chi_{i}\rangle = \sum_{i,j} c_{i}c_{j}^{*}d_{j} |\chi_{i}\rangle = \sum_{i} (cc^{\dagger}d)_{i} |\chi_{i}\rangle$ в соответствии с тем, что диадное произведение cc^{\dagger} есть матрица оператора проекции на подпространство, натянутое на вектор $c \leftrightarrow |\varphi\rangle$, а матричные элементы $(P_{\varphi})_{k,l}$ проекционного оператора \hat{P}_{φ} в ортонормированном базисе $\{\langle \chi_k \rangle\}$ равны матричным элементам этого диадного произведения:

$$(\boldsymbol{P}_{\varphi})_{k,l} = \left\langle \boldsymbol{\chi}_{k} \middle| \hat{\boldsymbol{P}}_{\varphi} \middle| \boldsymbol{\chi}_{l} \right\rangle = \left\langle \boldsymbol{\chi}_{k} \middle| \varphi \right\rangle \left\langle \varphi \middle| \boldsymbol{\chi}_{l} \right\rangle = \left\langle \boldsymbol{\chi}_{k} \middle| \sum_{i} c_{i} \boldsymbol{\chi}_{i} \right\rangle \left\langle \sum_{j} c_{j}^{*} \boldsymbol{\chi}_{j} \middle| \boldsymbol{\chi}_{l} \right\rangle =$$

$$= \sum_{i,j} c_{i} c_{j}^{*} \delta_{ki} \delta_{jl} = c_{k} c_{l}^{*} = (\boldsymbol{c}\boldsymbol{c}^{\dagger})_{kl}.$$
(17)

Дираковский формализм легко обобщается на случай неортонормированного базиса $\{|\chi_i\rangle\}$. В этом случае в выражениях появляется матрица перекрывания *S* с элементами $S_{ij} = \langle \chi_i | \chi_j \rangle$. Например,

$$\left\langle \varphi \middle| \psi \right\rangle = \left\langle \sum_{i} c_{i}^{*} \chi_{i} \middle| \sum_{j} d_{j} \chi_{j} \right\rangle = \sum_{i,j} c_{i}^{*} \left\langle \chi_{i} \middle| \chi_{j} \right\rangle d_{j} = \sum_{i,j} c_{i}^{*} \left\langle \chi_{i} \middle| \chi_{j} \right\rangle d_{j} = \sum_{i,j} c_{i}^{*} S_{ij} d_{j} = \mathbf{c}^{\dagger} \mathbf{S} \mathbf{d} .$$
(18)

Работая с неортогональным базисом, следует различать матрицу линейного оператора с элементами

$$A_{ij} = \langle \chi_i \, | \, \hat{A} \, | \, \chi_j \rangle \tag{19}$$

и матрицу линейного преобразования, соответствующего этому оператору.

Пусть $|\varphi\rangle \leftrightarrow c$, $|\psi\rangle \leftrightarrow d$ и $|\varphi\rangle = \hat{A}|\psi\rangle$. Тогда

$$\left|\varphi\right\rangle = \left|\sum_{i} c_{i} \chi_{i}\right\rangle = \hat{A} \left|\sum_{j} d_{j} \chi_{j}\right\rangle,\tag{20}$$

умножая которое на $\langle \chi_l |$, получаем

$$\left\langle \chi_{l} \left| \sum_{i} c_{i} \chi_{i} \right\rangle = \left\langle \chi_{l} \left| \hat{A} \right| \sum_{j} d_{j} \chi_{j} \right\rangle,$$
(21)

или иначе

$$\sum_{i} S_{li} c_i = \sum_{j} A_{lj} d_j , \qquad (22)$$

что записывается в матричных обозначениях как

$$Sc = Ad, \qquad (23)$$

откуда

$$\boldsymbol{c} = \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{d} \ . \tag{24}$$

Итак, для случая неортогонального базиса матрица линейного преобразования, описывающая действие линейного оператора \hat{A} , есть $S^{-1}A$, где элементы матрицы A задаются формулами (19). В случае проектора \hat{P}_{φ} это значит, что матрица оператора \hat{P}_{φ} есть $Scc^{\dagger}S$, тогда как матрица проекционного оператора равна $cc^{\dagger}S$.

До сих пор рассматривался оператор проекции (10) на одномерное пространство $\hat{P}_{\varphi} = |\varphi\rangle\langle\varphi|$, натянутое на вектор $|\varphi\rangle$. В случае *n*-мерного подпространства ортонормированных векторов $\{|\varphi_i\rangle\}$ (*i* = 1, 2, 3, ..., *n*), проекционный оператор на это подпространство

$$\hat{P} = \sum_{i=1}^{n} \left| \varphi_i \right\rangle \left\langle \varphi_i \right|.$$
(25)

Проекционные операторы не только эрмитовые, что следует из его определения (25) и правил (1) – (4) обращения с векторами бра и кет, но и идемпотентны, $\hat{P}^2 = \hat{P}$. Действительно,

$$\hat{P}^{2} = \sum_{i=1}^{n} \left| \varphi_{i} \right\rangle \left\langle \varphi_{i} \right| \sum_{j=1}^{n} \left| \varphi_{j} \right\rangle \left\langle \varphi_{j} \right| = \sum_{i,j=1}^{n} \left| \varphi_{i} \right\rangle \left\langle \varphi_{i} \right| \varphi_{j} \right\rangle \left\langle \varphi_{j} \right| = \sum_{i,j=1}^{n} \left| \varphi_{i} \right\rangle \left\langle \varphi_{i} \right| = \sum_{i=1}^{n} \left| \varphi_{i} \right\rangle \left\langle \varphi_{i} \right| = \hat{P}.$$
(26)

Проекционный оператор \hat{P} остается инвариантным при замене векторов $\{|\varphi_i\rangle\}$ на любой другой набор ортонормированных векторов $\{|\psi_i\rangle\}$, лежащих в том же самом подпространстве. Оба набора векторов $\{|\varphi_i\rangle\}$ и $\{|\psi_i\rangle\}$ ортонормированны, что означает, что они связаны унитарным преобразованием U, а именно:

$$\left|\psi_{j}\right\rangle = \sum_{k=1}^{n} U_{kj} \left|\varphi_{k}\right\rangle, \qquad (27)$$

так что оператор \hat{P}' , построенный на векторах { $|\psi_i\rangle$ },

$$\hat{P}' = \sum_{j=1}^{n} \left| \varphi_{j} \right\rangle \left\langle \varphi_{j} \right| = \sum_{j=1}^{n} \left| \sum_{k=1}^{n} U_{kj} \left| \varphi_{k} \right\rangle \right\rangle \left\langle \sum_{l=1}^{n} U_{lj}^{*} \left| \varphi_{l} \right\rangle \right| = \sum_{j,k,l=1}^{n} U_{kj} U_{lj}^{*} \left| \varphi_{k} \right\rangle \left\langle \varphi_{l} \right| =$$

$$= \sum_{k,l=1}^{n} \left(\sum_{j=1}^{l} U_{kj} (\boldsymbol{U}^{\dagger})_{jl} \right) \left| \varphi_{k} \right\rangle \left\langle \varphi_{l} \right| = \sum_{k,l=1}^{n} \delta_{kl} \left| \varphi_{k} \right\rangle \left\langle \varphi_{l} \right| = \sum_{k=1}^{n} \left| \varphi_{k} \right\rangle \left\langle \varphi_{k} \right| = \hat{P}, \qquad (28)$$

что и доказывает сформулированное выше утверждение об инвариантности проекционного оператора.

Если векторы { $|\varphi_i\rangle$ } образуют базис (полный ортонормированный набор функций) в гильбертовом пространстве, то любую функцию $|\psi\rangle$ можно представить в виде разложения

$$\left|\psi\right\rangle = \sum_{i} c_{i} \left|\varphi_{i}\right\rangle \tag{29}$$

с коэффициентами разложения

$$c_i = \left\langle \varphi_i \left| \psi \right\rangle, \tag{30}$$

подставляя которые в разложение (29), получаем

$$|\psi\rangle = \sum_{i} c_{i} |\varphi_{i}\rangle = \sum_{i} \langle\varphi_{i} |\psi\rangle |\varphi_{i}\rangle = \sum_{i} |\varphi_{i}\rangle \langle\varphi_{i} |\psi\rangle = \left(\sum_{i} |\varphi_{i}\rangle \langle\varphi_{i}|\right) |\psi\rangle \equiv \hat{I} |\psi\rangle, \quad (31)$$

где

$$\hat{I} = \sum_{i} \left| \varphi_{i} \right\rangle \left\langle \varphi_{i} \right|, \tag{32}$$

называют «разложением единицы» по функциям полного базиса, или иначе – «условием полноты» базиса.

Пусть нам дан эрмитов оператор \hat{A} . Его собственные векторы $|\varphi_i\rangle$ образуют полный ортонормированный набор векторов. Следовательно, на этих векторах можно построить разложение единицы (32).

Подействуем оператором \hat{A} на произвольную функцию $|\psi\rangle$ и вставим после него единичный оператор \hat{I} :

$$\hat{A}|\psi\rangle = \hat{A}\hat{I}|\psi\rangle = \hat{A}\left(\sum_{i}|\varphi_{i}\rangle\langle\varphi_{i}|\right)|\psi\rangle = \left(\sum_{i}\hat{A}|\varphi_{i}\rangle\langle\varphi_{i}|\right)|\psi\rangle = \left(\sum_{i}a_{i}|\varphi_{i}\rangle\langle\varphi_{i}|\right)|\psi\rangle, \quad (33)$$

где учтено, что $|\varphi_i\rangle$ является собственным вектором оператора \hat{A} :

$$\hat{A} \big| \varphi_i \big\rangle = a_i \big| \varphi_i \big\rangle$$

с собственным значением *a_i*. Из (33) следует, что любой эрмитов оператор можно записать в виде его спектрального разложения

$$\hat{A} = \sum_{i} a_{i} \left| \varphi_{i} \right\rangle \left\langle \varphi_{i} \right| \tag{34}$$

по его собственным векторам и собственным значениям.

И в заключение, приведем доказательство утверждения о том, что след проекционного оператора \hat{P} равен размерности *n* подпространства, на которое он проектирует.

Пусть задан оператор

$$\hat{P} = \sum_{i=1}^{n} \left| \varphi_i \right\rangle \left\langle \varphi_i \right|,$$

который определен в некотором *m*-мерном линейном пространстве, заданном ортонормированным базисом $\{|\psi_j\rangle\}$, и поэтому векторы этого оператора \hat{P} можно разложить по базису $\{|\psi_j\rangle\}$:

$$\left|\varphi_{i}\right\rangle = \sum_{j=1}^{m} c_{ij} \left|\psi_{j}\right\rangle.$$
(35)

След оператора \hat{P}

$$\operatorname{Tr}\hat{P} = \sum_{k=1}^{m} \langle \psi_k | \hat{P} | \psi_k \rangle = \sum_{k=1}^{m} \langle \psi_k | \sum_{i=1}^{n} | \varphi_i \rangle \langle \varphi_i | \psi_k \rangle.$$
(36)

Подставим разложение (35) в (36), а именно:

$$\mathrm{Tr}\hat{P} = \sum_{k=1}^{m} \langle \psi_k | \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} | \psi_j \rangle \langle \sum_{l=1}^{m} c_{il}^* \psi_l | \psi_k \rangle = \sum_{i=1}^{n} \sum_{j,k,l=1}^{m} c_{ij} c_{il}^* \delta_{kj} \delta_{lk} = \sum_{i=1}^{n} \sum_{k=1}^{m} c_{ik} c_{ik}^* = n , \quad (37)$$

где мы воспользовались ортонормированностью базиса $\{|\psi_k\rangle\}$ и тем, что каждая из функций базиса $\{|\phi_i\rangle\}$ (*i* = 1,2,3,...,*n*) нормирована на единицу:

$$\sum_{k=1}^{m} c_{ik} c_{ik}^* = 1 \ (i = 1, 2, 3, ..., n) \ .$$

Очевидно, что такой же результат имеет место для следа матрицы P, представляющей оператор \hat{P} в ортонормированном базисе { $|\psi_i\rangle$ }[2].

Литература

- 1. P. A. M. Dirac. A new notation for quantum mechanics, *Math. Proc. Cambridge Phil. Soc.*, v. 35: 3, 416 – 418 (1939).
- Мит. 176с. Сатопиде 1 т. 50с., v. 55. 5, 410 418 (1959). 2 И Майер Избранные главы квантовой химии Показательства теор
- 2. И. Майер. Избранные главы квантовой химии. Доказательства теорем и вывод формул. Москва: Бином, 2006.

Приложение П-3. Перестановки и их основные свойства

Под операцией перестановки \hat{P} подразумевается такая операция, при которой изменяется порядок расположения неких объектов. Пусть исходная последовательность расположения объектов задается номерами 1,2,3,...,N, а после перестановки порядок номеров стал другим: $P_1, P_2, P_3, ..., P_N$. Набор объектов $\{P_1, P_2, P_3, ..., P_N\}$ тот же самый, что и объектов $\{1, 2, 3, ..., N\}$, однако объекты расположены в другом порядке.

Каждая перестановка \hat{P} определяется последовательностью $P_1, P_2, P_3, ..., P_N$, что означает следующее: выполняя перестановку \hat{P} , на первое место ставится объект, который был на месте P_1 , на второе место – тот, который был на месте P_2 , и т. д., на *k*-ое место – тот, который исходно был *k*-ым. Обычно некое расположение $P_1, P_2, P_3, ..., P_N$ объектов 1,2,3,..., *N* также называется перестановкой.

Число различных перестановок *N* объектов, включая тождественную перестановку \hat{I} , не изменяющую порядок расположения объектов, есть *N*! Рассмотрим две перестановки \hat{P} и \hat{Q} , которые характеризуются, соответственно, последовательностями $P_1, P_2, P_3, ..., P_N$ и $Q_1, Q_2, Q_3, ..., Q_N$. Тогда произведение перестановок $\hat{P}\hat{Q} = \hat{R}$ есть новая перестановка \hat{R} , которая

605

получается при выполнении сначала перестановки \hat{Q} , а потом – перестановки \hat{P} , при этом в общем случае $\hat{P}\hat{Q} \neq \hat{Q}\hat{P}$.

Перечислим три важных свойства перестановок:

1) Каждая перестановка \hat{P} имеет единственную обратную к ней перестановку \hat{P}^{-1} такую, что $\hat{P}^{-1}\hat{P} = \hat{P}\hat{P}^{-1} = \hat{I}$.

2) Если к любой исходной последовательности объектов $P_1, P_2, P_3, ..., P_N$ применить все N! возможных перестановок, то получится N! разных последовательностей. Это означает, что множество полученных последовательностей не зависит от исходной последовательности $P_1, P_2, P_3, ..., P_N$. От исходной последовательности зависит только их порядок. Таким образом, множество всех перестановок $\hat{R} = \hat{P}\hat{Q}$ для данной фиксированной перестановки \hat{P} то же, что и множество всех перестановок \hat{Q} .

3) Каждая перестановка характеризуется своей четностью. Четность перестановки \hat{P} может принимать два значения: +1 или -1. Если последовательность $P_1, P_2, P_3, ..., P_N$ можно получить четным числом транспозиций (перестановок двух объектов), исходя из последовательности 1,2,3,...,N, то четность перестановки \hat{P} равна +1. Если же число транспозиций нечетно, то четность перестановки \hat{P} равна -1. Четность перестановки \hat{P} обозначают через число транспозиций p как $(-1)^p$. Четность произведения двух перестановок $\hat{R} = \hat{P}\hat{Q}$ есть произведение четностей перестановок \hat{P} и \hat{Q} : $(-1)^r = (-1)^{p+q}$.

Приложение П-4. Интерпретация электронных возбуждений в молекулах посредством чисел заполнения естественных орбиталей на примере возбуждения 1²B₂ → 2²B₂ бензильного радикала [1, 2]

Традиционный способ отнесения возбужденных электронных термов молекул состоит в указании тех электронных конфигураций, которые дают наибольший вклад В описывающую этот терм пробную многоконфигурационную (МК) волновую функцию. В качестве примера экспериментально наблюдаемое возбуждение $1^2B_2 \rightarrow 2^2B_2$ рассмотрим В бензильном радикале с энергией $\Delta E = 2.68 \ \mathfrak{s}_{\mathcal{B}}[3]$. Квантовохимический расчет в приближении Паризера – Парра – Попла (ППП) приводит к близкому значению $\Delta E = 2.64$ эв [4]. Согласно [4] вклад основной конфигурации в терм $2^2 B_2$ равен 3.7 %, а вклады одновозбужденных конфигураций (обозначение их см. в [5]), $2 \rightarrow 4(4 \rightarrow 6), 2 \rightarrow 6, 3 \rightarrow 5, 1 \rightarrow 4(4 \rightarrow 7), 1 \rightarrow 7, 1 \rightarrow 6(2 \rightarrow 7)$ равны соответственно 57.2, 27.0, 6.0, 3.5, 2.4, 0.2 %. На этом основании говорят, что электронное

поглощение $1^2B_2 \rightarrow 2^2B_2$ обязано, в основном, одночастичным переходам $2 \rightarrow 6$ и $2 \rightarrow 4(4 \rightarrow 6)$.

Можно предложить иной подход к отнесению возбужденных электронных состояний, основанный на использовании чисел заполнения $n_{i\sigma}$ естественных спин-орбиталей N_i^{σ} . Последние являются собственными функциями задачи на собственные значения для одночастичной матрицы плотности [6, 7]

$$P^{\sigma}N_{i}^{\sigma} = n_{i\sigma}N_{i}^{\sigma}, \qquad (1)$$

где i – набор квантовых чисел координатной части спин-орбитали, а σ – спиновое квантовое число.

В ОХФ числа заполнения $n_{i\sigma}$ строго равны 1 или 0. В МК-приближении учитывается корреляция электронов с противоположными спинами, в результате чего числа заполнения становятся дробными и лежат в интервале $0 < n_{i\sigma} < 1$. Изменения чисел заполнения при возбуждении можно использовать для отнесения соответствующего возбужденного терма. Покажем это на примере поглощения $1^2B_2 \rightarrow 2^2B_2$ в бензильном радикале [4,5].

Волновые функции вычислялись в приближении ППП. Соответствующий гамильтониан дается формулами (259 – 261/гл. 2), параметры гамильтониана – одноэлектронные $h_{\mu\nu}^{core}$ и двухэлектронные $\gamma_{\mu\nu}$ подробно описаны в [8], где также содержатся все необходимые далее сведения по основному терму 1^2B_2 . Расчеты выполнялись с помощью программы CI-3 [9].

В МК-приближении волновые функции обоих термов записывались в виде разложения по базисным векторам [8], каждый из которых есть собственная функция операторов \hat{S}_{z} и \hat{S}^{2} . Вычисления проводились с семью наборами векторов – G, I, II, III, IV, V и F. Детерминант G включает только основную конфигурацию, энергия которой минимизируется подходящим выбором вариационных коэффициентов разложения в (259 – 261/гл. 2). Набор I наряду с основной конфигурацией содержит все одновозбужденные конфигурации, набор II дополнен всеми двухвозбужденными и т.д. Набор F содержит все конфигурации, относящиеся к представлению B_2 группы $C_{2\nu}$, которые можно построить для семиуровневой π-модели бензильного радикала. Таким образом, конфигураций Fреализует точное решение набор гамильтониана (259 – 261/гл. 2) для бензильного радикала. Размерности конфигурационных наборов таковы: 1, 15, 89, 239, 361, 399, 404. Более подробные сведения о построении базисных векторов и наборов $G \to F$ даны в § 2.7.3.7.

Энергии термов $1^2 B_2$ и $2^2 B_2$ в зависимости от точности аппроксимации их волновых функций приведены в табл. 1.

Таблица 1

Понижение энергии термов 1^2B_2 и 2^2B_2 по мере уточнения их пробных волновых функций, *эв*

Ψ	$1^{2}B_{2}$	$2^2 B_2$
G	-210.827095	—
Ι	-210.996808	-208.359754
II	-211.698380	-208.823692
III	-211.735728	-209.150067
IV	-211.756423	-209.164167
V	-211.756735	—
F	-211.756817	-209.170150

Данные табл. 1 позволяют подсчитать энергию возбуждения $\Delta E(1^2B_2 \rightarrow 2^2B_2)$ в зависимости от точности аппроксимации волновых функций начального и конечного состояний (табл. 2).

Таблица 2

Энергия возбуждения $\Delta E(1^2B_2 \rightarrow 2^2B_2)$ в зависимости от полноты аппроксимации волновых функций обоих термов, *эе*

$1^{2}B_{2} \setminus 2^{2}B_{2}$	Ι	II	III	IV	F
G	2.47	2.00	1.68	1.66	1.66
Ι	2.64	2.17	1.85	1.83	1.83
II	3.34	2.87	2.55	2.53	2.53
III	3.38	2.91	2.59	2.57	2.57
IV	3.40	2.93	2.61	2.59	2.59
V	3.40	2.93	2.61	2.59	2.59
F	3.40	2.93	2.61	2.59	2.59

Видим, что расчетное значение энергии возбуждения изменяется в широких пределах от 1.7 до 3.4 эв в зависимости от того, насколько отличается между собой точность аппроксимации волновых функций термов. Согласие с экспериментальным значением, равным 2.7 эв, предполагает вычисление основного и возбужденного состояний в одном и том же приближении или в близких приближениях.

На функциях от G до F далее вычислялись одночастичные матрицы плотности P^{α} и P^{β} . Из расчетов основного терма $1^{2}B_{2}$ [8,9] следует, что

608

пробной волновой функции уточнение за счет включения четырехкратновозбужденных конфигураций (набор IV) уже несущественно для уточнения матриц плотности. Это видно также из таблиц 1 и 2. Поэтому далее в табл. 3 приводим элементы матриц плотности для обоих термов 1^2B_2 и 2^2B_2 , вычисленные с набором конфигураций III. В этой же таблице приводим для основного $1^{2}B_{2}$, соответствующие аналогичные данные терма одноконфигурационной аппроксимации волновой функции.

Таблица 3

		12	$2^{2}B_{2}$				
μv	(Ĵ	Ι	Π	III		
	$P^{lpha}_{\mu u}$	$P^{eta}_{\mu u}$	$P^{lpha}_{\mu u}$	$P^{eta}_{\mu u}$	$P^{lpha}_{\mu u}$	$P^{eta}_{\mu u}$	
11	0.500000	0.500000	0.444804	0.555196	0.732155	0.263845	
22	0.537746	0.462254	0.591435	0.408565	0.495481	0.504510	
33	0.500000	0.500000	0.465395	0.534605	0.562032	0.437968	
44	0.521705	0.478296	0.580491	0.419509	0.660935	0.339065	
77	0.902803	0.097197	0.861044	0.038956	0.487883	0.512117	
12	0.300082	0.300082	0.268898	0.268898	0.162176	0.162176	
13	0.000000	0.000000	0.010010	-0.010010	-0.079826	0.079826	
14	-0.149104	-0.149104	-0.119800	-0.119800	0.040839	0.040839	
17	0.218333	0.218333	0.260109	0.260109	0.243970	0.243970	
23	0.339660	0.339660	0.332154	0.332154	0.379500	0.379500	
24	-0.028623	0.028623	-0.050991	0.050991	-0.045547	0.045547	
25	-0.160341	-0.160341	-0.135840	-0.135840	-0.069662	-0.069662	
26	0.037746	-0.037746	0.040703	-0.040703	0.008972	-0.008972	
27	-0.123306	0.123306	-0.109494	0.109494	0.031721	-0.031721	
34	0.329329	0.329329	0.310294	0.310294	0.200558	0.200558	
35	0.000000	0.000000	0.005482	-0.005482	0.021259	-0.021259	
37	-0.021554	-0.021554	-0.032766	-0.032766	-0.035570	-0.035570	
47	0.093502	-0.093502	0.035161	-0.035161	-0.040237	0.040237	

Элементы матриц *Р^α* и *Р^β*для термов 1²*B*₂ и 2²*B*₂, вычисленные на пробных функциях *G*, III и соответственно на III. Пропущенные элементы матриц совпадают с приведенными по соображениям симметрии.

Необходимые нам числа заполнения $n_{i\sigma}$ для термов 1^2B_2 и 2^2B_2 в МК-приближении получаются диагонализацией приведенных в табл. 3 матриц плотности. Окончательные результаты суммированы в табл. 4.

Таблица 4

		(<u>;</u>	III					
i	Симм.			$1^2 B_2$		$2^{2}B_{2}$			
		$n_{i\alpha}$	$n_{i\beta}$	$n_{i\alpha}$	$n_{i\beta}$	$n_{i\alpha}$	$n_{i\beta}$		
7	5b ₂	0	0	0.011	0.006	0.037	0.009		
6	4b ₂	0	0	0.035	0.011	0.356	0.025		
5	2a ₂	0	0	0.035	0.025	0.064	0.036		
4	3b ₂	1	0	0.961	0.039	0.614	0.386		
3	1a ₂	1	1	0.975	0.965	0.964	0.936		
2	2b ₂	1	1	0.989	0.965	0.975	0.644		
1	1b ₂	1	1	0.994	0.989	0.991	0.963		

Числа заполнения $n_{i\sigma}$ естественных орбиталей термов 1^2B_2 и 2^2B_2 в бензильном радикале.

Из сравнения чисел заполнения $n_{i\sigma}$ для термов 1^2B_2 и 2^2B_2 в МК-приближении (набор конфигураций III) видно, что экспериментально наблюдаемое возбуждение $1^2B_2 \rightarrow 2^2B_2$ действительно захватывает в основном квазиодночастичные (в МК-приближении) уровни 2, 4 и 6 в полном согласии с традиционным способом отнесения. Вместе с тем, характер возбуждения иллюстрируется числами заполнения более точно, полно и наглядно. Выявляются детали, отсутствующие при отнесении посредством вклада конфигураций. Так, из табл. 4 видно, что при возбуждении бензильного радикала в состояние 2^2B_2 существенное перераспределение электронов со спином α захватывает уровни 4 и 6, а со спином β – уровни 2 и 4.

Литература

1. Ю. А. Кругляк. Интерпретация электронных возбуждений в молекулах посредством чисел заполнения естественных орбиталей на примере возбуждения $1^2B_2 \rightarrow 2^2B_2$ бензильного радикала,

Препринт ИТФ-77-3, Институт теоретической физики АН УССР, Киев, 1977.

- 2. Ю. А. Кругляк. Интерпретация электронных возбуждений в молекулах посредством чисел заполнения естественных орбиталей на примере возбуждения $1^2B_2 \rightarrow 2^2B_2$ бензильного радикала, *Ж. структ. хим.*, т. 19: 2, 360 363 (1978).
- 3. P. M. Johson, A. C. Albrecht. Assignment of excited electronic states of the benzyl radical by the method of three-step photoselection, *J. Chem. Phys.*, v. 48: 2, 851 865 (1968).
- 4. Yu. A. Kruglyak, E.V.Mozdor. Study of the electronic structure of radicals by the CI method.
 3. Excited states of the benzyl radical, *Theor. chim. Acta*, v. 15, 374 384 (1969).
- 5. Н. Е. Кругляк, Ю. А. Кругляк. Электронные спектры поглощения и строение бензильных катиона и аниона, *Teop. экспер. хим.*, т. 9: 2, 169 175 (1969).

- P.-O. Lowdin. Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction, *Phys. Rev.*, v. 97, 1474 – 1489 (1955).
- И. И. Украинский, Ю. А. Кругляк, Х. Прейсс, Р. Яношек. Проектирование волновой функции неограниченного метода Хартри – Фока на дублетное состояние на примере бензильного радикала, *Teop. экспер. химия*, т. 8: 3, 299 – 308 (1971).
- 8. Ю. А. Кругляк, Е. В. Моздор, В. А. Куприевич. Полное конфигурационное взаимодействие для бензильного радикала, *Укр. физ. ж.*, т. 15: 1, 48 58 (1970).
- Ю. А. Кругляк, Г. Хибаум, Н. Е. Радомысельская. Электронная структура основного состояния бензильного радикала в равновесной конфигурации, *Rev. Roumaine Chim.*, v. 17: 5, 781 – 799 (1972).

Приложение П-5. Сводка формул теории возмущения Рэлея – Шредингера вплоть до третьего порядка (невырожденный случай)

Пусть невозмущенное уравнение Шредингера

$$\hat{H}^0 \Psi^0_j = E^0_j \Psi^0_j,$$

а возмущенное уравнение

$$\hat{H}\Psi_i = E_i\Psi_i$$
,

где возмущенный гамильтониан

$$\hat{H} = \hat{H}^0 + \hat{V} ,$$

тогда энергия *i*-го состояния

$$E_i = E_i^0 + \sum_{n=1}^{\infty} \varepsilon_i^{(n)} ,$$

где поправки к энергии вплоть до третьего порядка включительно таковы:

$$\begin{split} & \varepsilon_i^{(1)} = V_{ii}, \\ & \varepsilon_i^{(2)} = -\sum_{j(j \neq i)} \frac{|V_{ij}|^2}{E_j^0 - E_i^0}, \\ & \varepsilon_i^{(3)} = \sum_{\substack{j,k \\ (j,k \neq i)}} \frac{V_{ik} V_{kj} V_{ji}}{(E_k^0 - E_i^0)(E_j^0 - E_i^0)} - \sum_{\substack{k \\ (k \neq i)}} \frac{V_{ii} |V_{ik}|^2}{(E_k^0 - E_i^0)^2}. \end{split}$$

Волновая функция *i*-го состояния

$$\Psi_i = \Psi_i^0 + \sum_{n=1}^{\infty} \Phi_i^{(n)},$$
$$\Phi_i^{(n)} = \sum_{k(k \neq i)} p_{ik}^{(n)} \Psi_k^0,$$
где

$$\begin{split} p_{ik}^{(1)} &= -\frac{V_{ki}}{E_k^0 - E_i^0}, \\ p_{ik}^{(2)} &= \sum_{j(j \neq i)} \frac{V_{kj} V_{ji}}{(E_k^0 - E_i^0)(E_j^0 - E_i^0)} - \frac{V_{ii} V_{ki}}{(E_k^0 - E_i^0)^2}, \\ p_{ik}^{(3)} &= -\sum_{\substack{j,l \\ (j,l \neq i)}} \frac{V_{kj} V_{jl} V_{li}}{(E_k^0 - E_i^0)(E_j^0 - E_i^0)(E_l^0 - E_i^0)} + \sum_{\substack{j \\ (j \neq i)}} \frac{|V_{ij}|^2 V_{ki}}{(E_k^0 - E_i^0)^2 (E_j^0 - E_i^0)} - \frac{V_{ii}^2 V_{ki}}{(E_k^0 - E_i^0)^2 (E_j^0 - E_i^0)} + \frac{1}{E_j^0 - E_i^0} \right]. \end{split}$$

Приложение П-6. Асимптотика волновой функции молекулы на больших расстояниях

Уравнение Шредингера для атома водорода с зарядом ядра Z

$$-\frac{1}{2}\Delta\psi - \frac{Z}{r}\psi = E\psi \tag{1}$$

можно переписать в виде

$$-\frac{1}{2}\left[\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right) - \frac{\hat{l}^2}{r^2}\psi\right] - \frac{Z}{r}\psi = E\psi, \qquad (2)$$

где угловая часть оператора Лапласа

$$\frac{1}{\sin\vartheta}\frac{\partial}{\partial\vartheta}\left(\sin\vartheta\frac{\partial}{\partial\vartheta}\right) + \frac{1}{\sin^2\vartheta}\frac{\partial^2}{\partial\varphi^2} = -\hat{l}^2.$$
(3)

Пусть один из электронов молекулы находится очень далеко от остальной части системы. В этом случае нужно снова решать одноэлектронную задачу (2), но потенциал в этом уравнении $-\frac{Z}{r}$ нужно заменить на эффективный потенциал U(r), т. е. фактически нужно рассмотреть асимптотическое поведение уравнения Хартри – Фока для некоторой *i*-ой орбитали ψ_i с энергией ε_i . Раскрыв производную

$$\frac{d}{dr}\left(r^2\frac{d\psi_i}{dr}\right) = 2r\frac{d\psi_i}{dr} + r^2\frac{d^2\psi_i}{dr^2},\tag{4}$$

вместо (2) получим

$$\frac{2}{r}\frac{d\psi_i}{dr} + \frac{d^2\psi_i}{dr^2} - \frac{\hat{l}^2}{r^2}\psi_i - 2U(r)\psi_i = -2\varepsilon_i\psi_i.$$
(5)

В рассматриваемой ситуации когда электрон находится очень далеко $(r \rightarrow \infty)$ от остальной части молекулярной системы можно пренебречь слагаемыми с множителями $\frac{1}{r}$ и $\frac{1}{r^2}$, потенциал U(r) также является кулоновским, так что окончательно имеем:

$$\frac{d^2 \psi_i}{dr^2} = -2\varepsilon_i \psi_i \,. \tag{6}$$

Общим решением дифференциального уравнения (6) служит выражение

$$\psi_i = Ae^{\varsigma r} + Be^{-\varsigma r}, \quad \varsigma = \sqrt{-2\varepsilon_i} \quad (\varepsilon_i < 0), \tag{7}$$

первый член которого в рассматриваемой ситуации $(r \rightarrow \infty)$ расходится, и его нужно отбросить. Таким образом,

$$\psi_i \sim e^{-\sqrt{-2\varepsilon_i} r} \,. \tag{8}$$

Рассматривать нужно ту из орбиталей, которая убывает медленнее всего. Учитывая также теорему Купманса (§ 2.3.1), для асимптотики наиболее медленно убывающей компоненты многоэлектронной волновой функции имеем:

$$\psi \sim e^{-\sqrt{2I_{\min}}r},\tag{9}$$

где *I*_{min} соответствует первому потенциалу ионизации многоэлектронной системы.

Приложение П-7. Расчет равновесной конфигурации бензильного радикала в модели электронно-колебательного взаимодействия с дальнейшим учетом полного КВ в *π*-приближении

Основная причина всестороннего теоретического исследования нами свойств бензильного радикала в основном состоянии связана с давно известным расхождением между экспериментальными значениями сверхтонких расщеплений на орто- и пара-протонах бензильного радикала и их теоретическими значениями, вычисленными посредством простого уравнения Мак-Коннела из π-спиновых заселенностей соответствующих атомов углерода. Согласно экспериментальному спектру ЭПР, расщепления на указанные выше протонах равны соответственно 5.14 и 6.14 Э (§ 2.1.1/табл. 5), тогда как известные нам полуэмпирические *п*-электронные схемы расчета приводят к меньшему значению расщепления на *пара*-протоне. Не спасает положения полуэмпирический учет всех валентных электронов в схеме метода INDO [1]. Авторы этой работы обращают внимание на то, что причина этого расхождения до сих пор не найдена.

Можно предложить несколько причин, потенциально способных объяснить сформулированное выше противоречие, которое носит явно качественный характер. Одна из них могла быть связана с вычислением π -спиновой заселенности атомов углерода на недостаточно точной собственной функции π -электронного модельного гамильтониана для бензильного радикала. Это предположение себя не оправдало (§ 2.7.3.7), что стало ясно после детального исследования свойств основного состояния бензильного радикала с использованием при построении пробной волновой функции большого числа возбужденных конфигураций вплоть до учета их полного набора, который соответствует точной собственной функции использованного в расчете модельного гамильтониана ППП. Отметим также как немаловажный факт – показано [2, 3], что желаемое отношение *п*-спиновой заселенности орто- и пара-атомов углерода получается в одноконфигурационном приближении, а также в многоконфигурационном приближении с учетом только тех пяти возбужденных конфигураций, которые согласно однократно теореме, доказанной в [4,5/§ 2.7.3.6.3], смешиваются с основной конфигурацией, если в обоих случаях базисные орбитали удовлетворяют вариационному принципу замкнутых оболочек радикала. Однако, дальнейшее, только для даже незначительное увеличение числа конфигураций при построении пробной волновой функции снова приводит к неправильному отношению указанных заселенностей.

Известны наши результаты неэмпирического расчета бензильного радикала методом НХФ на гауссовом базисе с учетом всех электронов (гл. 6). Вычисление спиновой заселенности непосредственно на протонах привело к удовлетворительному не только качественному, но и к количественному согласию с экспериментальными значениями расщеплений (§ 2.1.1/табл. 5). Наш расчет *ab initio* был выполнен с использованием крайне ограниченного базиса гауссовых функций. Остается неизвестным, сохранится ли ЭТО количественное согласие с переходом к расширенному базису гауссовых функций. Неясным также остается влияние проектирования неограниченной по спину волновой функции на отношение спиновой заселенности на орто- и пара-протонах бензильного радикала (§ 6.6/табл. 10). Также остается открытым вопрос об отказе от использования простого уравнения Мак-Коннела и переходе к его обобщенному варианту [6].

До сих пор речь шла о расчетах бензильного радикала с одинаковыми длинами связей С \simeq С (равносвязная модель). Счастнев и Жидомиров [7] и вслед за ними Новаковский [8] выполнили согласование резонансных интегралов $\beta_{\mu\nu}$ и порядков связей $P_{\mu\nu}$ бензильного радикала в рамках обычного

614

метода Хюккеля, оценили «равновесные» значения длин связей R_{иv}, пользуясь функциональной зависимостью $R_{\mu\nu}$ от $P_{\mu\nu}$ Коулсона – Голибиевского [9], и заселенности обычным рассчитали распределение π -спиновой И модифицированными [10] Мак-Лаклана. Оказалось. методами что расщепления, вычисленные по простой формуле Мак-Коннеля, хорошо согласуются с их экспериментальными значениями, тогда как этот же метод в применении к равносвязной модели бензильного радикала приводит к неправильному отношению расщеплений на орто- и пара-протонах [8, 10].

Таким образом, создалось впечатление, что причина «бензильного парадокса» кроется в пренебрежении реальной геометрической конфигурацией этого радикала.

Настоящее приложение посвящено расчету спиновой заселенности и других характеристик электронного строения основного состояния бензильного радикала в его «равновесной» геометрической конфигурации, оцененной путем одновременного согласования $P_{\mu\nu}$, $R_{\mu\nu}$, $\beta_{\mu\nu}$ и кулоновских интегралов $\gamma_{\mu\nu}$ в рамках одноконфигурационного приближения теории ОХФО [11]. Далее свойства бензильного радикала в его найденной таким образом равновесной геометрии вычислялись методом КВ путем наращивания конфигураций все более высокой кратности возбуждения вплоть до полного КВ [11] как это было уже проведено ранее для равносвязной модели бензильного радикала (§ 2.7.3.7).

П-7.1. Метод количественной оценки геометрической конфигурации бензильного радикала с учетом деформации *σ*-остова

Для π -электронной оболочки бензильного радикала использовалась традиционная модель ППП. Соответствующий гамильтониан имеет вид (257/§2.7.3.7). Интегралы $\gamma_{\mu\nu}$ вычислялись по формуле Оно [12], потенциал ионизации *I*_C взят равным 11.16 э*B*, а сродство к электрону равным 0.03 э*B*, так что $\gamma_{\mu\mu}$ = 11.13 э*B*. Диагональные элементы матрицы остова вычислялись без учета интегралов проникновения, а именно:

$$h_{\mu\nu}^{core} = -I_{\mu} - \sum_{\substack{\nu \\ (\nu \neq \mu)}} n_{\nu} n_{\mu} \gamma_{\mu\nu} , \qquad (2)$$

где n_{μ} – число π -электронов, поставляемое атомом μ и равное в нашем случае единице. Недиагональные элементы $h_{\mu\nu}^{core}$ полагались равными постоянным величинам $\beta_{\mu\nu}$ для соседних атомов и нулю для несоседних.

Резонансные интегралы $\beta_{\mu\nu}$ и соответствующие им длины связей $R_{\mu\nu}$ следуя схеме [13, 14] вычислялись путем взаимного согласования по методу [15, 16].

Сформулируем основные положения этого метода и приведем аргументы в пользу применимости его к нейтральным альтернантным радикалам.

Полную энергию нейтрального альтернантного радикала разобъем на две части:

$$E^T = E^{\pi} + E^{\sigma}. \tag{3}$$

Для вычисления энергии π -электронов обратимся к выражению энергии системы с открытой оболочкой, находящейся при заданном числе неспаренных электронов в состоянии с максимальным спином:

$$E = Sp(\boldsymbol{h}^{core}\boldsymbol{P}^{T}) + \frac{1}{2}Sp(\boldsymbol{J}^{T}\boldsymbol{P}^{T}) - \frac{1}{4}Sp(\boldsymbol{K}^{T}\boldsymbol{P}^{T}) + \frac{1}{4}Sp(\boldsymbol{K}^{O}\boldsymbol{P}^{O}), \qquad (4)$$

где h^{core} — матрица операторов кинетической энергии электрона и взаимодействия его с остовом системы. Полная матрица плотности P^{T} разбивается на вклады от замкнутых (*c*) и открытых (*o*) оболочек,

$$\boldsymbol{P}^T = 2\boldsymbol{P}^C + \boldsymbol{P}^O, \tag{5}$$

и аналогичные выражения имеют место для матриц кулоновского J^{T} и обменного K^{T} операторов.

В приближении НДП для *п*-электронов

$$J_{\mu\nu}^{T} = \delta_{\mu\nu} \sum_{\kappa} \gamma_{\mu\kappa} P_{\kappa\kappa}^{T} , \qquad (6)$$

$$K_{\mu\nu}^{T(O)} = \gamma_{\mu\nu} P_{\mu\nu}^{T(O)}.$$
 (7)

Справедливы равенства

$$Sp(\boldsymbol{J}^{T}\boldsymbol{P}^{T}) = \sum_{\mu\nu} \gamma_{\mu\nu} P_{\mu\mu}^{T} P_{\nu\nu}^{T}, \qquad (8)$$

$$Sp(\boldsymbol{K}^{T(O)}\boldsymbol{P}^{T(O)}) = \sum_{\mu\nu} \gamma_{\mu\nu} \left(P_{\mu\nu}^{T(O)} \right)^2.$$
(9)

Подставляя (8) и (9) в (4), получаем

$$E^{\pi} = \sum_{\mu\nu} h_{\mu\nu}^{core} P_{\mu\nu}^{T} + \frac{1}{2} \sum_{\mu\nu} \gamma_{\mu\nu} P_{\mu\mu}^{T} P_{\nu\nu}^{T} - \frac{1}{4} \sum_{\mu\nu} \gamma_{\mu\nu} \left(P_{\mu\nu}^{T} \right)^{2} + \frac{1}{4} \sum_{\mu\nu} \gamma_{\mu\nu} \left(P_{\mu\nu}^{O} \right)^{2}.$$
(10)

Для нечетных альтернантных радикалов

$$P_{\mu\mu}^{T} = 1, \quad P_{\mu,\mu+1}^{O} = 0, \quad P_{\mu,\mu}^{O} = P_{\mu+1,\mu+1}^{O} = 0, \quad P_{\mu\nu}^{T} = P_{\mu\nu}^{C}.$$
 (11)

Прибавляя к (10) энергию остова

$$E^{core} = \sum_{\mu < \nu} \gamma_{\mu\nu} P^T_{\mu\mu} P^T_{\nu\nu}$$
(12)

и учитывая свойства матриц плотности (11), окончательно получаем

$$E^{\pi} = 2\sum_{q} \beta_{q} P_{q}^{C} - \frac{1}{2} \sum_{q} \gamma_{q} \left(P_{q}^{C} \right)^{2} + \Im, \qquad (13)$$

где суммирование ведется по связям, а величина \Im слабо зависит от порядков связи. Аналогичное выражение справедливо также для альтернантных молекул [15, 17], для которых в одноконфигурационном приближении можно без большой ошибки пользоваться [17] линейным соотношением Коулсона – Голибиевского [9] между равновесной длиной $\tilde{R}_{\mu\nu}$ и соответствующим ей порядком связи $\tilde{P}_{\mu\nu}$, предполагая наличие между ними взаимно однозначного соответствия, а именно:

$$\tilde{R}_{\mu\nu} = 1.517 - 0.180 \tilde{P}_{\mu\nu},\tag{14}$$

которым мы и пользовались при оценке в одноконфигурационном приближении равновесной конфигурации бензильного радикала.

Следуя Лонге-Хиггинсу и Сейлему [18], энергию σ-электронов представим как сумму энергий отдельных связей,

$$E^{\sigma} = \sum_{q} E_{q}^{\sigma},\tag{15}$$

и предположим, что E_q^{σ} зависит только от R_q . Из (11) и (13) следует что в альтернантных нейтральных радикалах открытая оболочка не вносит вклада в матрицу плотности. Тогда для E^{T} имеем:

$$\frac{dE^{T}}{dR_{q}} = \frac{\partial E^{\pi}}{\partial P_{q}} \frac{dP_{q}}{dR_{q}} + \frac{\partial E^{\pi}}{\partial \beta_{q}} \frac{d\beta_{q}}{dR_{q}} + \frac{\partial E^{\pi}}{\partial \gamma_{q}} \frac{d\gamma_{q}}{dR_{q}} + \frac{dE_{q}^{\sigma}}{dR_{q}}.$$
(16)

В приближении ССП первый член в (16) тождественно равен нулю. Воспользуемся условием минимума полной энергии для всех связей, а именно:

$$\left(\frac{dE^T}{dR_q}\right)_{R_q = \tilde{R}_q} = 0.$$
(17)

Тогда из (17), (16) и (13) следует, что для выбранной функции γ_q от \tilde{R}_q или \tilde{P}_q задание зависимости β_q от \tilde{R}_q или \tilde{P}_q предполагает справедливым для всех связей равенство

$$\frac{dE_q^{\sigma}}{d\tilde{R}_q} = \left(-2\tilde{P}_q \frac{d\beta_q}{d\tilde{P}_q} + \frac{1}{2}\tilde{P}_q^2 \frac{d\gamma_q}{d\tilde{P}_q}\right) / \frac{d\tilde{R}_q}{d\tilde{P}_q}$$
(18)

и наоборот, если задана зависимость $E_q^{\sigma}(\tilde{P}_q)$, то

$$\beta_q = \int \left(\frac{1}{4} \tilde{P}_q \frac{d\gamma_q}{d\tilde{P}_q} - \frac{1}{2\tilde{P}_q} \frac{dE_q^{\sigma}}{d\tilde{P}_q} \right) d\tilde{P}_q.$$
(19)

Для второй вариации энергии E^{π} имеем

$$\delta^{2}E^{\pi} = \sum_{\mu\nu} P_{\mu\nu}\delta^{2}h_{\mu\nu}^{core} + \delta P_{\mu\nu}\delta h_{\mu\nu}^{core} + \frac{1}{4}\sum_{\mu\nu\kappa\eta} \left[P_{\mu\nu}P_{\kappa\eta} \left(2\delta^{2} \langle \mu\nu|\kappa\eta \rangle - \delta^{2} \langle \mu\kappa|\nu\eta \rangle \right) + 2P_{\mu\nu}\delta P_{\kappa\eta} \left(2\delta \langle \mu\nu|\kappa\eta \rangle - \delta \langle \mu\kappa|\nu\eta \rangle \right) \right].$$
⁽²⁰⁾

Тогда для силовой константы

$$k_q = \left(\frac{d^2 E^T}{dR_q^2}\right)_{R_q = \tilde{R}_q}$$
(21)

получается следующее выражение:

$$k_{q} = \left(\tilde{P}_{q} \frac{d\gamma_{q}}{d\tilde{P}_{q}} - 2\frac{d\beta_{q}}{d\tilde{P}_{q}}\right) \left[1 - \left(\frac{dP_{q}}{dR_{q}}\right)_{R_{q} = \tilde{R}_{q}} \left(\frac{d\tilde{R}_{q}}{d\tilde{P}_{q}}\right)\right] / \left(\frac{d\tilde{R}_{q}}{d\tilde{P}_{q}}\right)^{2}.$$
(22)

Для оценки β_q можно воспользоваться выражением (19), выбрав конкретный вид функций $\gamma_q(R_q)$ и $E_q^{\sigma}(R_q)$, как это сделано в [19]. Мы, однако, поступили следующим образом. Силовая константа k_{c-c} практически линейно зависит от порядка связи в ряду C₂H₆, C₂H₄, C₂H₂ [20]. Есть основания полагать, что для $P_q < 1$ линейная зависимость k_q от P_q будет выполняться еще более строго. Выберем β_q в виде полинома по \tilde{P}_q , а именно:

$$\beta_{q} = \beta_{0} + \beta_{1} \left(\tilde{P}_{q} - \frac{1}{2} \right) + \beta_{2} \left(\tilde{P}_{q} - \frac{1}{2} \right)^{2}$$
(23)

и подставим (23) в (22). Тогда для этана ($\tilde{P} = 0$) и этилена ($\tilde{P} = 1$) получим

$$k^{(0)} = \frac{2}{\omega^2} (\beta_2 - \beta_1), \quad (\tilde{P} = 0)$$
(24)

$$k^{(1)} = \frac{2}{\omega^2} \left[\left(\frac{d\gamma}{d\tilde{P}} \right)_{\tilde{P}=1} - \left(\beta_1 + \beta_2 \right) \right], \quad \left(\tilde{P} = 1 \right)$$
(25)

где

$$\omega = -\frac{d\tilde{R}_q}{d\tilde{P}_q}.$$
(26)

Воспользовавшись экспериментальными значениями силовых констант связи С–С в этане $k^{(0)} = 7.02 \cdot 10^6$ и этилене $k^{(1)} = 14.2 \cdot 10^6 c m^{-2}$ [21], а также приведенным выше конкретным видом функций $\gamma_q(\tilde{R}_q)$ и $\tilde{R}_q(\tilde{P}_q)$, Дядюша и Лутошкин [22] из (24) и (25) получили $\beta_1 = -0.55$ и $\beta_2 = -0.10$ эв. Ими же для β_0 найдено значение $\beta_0 = -2.7$ эв, которое обеспечивает хорошее согласие между экспериментальными и расчетными значениями равновесных длин связей и энергий возбуждения $S_0 \rightarrow S_1$ и $S_0 \rightarrow T_1$ в молекулах бутадиена, гексатриена и октатетраена [23]. Эти же значения параметров β_0 , β_1 и β_2 вполне оправдали себя при оценке силового поля бензола, бутадиена и гексатриена [22], нафталина [24], антрацена, пирена и коронена [25], бензильного радикала [26] и были использованы нами для расчета равновесной конфигурации последнего.

Равновесные порядки связей вычислялись на самосогласованных решениях фокиана Ω для состояний с полуоткрытыми оболочками без орбитального вырождения. В отличие от [27, 28] использовался другой частный случай общего выражения для фокиана такого типа [29], а именно:

$$\boldsymbol{\Omega} = \boldsymbol{h}^{core} + \boldsymbol{J}^{T} - \frac{1}{2}\boldsymbol{K}^{T} + \frac{1}{2}(\boldsymbol{I} - \boldsymbol{P}^{T})\boldsymbol{K}^{O}(\boldsymbol{I} - \boldsymbol{P}^{T}) - (\boldsymbol{I} - \boldsymbol{P}^{T} + \boldsymbol{P}^{O})\boldsymbol{K}^{O}(\boldsymbol{I} - \boldsymbol{P}^{T} - \boldsymbol{P}^{O}), \quad (27)$$

где *I* – единичная матрица.

В качестве начального приближения для расчетов с варьированием геометрии (ВГ) брались результаты, полученные стандартным методом ППП с фокианом (27). Длина связи R_{cc} принималась равной 1.4 Å, все углы \angle ССС равными 120°, а интеграл β равным β_0 . Нумерация атомов, как всегда, соответствует присоединению метиленовой группы $C_{(7)}H_2$ к атому C_1 .

Согласование по геометрии выполнялось двумя методами без изменения первоначальных углов \angle ССС. Согласно Дьюару и Глейчеру (ДГ) [30], проводилось согласование $\beta_{\mu\nu}$ и $P_{\mu\nu}$ при неизменных начальных значениях $\gamma_{\mu\nu}$ и $R_{\mu\nu}$ (метод ППП-ДГ). Согласовывались также все параметры $\beta_{\mu\nu}$, $R_{\mu\nu}$ и $\gamma_{\mu\nu}$ в зависимости от $P_{\mu\nu}$ (метод ППП-ВГ) без изменения первоначальных углов \angle ССС. В последнем случае фенильная группа бензильного радикала получается незамкнутой. Для усреднения этого эффекта расчет методом ППП-ВГ проводился для трех разных последовательностей задания координат атомов: 1234567 (стандартная последовательность), 3456127 и 4561237. Результаты расчетов показывают, что остальные возможные последовательности (без прерывания порядка следования атомов в кольце) сводятся к трем указанным выше. Результаты расчета энергии и порядков связи указанными методами приведены в табл. 1.

Таблица 1

			1						
Метол	$-E^{\pi}$ as	$P_{\mu\nu}$							
тегод	L , 50	1–2	1–6	1–7	2–3	5–6	3–4	4–5	
ППП	214.508	0.5883	0.5883	0.4730	0.6824	0.6824	0.6564	0.6564	
ППП-ДГ	215.125	0.5913	0.5913	0.4626	0.6831	0.6831	0.6561	0.6561	
ΠΠΠ-ΒΓ:									
1234567	214.902	0.5918	0.5951	0.4559	0.6844	0.6813	0.6549	0.6576	
3456127	214.753	0.5931	0.5929	0.4569	0.6832	0.6832	0.6560	0.6562	
4561237	214.614	0.5914	0.5941	0.4572	0.6854	0.6817	0.6537	0.6580	

Заселенность связей и π-электронная энергия бензильного радикала, рассчитанные разными методами в одноконфигурационном приближении с одной открытой оболочкой

Полученные результаты позволяют оценить пределы отклонения углов между связями от 120° и относительный вклад углов в изменение геометрии по сравнению с длинами связей. Для этой цели воспользуемся выражением [31] для отклонения $\delta \varphi$ угла \angle ССС от 120°, образованного сторонами с длиной $R_0 + \delta R_1$ и $R_0 + \delta R_2$ и опирающегося на расстояние между атомами через один, равное $2\sqrt{3}R_0 + \delta \angle$, а именно:

$$\delta \varphi = \left[2 \cdot \delta \angle -\sqrt{3} \left(\delta R_1 + \delta R_2 \right) \right] / R_0 \tag{28}$$

или для эквивалентных по симметрии связей ($\delta R_1 = \delta R_2 = \delta R$)

$$\frac{\delta\varphi}{\delta R} = \frac{2}{R_0} \left(\frac{\delta \angle}{\delta R} - \sqrt{3} \right). \tag{29}$$

Воспользовавшись порядками связей, рассчитанными методом ППП-ВГ (табл. 1), и соотношением (14), получим, что $0.0011 \le |\delta R_1| (|\delta R|) \le 0.0104$ и $0.0060 \le |\delta R_2| \le 0.0350$. Величину $\delta \angle$ оценим как различие в длинах эквивалентных по симметрии связей. Тогда аналогичным образом получим, что $0.000010 \le |\delta \angle| \le 0.000774$. В результате из (28) и (29) при $R_0 = 1.4 \text{ Å}$ получаются следующие пределы возможного изменения $\delta \varphi$ и $\delta \varphi / \delta R$, а именно:

$$23' \le |\delta \varphi| \le 3^{\circ} 13'$$
 и $0.026 \le |\delta \varphi/\delta R| \le 0.043.$

Последнее неравенство указывает на пренебрежимо малую роль углов в изменении геометрии сравнительно с длинами связей. Полученная оценка возможных пределов изменения углов не противоречит многочисленным экспериментальным данным по геометрии сопряженных углеводородов (см. также [31]).

Длины связей в бензильном радикале вычислялись из соответствующих порядков, усредненных по результатам трех расчетов методом ППП-ВГ (табл. 1). Окончательные результаты [11] приведены курсивом в табл. 2 и сопоставлены с другими известными результатами, в том числе с наиболее точными результатами неэмпирического расчета с полной оптимизацией по геометрии бензильного радикала в стартовой геометрии $C_s^{2}B_1$.

Таблица 2

$C_1 - C_2$	$C_2 - C_3$	$C_3 - C_4$	$C_1 - C_7$	Лит-ра
1.410	1.394	1.399	1.435	[11]
1.3952	1.3798	1.3839	1.4466	ab initio*
1.430	1.386	1.406	1.391	[7]
1.417	1.391	1.401	1.401	[32]
1.464	1.386	1.416	1.380	[33]
1.424	1.371	1.392	1.365	[34]

Длины связей в бензильном радикале, вычисленные разными методами, Å

* ОХФО/ 6-31G(2df,p). Более подробные сведения приводятся ниже.

Однозначное определение углов в рамках предлагаемого нами метода выполнить труднее и в свете сказанного выше в этом фактически нет настоятельной необходимости. Мы поступали следующим образом. Предполагалось, что наибольшему возмущению подвергались либо углы $\angle C_2 C_1 C_6$ и $\angle C_1 C_2 C_3$, либо $\angle C_1 C_2 C_3$ и $\angle C_2 C_3 C_4$. Остальные углы, не эквивалентные указанным по симметрии, полагались равными 120°. Критерием для выбора между двумя возможными моделями наибольших возмущений углов служила энергия бензильного радикала, вычисленная в том же приближении, как и в методе ППП-ВГ, но с фокианом из [27, 28], который для физически измеримых величин приводит к тем же результатам, что и оператор (27). Расчет проводился по программе РРР-2 [35]. Оказалось, что первая модель (возмущение углов $\angle C_2 C_1 C_6$ и $\angle C_1 C_2 C_3$) менее устойчива, чем вторая на 0.03%. Малость этой величины подтверждает выводы, полученные выше о пренебрежимо малой роли углов в изменении геометрии сравнительно с длинами связей. Результаты расчета энергии и порядков связей для второй принятой окончательно в качестве равновесной конфигурации модели, бензильного радикала, приведены курсивом в первой строке табл. 2. Значения соответствующих возмущенных углов получаются равными:

 $\angle C_1 C_2 C_3 = 119^{\circ}37'$ и $\angle C_2 C_3 C_4 = 120^{\circ}23'$.

Отклонения от 120° не превосходят пределы, оцененные выше.

В табл. 3 даны окончательные координаты атомов углерода бензильного радикала.

Таблица 3

Декартовы координаты атомов углерода бензильного радикала в равновесной конфигурации, Å

μ	X	у
1	2.79850	0
2	2.09350	-1.22105
3	0.69950	-1.21153
4	0	0
5	0.69950	1.21153
6	2.09350	1.22105
7	4.23350	0

Коэффициенты *С*_{µi} базисных орбиталей равновесной конфигурации бензильного радикала, используемые далее для расчетов в многоконфигурационном приближении, даны в табл. 4.

Таблица 4

Коэффициенты *С*_{µi} базисных орбиталей равновесной конфигурации бензильного радикала, вычисленные методом ОХФО с фокианом [27, 28]*

$i \setminus \mu$	1	2	3	4	7
4	0	-0.285024	0	0.226000	0.886818
3	0	-0.5	-0.5	0	0
2	0.536921	0.199241	-0.325358	-0.586192	0.277460
1	0.460126	0.411926	0.379661	0.361719	0.172606

*Остальные коэффициенты определяются пространственной симметрией и свойствами альтернантности бензильного радикала.

Приводим также наиболее точные сведения о геометрии бензильного радикала, полученные *ab initio* методом ОХФО с расширенным базисом гауссовых функций 6-31G(2df,p), включающим также поляризационные функции, и уже частично упомянутые в табл. 2.

Известные нам результаты вычисления длин связей в бензильном радикале собраны в табл. 2. По-видимому, первая оценка была сделана Пинни и Кинчем еще в 1938 г. [36] на основе простейших вариантов методов Хюккеля и ВС. Наиболее длинной оказалась связь C_1-C_2 . Такой же результат получили Жидомиров и Счастнев [7].

Таблица 5

Декартовы координаты атомов бензильного радикала в результате расчета *ab initio* с полной 3D оптимизацией по геометрии и с выбором стартовой геометрии $C_s^{2}B_1$, Å

Атом	x	у	Z.
C ₁	0.9667	0.0000	0.0000
C ₂	0.2493	1.1966	0.0000
C ₃	-1.1305	1.1954	0.0000
C_4	-1.8278	0.0000	0.0000
C ₅	-1.1305	-1.1954	0.0000
C ₆	0.2493	-1.1966	0.0000
C ₇	2.4134	0.0000	0.0000
H ₈	0.7830	2.1311	0.0000
H ₉	-1.6644	2.1293	0.0000
H ₁₀	-2.9031	0.0000	0.0000
H ₁₁	-1.6644	-2.1293	0.0000
H ₁₂	0.7830	-2.1311	0.0000
H ₁₃	2.9636	0.9207	0.0000
H ₁₄	2.9636	-0.9207	0.0000

Таблица 6

Равновесные длины связей в бензильном радикале в результате расчета *ab initio* с полной 3D оптимизацией по геометрии*, Å

$C_1 - C_2$	$C_1 - C_7$	C ₂ –C ₃	C ₃ –C ₄	C ₂ –H ₈	С3-Н9	$C_4 - H_{10}$	C7-H13
1.3952	1.4466	1.3798	1.3839	1.0762	1.0757	1.0753	1.0726

^{*3}D оптимизация показала, что остальные длины связей совпадают с приведенными в таблице в соответствии с симметрией C_{2v} .

Ватман-Грайчар [32], воспользовавшись хюккелевскими порядками связей и зависимостью R_{иν} от P_{иν} по Коулсону [37] пришла к такому же выводу. Халил [33] бензильного оптимизировали геометрию радикала И Шаншал полуэмпирическим методом MINDO-3/FORCES, а Нишимото et al [34] градиентным методом в рамках CNDO, и обе пользовались группы подтвердили наибольшую длину для связи С₁–С₂. Это ошибочное предсказание, которое влечет за собой нарушение всей естественной геометрии бензильного радикала. Наиболее длинной связью С-С в бензильном радикале следует ожидать связь С₁-С₇, поскольку это экзоциклическая связь.

$\angle C_1 C_2 C_3$	120.896°	$\angle C_1 C_2 H_8$	119.320°
$\angle C_2 C_3 C_4$	120.306°	$\angle C_2 C_3 H_9$	119.701°
$\angle C_3C_4C_5$	119.489°	$\angle C_3 C_4 H_{10}$	120.255°
$\angle C_2 C_1 C_6$	118.107°	$\angle C_1 C_7 H_{13}$	120.865°
$\angle C_2 C_1 C_7$	120.946°	$\angle H_{13}C_7H_{14}$	118.271°

Таблица 7 Углы между связями в бензильном радикале в результате расчета *ab initio* с полной 3D оптимизацией по геометрии*

*3D оптимизация показала, что остальные углы между связями совпадают с приведенными в таблице в соответствии с симметрией $C_{2\nu}$.

На это обстоятельство обратили внимание еще Шаг и Филлипс [38] при реинтерпретации электронного спектра поглощения бензильного радикала. Наибольшая длина связи именно C_1-C_7 следовала уже из наших π -электронных расчетов бензильного радикала, согласно которым порядок этой связи является наименьшим при любой длине конфигурационного базиса (табл. 11/§ 2.7.3.7.2).

Предлагаемый нами в этом разделе метод определения равновесной конфигурации бензильного радикала с явным учетом деформации его σ -остова экзоциклическую связь C₁–C₇ предсказывает как наиболее длинную в бензильном радикале и равную (табл. 2) 1.44 (1.45), следующей по длине идет связь C₁–C₂, равная 1.41 (1.40), далее – связь C₃–C₄, равная 1.40 (1.38), и наиболее короткой является связь C₂–C₃, равная 1.39 (1.38) Å, где в скобках приведены соответствующие результаты самых высокоточных на сегодняшний день расчетов *ab initio* (табл. 6). Совпадение с результатами самого совершенного неэмпирического расчета по длинам связей C–C поразительное.

П-7.2. Многоконфигурационные расчеты в *π*-приближении бензильного радикала в его равновесной геометрии вплоть до полного КВ

Вычисленная таким образом равновесная геометрия бензильного радикала (табл. 3) использовалась далее в многоконфигурационных расчетах в π -приближении вплоть до полного КВ. Эта разработанная нами техника КВ с перепоручением компьютеру выводить соответствующие формулы и далее вычислять по ним матричные элементы КВ между конфигурациями произвольной кратности возбуждения подробно изложена в § 2.7.3.7 вместе с подробными результатами для равносвязной геометрии бензильного радикала. Сейчас мы приведем аналогичные результаты, полученные этим же методом КВ вплоть до полного КВ, но для равновесной геометрии бензильного радикала

(табл. 3), и обсудим эти результаты в сравнении с аналогичными данными для равносвязной модели.

Коэффициенты $C_{\mu i}$ базисных π -орбиталей бензильного радикала в его равновесной геометрии, вычисленные методом ОХФО и используемые для построения конфигураций, приведены в табл. 4; аналогичные коэффициенты для равносвязной геометрии бензильного радикала даны в § 2.7.3.7 /табл. 6.

Отклонение энергии основного состояния равновесного бензильного радикала, вычисленной с разными наборами конфигураций, от точного значения в случае полного КВ иллюстрируется данными табл. 8. Аналогичные расчетные данные для равносвязной модели приведены в § 2.7.3.7.2 /табл. 10. Эти же результаты в графическом виде показаны на рис. 1.

Таблица 8

Изменение энергии основного состояния бензильного радикала в равновесной геометрии по мере уточнения пробной волновой функции, *эв**

Ψ	G	Ι	II	III	IV	V	F
E	0.786185	0.631662	0.035619	0.012193	0.000156	0.000031	0

* За ноль отсчета принята энергия бензильного радикала, вычисленная на точной волновой функции модельного гамильтониана (257/§ 2.7.3.7) и равная –215.525771 эв.

Энергия корреляции в равновесной модели, равная -0.786185 эв, по модулю ощутимо меньше ее абсолютного значения в случае равносвязной модели (-0.929722 эв). Связано это прежде всего с тем, что в случае равновесной геометрии для $|\overline{\beta}_{cc}|$ использовано большее значение по сравнению с равносвязной моделью. Из табл. 8 в сравнении с табл. 10/§ 2.7.3.7.2 также следует, что при уточнении пробной волновой функции за счет одно-, двух- и трехкратно возбужденных конфигураций энергия корреляции учитывается соответственно на 20, 95 и 98%, т. е. в несколько большей степени, чем для равносвязной модели. Это обстоятельство свидетельствует о том, что одноконфигурационное приближение для равновесной геометрии бензильного радикала ближе к одночастичной модели по сравнению с аналогичным приближением для равносвязной геометрии за счет большего значения $|\overline{\beta}_{CC}|$. Далее мы увидим, что эта особенность равновесной геометрии сказывается на характере изменений всех свойств бензильного радикала по мере уточнения волновой функции сравнительно с равносвязной моделью.

О заметном улучшении волновой функции за счет включения двухвозбужденных конфигураций свидетельствует также величина интеграла перекрывания *S* между точной и приближенной функциями (табл. 9).

Рис. 1. Изменение энергии корреляции бензильного радикала в зависимости от точности пробной волновой функции для равносвязной геометрии (β_{CC} = -2.274 эв) и для равновесной ($\overline{\beta}_{CC}$ = -2.765 эв).

Таблица 9

Интеграл перекрывания *S* между волновыми функциями метода КВ разной точности для бензильного радикала в равновесной геометрии*

Ψ	G	Ι	II	III	IV	V	F
G	1	0.984387	0.966962	0.963599	0.962638	0.962613	0.962610
Ι		1	0.979678	0.978342	0.977281	0.977270	0.977266
II			1	0.999311	0.999080	0.999071	0.999070
III				1	0.999759	0.999757	0.999755
IV					1	0.999998	0.999998
V						1	1.000000
F							1

* Матрица перекрывания S симметрична, поэтому дан её только один треугольник.

Если при учете основной конфигурации и всех одновозбужденных конфигураций отклонение интеграла *S* от единицы составляет соответственно 0.0374 и 0.0227, то включение двухвозбужденных конфигураций уменьшает это отклонение до 0.0009. Дальнейшее уточнение в результате учета трехкратно возбужденных конфигураций уже не столь результативно, если в качестве критерия добротности пробной волновой функции взять величину её проекции на точное значение функции (табл. 9) или энергию системы (рис. 1).

Изменение заселенности связей по мере уточнения волновой функции показано в табл. 10. Аналогичные данные для равносвязной модели приведены в табл. 11/§ 2.7.3.7.2.

Таблица 10

Недиагональные элементы одночастичной матрицы плотности *Р*_{µν} бензильного радикала в равновесной геометрии, вычисленные на волновых функциях разной точности*

ΠV		Конфигурационный набор								
μν	G	Ι	II	III	IV	V	F			
12	0.5930	0.5605	0.5524	0.5478	0.5472	0.5471	0.547120			
14	-0.2966	-0.2680	-0.2570	-0.2525	-0.2516	-0.2516	-0.251603			
17	0.4568	0.5201	0.5096	0.5171	0.5164	0.5165	0.516478			
23	0.6831	0.6915	0.6752	0.6743	0.6732	0.6732	0.673219			
25	-0.3169	-0.3037	-0.2846	-0.2814	-0.2802	-0.2802	-0.280227			
34	0.6561	0.6447	0.6308	0.6285	0.6276	0.6275	0.627524			
37	-0.0495	-0.0701	-0.0661	-0.0676	-0.0674	-0.0674	-0.067377			

* Остальные элементы либо строго равны нулю, либо совпадают с приведенными значениями по соображениям симметрии. Электронная заселенность каждого атома *P*_{µµ} строго равна единице.

Если в случае равносвязной модели для вычисления длин связей с точностью примерно $5 \cdot 10^{-4}$ Å достаточно было рассчитать порядки связей с учетом в волновой функции только одновозбужденных конфигураций, то в равновесной геометрии, как видно из табл. 10 и соотношения (14), вычисление порядков связей на волновых функциях *G*, I и II приводит к погрешности вычисления длин не менее $1 \cdot 10^{-2}$, $3 \cdot 10^{-3}$ и $1 \cdot 10^{-3}$ Å относительно вычислений на точной функции *F*. Лишь учет трехкратно возбужденных конфигураций обеспечивает приемлемую точность оценки длин связей около $2 \cdot 10^{-4}$ Å.

Как и в случае равносвязной геометрии (табл.12/§ 2.7.3.7.2) спиновая заселенность атомов и связей (табл. 11) существенно изменяется по мере уточнения волновой функции.

Из табл. 11 и уравнения МакКоннела с константой $Q_{CH}^{H} = 22$ Э следует, что в одноконфигурационном приближении погрешность оценки расщепления на протоне за счет приближенного вычисления волновой функции может достичь значения 2.1 Э. Учет одновозбужденных конфигураций уменьшает эту погрешность до 0.3, а двухвозбужденных – лишь до 0.2 Э и только включение в волновую функцию трехкратно возбужденных конфигураций обеспечивает оценку расщепления с приемлемой точностью около 0.03 Э.

Таблица 11

111	Конфигурационный набор								
μν	G	Ι	II	III	IV	V	F		
11	0	-0.0835	-0.0885	-0.0945	-0.0951	-0.0951	-0.095112		
22	0.0812	0.1585	0.1547	0.1641	0.1639	0.1640	0.163993		
33	0	-0.0473	-0.0489	-0.0550	-0.0552	-0.0552	-0.055212		
44	0.0511	0.1440	0.1387	0.1472	0.1472	0.1473	0.147255		
77	0.7864	0.7171	0.7381	0.7291	0.7304	0.7303	0.730295		
13	0	0.0162	0.0177	0.0183	0.0183	0.0183	0.018299		
24	-0.0644	-0.1085	-0.0995	-0.1021	-0.1016	-0.1016	-0.101600		
26	0.0812	0.0994	0.0874	0.0872	0.0868	0.0868	0.086802		
27	-0.2528	-0.2371	-0.2292	-0.2278	-0.2272	-0.2272	-0.227197		
35	0	0.0054	0.0067	0.0081	0.0080	0.0080	0.007995		
47	0.2004	0.1992	0.1853	0.1843	0.1833	0.1833	0.183340		

Элементы матрицы спиновой заселенности $\rho_{\mu\nu}$ бензильного радикала в равновесной геометрии, вычисленные на волновых функциях разной точности*

* Остальные элементы либо строго равны нулю, либо совпадают с приведенными значениями по соображениям симметрии.

Разность «экспериментальных» значений спиновой заселенности *пара-* и *орто-*атомов углерода $\rho_{44} - \rho_{22}$ составляет примерно +0.45. Вычисление в одноконфигурационном приближении дает для этой разности значение с противоположным знаком, равное –0.030. Это означает, что простое уравнение МакКоннела может привести к погрешности оценки расщепления, равной 1.6 Э, если спиновая заселенность вычислена в одноконфигурационном приближении. Вместе с ранее сделанной оценкой погрешности за счет одноконфигурационной аппроксимации волновой функции это составляет 3.7 Э. Последовательное уточнение волновой функции путем включения одно-, двух- и трехкратно возбужденных конфигураций снижает суммарную погрешность соответственно до 1.6, 1.5 и 1.4 Э. Дальнейший учет

628

конфигураций более высокой кратности возбуждения уже ничего не изменяет. Разность $\rho_{44} - \rho_{22}$ остается отрицательной вопреки экспериментальным данным.

Таким образом, как бы точно ни была вычислена волновая функция в π -электронном приближении ни для равносвязной геометрии бензильного радикала, ни для равновесной невозможно получить правильный знак разности спиновой заселенности *пара*- и *орто*-атомов углерода, если только пользоваться простым уравнением МакКоннела.

В заключение рассмотрим свойства естественных спин-орбиталей $N^{\sigma}_{\mu i}$ ($\sigma = \alpha, \beta$) бензильного радикала в равновесной геометрии, которые можно использовать для ускорения сходимости ряда КВ. Для спина α числа заполнения n_{α} естественных спин-орбиталей приведены в табл. 12 в зависимости от точности волновой функции, на которой вычислялись матрицы плотности.

Таблица 12

Орби-	Ψ	Орби-	Ψ					
таль	Ι	таль	II	III	IV	V	F	
$5b_{2}$	0.0011	$5b_2$	0.0066	0.0072	0.0075	0.0075	0.00754	
$2a_2$	0.0032	$2a_2$	0.0221	0.0244	0.0255	0.0255	0.02548	
$4b_2$	0.0116	$4b_{2}$	0.0238	0.0257	0.0267	0.0267	0.02667	
$3b_2$	0.9841	$3b_2$	0.9742	0.9718	0.9708	0.9708	0.97077	
$2b_2$	1.0000	$1a_2$	0.9838	0.9826	0.9815	0.9815	0.98151	
$1a_2$	1.0000	$2b_2$	0.9931	0.9923	0.9921	0.9921	0.99205	
$1b_2$	1.0000	$1b_2$	0.9964	0.9961	0.9960	0.9960	0.99597	

Числа заполнения *n*_{*α*} естественных спин-орбиталей бензильного радикала в равновесной геометрии, вычисленные на волновых функциях разной точности

Естественные спин-орбитали для одноконфигурационной аппроксимации волновой функции совпадают с ХФ орбиталями (табл. 4) с точностью до унитарного преобразования. Расположив орбитали (табл. 13) в порядке последовательного увеличения соответствующих чисел заполнения n_{σ} (табл. 12) и сравнив их с аналогичными данными для равносвязной модели бензильного радикала (табл. 13/§ 2.7.3.7.2), можно заметить, что для равносвязной модели В отличие ОТ равновесной геометрии ΧФ последовательность расположения орбиталей по симметрии, а именно: $1b_2$, $2b_2$, 1a₂, 3b₂, 2a₂, 4b₂, 5b₂ (табл. 13/§ 2.7.3.7.2) восстанавливается, начиная с учета при построении волновой функции трехкратно возбужденных конфигураций. Для равновесной модели эта последовательность нарушена вплоть до полного КВ (табл. 12, 13). Это обстоятельство нужно учитывать при записи β-спин-естественных орбиталей, в частности, при выполнении КВ в базисе естественных орбиталей.

По сравнению с равносвязной моделью бензильного радикала числа заполнения для разных спинов в меньшей степени отличаются для разрыхляющих и связывающих орбиталей, заполненных в одноконфигурационном приближении одинаково. Точно так же учет КВ в равновесной модели меньше влияет на отклонение чисел заполнения от единицы или нуля.

Таблица 13

Ψ	μ	$5b_2$	$1a_2$	$4b_2$	$3b_2$	$2b_2$	$1a_2$	$1b_2$
	1	0.29271	0.00000	-0.67929	-0.05356	-0.61039	0.00001	0.27827
Ι	2	-0.33352	0.48578	0.27183	-0.29580	-0.33268	-0.51382	0.34161
	3	0.46406	-0.51383	0.21422	0.01742	0.18805	-0.48579	0.45065
	4	-0.50399	-0.00000	-0.41876	0.24418	0.48513	-0.00002	0.52503
	7	-0.08450	-0.00000	0.35162	0.87287	-0.31623	0.00000	0.08557
	1	0.42417	-0.00000	-0.60845	-0.32663	0.21370	0.00000	0.54545
	2	-0.38270	0.48376	0.20003	-0.40741	-0.17121	-0.51573	0.34385
II	3	0.41141	-0.51573	0.30463	0.14404	-0.38801	-0.48376	0.25815
	4	-0.40694	0.00000	-0.51302	0.53804	-0.46829	0.00000	0.24985
	7	-0.15179	-0.00000	0.31777	0.47996	0.61262	0.00000	0.51992
	1	0.42554	-0.61058	-0.00000	-0.30666	0.25108	-0.00000	0.53762
	2	-0.38114	0.19643	0.48138	-0.40834	-0.14355	-0.51795	0.35889
III	3	0.41219	0.30585	-0.51795	0.13679	-0.37699	-0.48138	0.27519
	4	-0.40627	-0.50911	0.00000	0.53359	-0.46892	-0.00000	0.26674
	7	-0.15340	0.32210	-0.00000	0.50034	0.62580	-0.00000	0.48037
	1	0.42991	-0.60781	-0.00000	-0.31669	0.21983	-0.00000	0.54509
	2	-0.38249	0.19376	0.48131	-0.40857	-0.16772	-0.51802	0.34799
IV	3	0.41009	0.30884	-0.51802	0.14179	-0.38628	-0.48131	0.25909
	4	-0.40255	-0.51189	-0.00000	0.54039	-0.47036	-0.00000	0.25034
	7	-0.15552	0.32045	0.00000	0.48334	0.61299	-0.00000	0.51357
	1	0.42999	-0.60779	-0.00000	-0.31651	0.22009	-0.00000	0.54506
V	2	-0.38249	0.19370	0.48129	-0.40857	-0.16753	-0.51803	0.34812
	3	0.41008	0.30888	-0.51803	0.14174	-0.38621	-0.48129	0.25919
	4	-0.40249	-0.51190	-0.00000	0.54035	-0.47040	-0.00000	0.25041
	7	-0.15556	0.32047	0.00000	0.48353	0.61305	-0.00000	0.51429
F	1	0.42998	-0.60779	-0.00000	-0.31655	0.21986	-0.00000	0.54513

Естественные *α*-спин-орбитали бензильного радикала в равновесной геометрии, вычисленные на волновых функциях разной точности*

2	-0.38249	0.19370	0.48129	-0.40858	-0.16769	-0.51803	0.34803
3	0.41008	0.30888	-0.51803	0.14175	-0.38630	-0.48129	0.25905
4	-0.40248	-0.51190	-0.00000	0.54037	-0.47046	-0.00000	0.25026
7	-0.15556	0.32046	0.00000	0.48347	0.61288	-0.00000	0.51356

* Коэффициенты для остальных атомов определяются по симметрии.

П-7.3. Расчет и интерпретация колебательного спектра бензильного радикала

Расчет колебательных спектров свободных радикалов на основе силовых постоянных и геометрии их молекул, полученных из квантовомеханических расчетов, представляет немалый интерес, поскольку экспериментальное исследование свободных радикалов осложнено их нестабильностью и высокой реакционной способностью. Обычный подход к вычислению силовых постоянных, основанный на решении обратной спектроскопической задачи, не применим в случае свободных радикалов из-за обычной для этих объектов неполноты экспериментальных данных. Кроме того, как показали наши расчеты альтернантных радикалов [16], их силовое поле имеет необычный характер, и выбор нулевого приближения для последующей вариации по параметрам довольно сложен.

Из углеводородных сопряженных радикалов в настоящее время более или менее сносно изучен колебательный спектр бензильного радикала [32, 39 – 41]. Экспериментальные результаты, полученные разными авторами, лишь в целом удовлетворительно согласуются между собой. Для полной же и надежной интерпретации колебательного спектра бензильного радикала необходимо выполнить расчет его частот и форм нормальных колебаний. Предварительно для этого следует вычислить силовые постоянные и длины связей бензильного радикала квантовомеханическим методом.

В разделе П-7.1 расчет равновесных длин связей бензильного радикала проводился в приближении ППП с варьированием резонансного интеграла β , заданного в виде степенной функции от порядка связи (23). Харрисом [42] отмечена непоследовательность такого подхода, проявляющаяся в появлении дополнительного члена \Im (13) в выражении для фокиана. Непротиворечивое обоснование такого способа оценки длин связей можно провести, варьируя выражение для полной энергии рассматриваемой системы по геометрическим параметрам. В адиабатическом приближении показано [43], что из условия экстремума полной энергии в этом случае следует определенное соотношение между длиной и порядком связи. Поэтому формально приближение «вариации β » соответствует некоторому учету электронно-колебательного

взаимодействия, и появление дополнительного члена в выражении для фокиана не должно вызывать недоразумений. В работе [43] также показано, что более полному учету электронно-колебательного взаимодействия соответствует решение уравнений ССП с модельным гамильтонианом, зависящим от геометрических параметров молекулярной системы.

Оценка равновесной геометрии четных полиенов с варьированием длин связей проведена в [44]. Для молекулярных систем с циклами при выполнении подобных расчетов возникают трудности, связанные с наличием соотношений между колец (условия дополнительных длинами связей замыкания цикла). Поэтому длины связи вычислялись в [16] в приближении «вариации β ».

Расчет геометрии бензильного радикала с варьированием длин связей (П-7.1) выполнялся нами следующим образом. Для заданного расположения атомов вычисления проводились так же, как и для линейных полиенов. Вычисления повторялись для всевозможных циклических перестановок атомов бензильного радикала и результаты усреднялись. Окончательные значения длин связей приведены в табл. 2 и показаны на рис. 2.

Рис. 2. Естественные колебательные координаты и длины связей в бензильном радикале (табл. 2).

На рис. 2 также даны обозначения естественных колебательных координат в бензильном радикале. Углы γ_4 , γ_5 , γ_6 , γ_7 , γ_8 , γ_9 , γ_{10} , γ_{11} , γ_{12} , γ_{19} , γ_{20} , γ_{21} были положены нами равными 120°, тогда как выполненный намного позже высокоточный неэмпирический расчет дает для них значения, несколько отличающиеся от 120° (табл. 7) с особенно сильными отклонениями для углов γ_{16} и γ_{20} . Остальные углы в наших расчетах были определены из условий замыкания цикла.

Силовые постоянные бензильного радикала, вычисленные в [16], свидетельствуют о том, что его силовое поле в целом довольно близко к силовому полю молекулы бензола, рассчитанному [45] в том же приближении (табл. 14).

Таблица 14

K	C6	H6	C7H7	K	C6	C7H7	
\mathbf{n}_{pq}	Расч. [45]	Эксп. [46]	[16]	R _{pq}	Расч. [45]	Эксп. [46]	[16]
<i>K</i> ₁₁	10.82	10.82 10.04		K_{16}	0.73	1.17	0.41
<i>K</i> ₂₂	10.82 10.04		10.85	K_{17}	—	—	0.51
<i>K</i> ₃₃	10.82	10.04	10.67	<i>K</i> ₂₃	0.73	1.17	0.82
K ₇₇			8.76	$K_{24} = K_{35}$	-0.56	-0.49	-0.57
<i>K</i> ₁₂	0.73	1.17	0.68	<i>K</i> ₂₅	0.45	0.53	0.49
<i>K</i> ₁₃	-0.56	-0.49	-0.51	K ₂₇	—	—	-0.12
$K_{14} = K_{36}$	0.45	0.53	0.36	<i>K</i> ₃₄	0.73	1.17	0.76
$K_{15} = K_{26}$	-0.56	-0.49	-0.43	<i>K</i> ₃₇	_	_	0.08

Силовые постоянные бензильного радикала и бензола K_{pa} , $10^6 c M^{-2}$

Однако для экзоциклической связи силовые постоянные взаимодействия ее с фенильным кольцом существенно меньше и быстро обывают для дальних взаимодействий. Диагональная силовая постоянная этой связи *К*₇₇ также меньше остальных диагональных констант. Эти особенности, очевидно, должны проявиться в колебательном спектре бензильного радикала.

При расчете колебательного спектра трудность представляет выбор деформационных силовых постоянных и силовых постоянных взаимодействия углеродного кольца со связями СН; достаточно простые квантовомеханические методы для их расчета отсутствуют. Вычисленные ранее [45] силовые постоянные связей СС ряда углеводородов близки к экспериментальным данным: для молекулы бензола см. табл. 14. Недостающие силовые постоянные, по-видимому, могут быть найдены обычным скейлингом. Поскольку угловые силовые постоянные и силовые константы взаимодействия

633

связей СС/СН слабо зависят от степени делокализации π-электронов, то можно считать, что они одинаковы для молекулы бензола и для бензильного радикала. выбрать из имеющихся в литературе решений обратной Их можно колебательной задачи для молекулы бензола с силовыми постоянными связей СС, близкими к величинам, полученным из квантовомеханического расчета. Результаты, приведенные в табл. 14, свидетельствуют об удовлетворительном согласии вычисленных в [45] силовых постоянных бензола с таковыми, определенными в работе [46]. Поэтому для нашего расчета колебательного спектра бензильного радикала деформационные силовые постоянные и силовые константы взаимодействия углеродного кольца со связями СН были взяты из этой работы. Поскольку последние соответствуют несколько заниженной диагональной силовой константе бензола сравнению величине по рассчитанной нами (примерно на 7%), при вычислении колебательного спектра бензильного радикала его диагональные силовые постоянные были изменены в отношении

$$K_{C_{7}H_{7}} = K_{C_{7}H_{7}}^{meop} \times \frac{K_{C_{6}H_{6}}^{\mathfrak{s}\kappa n}}{K_{C_{6}H_{6}}^{meop}}.$$

Недиагональные силовые постоянные для соседних взаимодействий были увеличены на $0.2 \cdot 10^6 \ cm^{-2}$, что соответствует недиагональной силовой постоянной простой σ -связи [47]. Для фрагмента CH₂ бензильного радикала были взяты силовые постоянные этилена из [48]. Окончательная сводка силовых констант, использованная в наших расчетах бензильного радикала дана в табл. 15.

Таблица 15

Окончательный набор силовых постоянных,
использованный для расчета колебательного спектра
бензильного радикала*, 10 ⁶ <i>см</i> ⁻²

$K_{q_1} = 9.5172$	$K_{q_2} = 10.0645$	$K_{q_3} = 9.8975$	$K_{q_7} = 8.1258$
$K_{q_8} = 7.8863$	$K_{q_{13}} = 7.8863$	$H_{q_1q_2} = 0.8800$	$H_{q_1q_2} = -0.5100$
$H_{q_1q_4} = 0.3600$	$H_{q_1q_5} = -0.4340$	$H_{q_1q_6} = 0.6100$	$H_{q_1q_7} = 0.7050$
$H_{q_2q_3} = 1.0230$	$H_{q_2q_4} = -0.5750$	$H_{q_2q_5} = 0.4860$	$H_{q_2q_7} = -0.1240$
$H_{q_3q_4} = 0.9570$	$H_{q_3q_7} = 0.0840$	$H_{q_8q_9} = 0.0265$	$H_{q_9q_{10}} = 0.0265$
$H_{q_7q_{13}} = 0.1000$	$H_{q_{13}q_{14}} = -0.0500$	$K_{\gamma_1} = 1.2264$	$K_{\gamma_2} = 0.6710$
$K_{\gamma_3} = 0.6710$	$K_{\gamma_{19}} = 0.7500$	$K_{\gamma_{20}} = 0.4500$	$A_{q_2\gamma_1} = 0.2347$
$A_{q_2\gamma_3} = 0.2430$	$A_{q_{\gamma\gamma_{19}}} = 0.4500$	$A_{q_{13}\gamma_{19}} = 0.5500$	$A_{q_{13}\gamma_{20}} = 0.3700$
$h_{\gamma_1\gamma_4} = -0.0591$	$h_{\gamma_{17}\gamma_{18}} = 0.1100$	$h_{\gamma_{17}\gamma_{21}} = -0.0400$	$h_{\gamma_{19}\gamma_{20}} = -0.0500$

* Остальные силовые постоянные выбираются по соображениям симметрии.

Значения частот плоских нормальных колебаний бензильного радикала и его двух дейтерированных аналогов, рассчитанные нами и установленные экспериментально разными исследователями, а также их отнесение согласно нашим расчетам, приведены в табл. 16.

Таблица 16

C	Ripoche [40]		Leach [39]		Watmann-Grajcar [41]			Наши расчеты [26]*			
и M	C7H7	C7D7	C7H7	C7D7	C7H7	C6H5CD2	C7D7	C7H7	C6H5CD2	C7D7	Форма
B ₁	362	300	360	307	361	321	307	391	352	337	γ(CCC)
A_1	527	499	526	502	531	516	502	517	500	490	γ(CCC)
B ₁	615	588	611	588	615	614	588	602	600	578	γ(CCC)
A_1	816	726	819	779	825	799	779	804	781	723	β (CCH)
B_1								989	763	753	β (CH ₂)
A_1	976	945	978	948	982	983	948	982	980	929	γ(CCC)
A_1	993		1013	799	1014	1018	834	1011	1011	813	Q(CC)
B_1			1094	834	1096	1082	834	1072	1069	789	β (CCH)
A_1	1143	834	1183	895	1187	1193	895	1161	1161	811	β (CCH)
B_1			1147	871	1150	1151	871	1172	1172	819	β (CCH)
A_1	1266	1242			1280	1275	1214	1268	1271	1200	Q(CC)
B_1								1327	1324	1023	β (CCH)
B ₁								1358	1356	1341	β (CCH)
B ₁	1423							1453	1451	1325	β (CCH)
A_1								1452	1050	1040	β (CH ₂)
A_1		1365	1435	1331	1437	1412	1331	1494	1492	1394	β (CCH)
B ₁	1537	1492	1542	1494	1544	1542	1493	1606	1605	1558	β (CCH)
A_1	1595		1593	1575	1600	1599	1575	1622	1621	1581	β (CCH)
A_1								2986	2111	2111	$q(CH_2)$
A_1								3044	3044	2220	<i>q</i> (CH)
B ₁								3046	3046	2223	<i>q</i> (CH)
A_1								3051	3051	2224	<i>q</i> (CH)
B ₁								3055	3055	2226	<i>q</i> (CH)
A_1								3061	3061	2228	<i>q</i> (CH)
B_1								3062	2221	2221	$q(CH_2)$

Фундаментальные частоты бензильного радикала (легкого и дейтерированного)

* Более полные экспериментальные данные, в том числе и по толуолу, а также более детальные сведения об отнесении частот можно найти в [26].

Как видно из этой таблицы, вычисленные нами значения частот колебаний кольца бензильного радикала неплохо согласуются с экспериментальными данными. Это позволяет надеяться, что предложенный нами метод оценки равновесных длин связей и силовых постоянных может быть полезен при решении колебательной задачи для свободных радикалов и молекул в триплетном состоянии, т. е. для молекулярных систем в состояниях с открытой оболочкой.

Литература

- J. A. Pople, D. L. Beveridge, P. A. Dobosh. Molecular Orbital Theory of the Electronic Structures of Organic Compounds. II. Spin Densities in Paramagnetic Species, J. Amer. Chem. Soc., v. 90, 4201 – 4209 (1968).
- Yu. A. Kruglyak, E. V. Mozdor. Study of electronic structure of radicals by the CI method.
 Ground state of the benzyl radical, *Theor. chim. Acta*, v. 15, 365 373 (1969).
- 3. Е. В. Моздор, Ю. А. Кругляк. Электронная структура основного состояния бензильного радикала, *Teop. экспер. хим.*, т. 5: 6, 731 739 (1969).
- 4. Yu. A. Kruglyak, E. V. Mozdor, V. A. Kuprievich. Study of the electronic structure of radicals by the CI method. I. Matrix elements of the physical value operators, *Croat. Chem. Acta*, v. 43, 15 22 (1971).
- 5. E. V. Mozdor, Yu. A. Kruglyak, and V. A. Kuprievich. Matrix elements of the physical value operators on single-configurational functions for radicals, *Teop. экспер. хим.*, v. 5: 6, 723 730 (1969).
- 6. H. M. McConnell. Spin Density Matrices for Paramagnetic Molecules, J. Chem. Phys., v. 28, 1188 (1958).
- П. В. Счастнев, Г. М. Жидомиров. Calculation of spin densities in benzyl and cyclohexadienyl radicals with allowance for the relation of bond length to bond order, *Theor. Exper. Chem.*, т. 3: 4, 321 – 323 (1967).
- 8. J. Nowakovski. Calculation of spin densities in odd alternant hydrocarbon radicals, *Theor. chim. Acta*, v. 18: 2, 133 142 (1970).
- C. A. Coulson, A. Golebiewski. On Perturbation Calculations for the π-Electrons and their Application to Bond Length Reconsiderations in Aromatic Hydrocarbons, *Proc. Phys. Soc.*, v. 78: 6, 1310 – 1320 (1961).
- 10. A. D. McLachlan. Self-consistent field theory of the electron spin distribution in π -electron radicals, *Molec. Phys.*, v. 3: 3, 233 252 (1960).
- Ю. А. Кругляк, Г. Хибаум, Н. Е. Радомысельская. Электронная структура основного состояния бензильного радикала в равновесной конфигурации, *Rev. Roumaine Chim.*, v. 17: 5, 781 – 799 (1972).
- 12. K. Ohno. Some remarks on the Pariser Parr Pople method, *Theor. chim. Acta*, v. 2: 3, 219 227 (1964).
- 13. M. J. S. Dewar, H. N. Schmeising. Resonance and Conjugation, *Tetrahedron*, v. 11, 96 (1960).
- A. L. H. Chung, M. J. S. Dewar. Ground States of Conjugated Molecules. I. Semiempirical SCF MO Treatment and Its Application to Aromatic Hydrocarbons, *J. Chem. Phys.*, v. 42, 756 (1965).
- В. И. Лутошкин, Г. Г. Дядюша, Ю. А. Кругляк. Количественная оценка альтернирования связей в полиенах, В сб. Строение молекул и квантовая химия (ред. А. И. Бродский). Киев: Наукова думка, 1970.
- В. И. Лутошкин, Ю. А. Кругляк, Г. Г. Дядюша. Calculation of electronic structure and force field of alternant radicals with allowance for deformation of the σ-core, *Teop. экспер. хим.*, т. 7: 5, 579 – 584 (1971).
- 17. S. de Bruijn. π -Electron correlation in alternant hydrocarbons: Bond order bond length relation, force constants and the spectroscopic, vibrational and thermochemical B-values, *Theor. chim. Acta*, v. 18: 1, 34 43 (1970).
- 18. H. C. Longuet-Higgins, L. L. Salem. The alternation of bond lengths in long conjugated chain molecules, *Proc. Royal Soc.*, v. 251A, 172 (1959).
- 19. K. Nishimoto. Electron interaction in molecules, *Theor. chim. Acta*, v. 7: 3, 207 219 (1967).
- 20. Е. М. Попов, Г. А. Каган. Relations between length, order, and force constant for C–C bonds, *Theor. Exp. Chem.*, т. 1: 3, 189 194 (1965).
- 21. Г. А. Каган, Е. М. Попов. Изв. АН СССР, Отд. хим. наук, 1393 (1964).

- 22. Г. Г. Дядюша, В. И. Лутошкин. Calculation of force constants in the semiempirical approximation of the SSP method, *Teop. экспер. хим.*, т. 7: 1, 3 7 (1971).
- 23. Г. Г. Дядюша, В. И. Лутошкин. Литов. физ. сб., т. 10 (1970).
- 24. В. И. Лутошкин, В. Ф. Головко. Calculation of the equilibrium configuration and force field of the naphthalene molecule, *Teop. экспер. хим.*, т. 7: 4, 534 535 (1971).
- 25. В. И. Лутошкин, В. Ф. Головко, Γ. Г. Дядюша, Ю. А. Кругляк. Calculation of equilibrium configuration and force field of anthracene, pyrene, and coronene, *Teop. экспер. хим.*, т. 7: 5, 670 674 (1971).
- 26. В. И. Лутошкин, Л. А. Которленко, Ю. А. Кругляк. Расчет и интерпретация колебательного спектра бензильного радикала, *Teop. экспер. хим.*, т. 8: 4, 542 546 (1972).
- 27. Yu. A. Kruglyak, G. G. Dyadyusha. Torsion barriers of end-groups in cumulenes, *Theor. chim. Acta*, v. 12: 1, 18 28 (1968).
- Ю. А. Кругляк. Электронные свойства полиенов и полифенилацетиленов.
 Потенциалы ионизации, сродство к электрону и энергии перехода в нижнее триплетное состояние, *Ж. структ. хим.*, т. 10: 1, 26 – 31 (1969).
- 29. Г. Г. Дядюша, В. А. Куприевич. Self-consistent field theory for open-shell states, *Teop. экспер. хим.*, т. 1, 460 (1965).
- 30. M. J. S. Dewar, G. L. Gleigher. Ground States of Conjugated Molecules. II. Allowance for Molecular Geometry, *J. Amer. Chem. Soc.*, v. 87: 4, 685 692 (1965).
- 31. И. А. Мисуркин, А. А. Овчинников. Вычисление длин связей и углов в молекулах с сопряженными связями, *Ж. структ. хим.*, т. 5: 6, 888 891 (1964).
- 32. L. Watmann-Grajcar. J. chim. phys., v. 66, 1018 (1969).
- 33. S. M. Khalil, M. Shanshal. MINDO-FORCES calculation of the Benzyl and Vinyl radicals and the reactions ¹CH₂ + H₂ → CH₄ and CH₄⁺⁺ → CH₃⁺ + H^{*}, *Z. Naturforsch.*, v. 33a, 722 – 730 (1978).
- T. Amano, Yo. Osamura, Ei. Kai, K. Nishimoto. MO calculation of some aromatic radicals. Geometry and spin density of Benzyl Radical, *Bull. Chem. Soc. Japan.*, v. 53, 2163 – 2166 (1980).
- 35. Ю. А. Кругляк, Г. Г. Дядюша, В. А. Куприевич и др. *Методы расчета электронной структуры и спектров молекул*. Киев: Наукова думка, 1969.
- 36. W. G. Penney, G. J. Kynch. Proc. Royal Soc., v. A164, 409 (1938).
- C. A. Coulson. The electronic structure of some polyenes and aromatic molecules. VII. Bonds of fractional order by the molecular orbital method, *Proc. Royal Soc.*, v. A169, 413 – 428 (1939).
- J. C. Schug, D. H. Phillips. Doublet Electronic States of the Benzyl Radical, J. Chem. Phys., v. 49, 3734 (1968).
- L. Grajcar, S. Leach. Analyse du spectre d'émission du radical benzyle, J. chim. phys., v. 61, 1523 – 1530 (1964).
- 40. J. Ripoche. Spectre de fluorescence du radical benzyle piégé à basse température dans quelques matrices cristallines: Méthylcyclohexane, cyclo-pentane et méthylcyclopentane, *Spectrochim. Acta*, v. 23A: 4, 1003 1021 (1967).
- 41. L. Watmann-Grajcar. Analyse des spectres de fluorescence de toluenes ed radicaux benzyles, *J. chim. phys.*, v. 66: 6, 1023 – 1040 (1969).
- 42. F. E. Harris. Self-Consistent Methods in Hückel Theory, J. Chem. Phys., v. 48, 4027 (1968).
- И. А. Мисуркин, А. А. Овчинников. О вычислении частот колебаний молекул по методу молекулярных орбит на примере молекулы бензола, *Onm. cnekmp.*, т. 16: 2, 228 – 233 (1964).
- 44. V. I. Lutoschkin, Yu. A. Kruglyak, G. G. Dyadyusha. Calculation of electronic structure and force field of alternant radicals with allowance for deformation of the σ-core, *Teop. экспер. хим.*, v. 7: 5, 579 584 (1971).

- 45. G. G. Dyadyusha, V. I. Lutoshkin. Calculation of force constants in the semiempirical approximation of the SSP method, *Theor. Exp. Chem.*, v. 7: 1, 1 5 (1973).
- 46. N. Neto, M. Scrocco, S. Califano. A simplified valence force field of aromatic hydrocarbons. I. Normal coordinate calculations for C₆H₆, C₆D₆, C₁₀H₈, C₁₀D₈, C₁₄H₁₀ and C₁₄D₁₀, *Spectrochim. Acta*, v. 22: 12, 1981 – 1998 (1966).
- 47. R. G. Synder, J. H. Schachtschneider. A valence force field for saturated hydrocarbons, *Spectrochim. Acta*, v. 21:1, 169 195 (1965).
- 48. М. В. Волькенштейн, М. А. Ельяшевич, Б. И. Степанов. Колебания молекул, т. 1. Москва – Ленинград: ГИТТЛ, 1949.

Приложение П-8. Публикации по ион-молекулярным взаимодействиям

- * Н. А. Измайлов, Ю. А. Кругляк. К вопросу о сольватации ионов, ДАН СССР, Сер. Химия, т. 134: 6, 1390 – 1394 (1960).
 N. A. Izmailov, Yu. A. Kruglyak. The problem of the solvation of ions, Proc. USSR AS, Phys.-chem. sect., 979 – 982 (1960).
- * Н. А. Измайлов, Ю. А. Кругляк, Р. Гашпар, И. Тамашши-Лентеи. Квантовомеханический расчет протонного сродства, *Acta Phys. Hung.*, v. 13: 2, 206 210 (1961).
- *R. Gaspar, I. Tamassy-Lentei, Yuri Kruglyak. United-atom model for molecules of the type XH_n, *J. Chem. Phys.*, v. 36: 3, 740 745 (1962). [Proton affinity of F⁻, O²⁻, O⁻, OH⁻, H₂O]
- *Ю. А. Кругляк. Теория сольватации ионов с внешними замкнутыми *sp*-оболочками, *Труды хим. фак. и НИИ химии Харьков. ун-та*, т. 19, 172 178 (1963).
- *Ю. А. Кругляк. Механизм присоединения протона к молекулам растворителя, *Труды хим. фак. и НИИ химии Харьков. ун-та*, т. 19, 179 – 188 (1963).
- *Ю. А. Кругляк. Координационная связь, *Краткая химическая энциклопедия, т. 2*, гл. ред. И. Л. Кнунянц. Москва: Советская энциклопедия, 1963.
- * Ю. А. Кругляк. Изучение сольватации протона и ионов металлов I и II групп элементов Периодической системы на основе квантовой механики, Автореф. канд. дисс., Харьков. ун-т, 1963.
- * Ю. А. Кругляк, И. Л. Сапиро. Основные результаты расчета десятиэлектронных гидридов С, N, O и F методом одноцентрового разложения в одноконфигурационном приближении, *Ж. структ. химии*, т. 7: 2, 262 – 266 (1966). [Сродство к протону]
- *Ю. А. Кругляк. О радиусах сольватированных ионов, Ж. физич. химии, т. XLI: 4, 867 – 869 (1967).
- * Н. А. Измайлов, Ю. А. Кругляк. К вопросу о сольватации ионов, в кн. *Н. А. Измайлов. Избранные труды.* Киев: Наукова думка, 1967.
- * Н. А. Измайлов, Ю. А. Кругляк, Р. Гашпар, И. Тамашши-Лентеи. Квантовомеханический расчет протонного сродства, в кн. *Н. А. Измайлов. Избранные труды.* Киев: Наукова думка, 1967.
- * А. П. Зейф, В. Д. Сутула, Г. В. Глазнева, Ю. А. Кругляк.
 Исследование α-тиопиколинанилидов и их хелатных комплексов с Cu²⁺. Часть II. Расчет и интерпретация электронных спектров поглощения ТПА, в сб. Оптика и спектроскопия.
 III. Молекулярная спектроскопия. Ленинград: Наука, 1967.
- *Ю. А. Кругляк, К. Б. Яцимирский. Электронное и геометрическое строение комплекса

FeN₂, *Теор. экспер. химия*, т. 5: 3, 308 – 315 (1969).

- * К. Б. Яцимирский, Ю. А. Кругляк. Реакционная способность и геометрическое строение комплекса железа с молекулой азота (FeN₂), *ДАН СССР, сер. Химия*, т. 186: 4, 885 – 893 (1969).
- *К.Б. Яцимирский, Ю.П. Назаренко, Ю.И. Братушко, Ю.А. Кругляк. Расчет электронного строения комплексов 3*d*-переходных металлов с молекулой азота, *Teop. экспер. химия*, т. 6: 6, 729 736 (1970).
- * К. Б. Яцимирский, Ю. И. Братушко, Ю. П. Назаренко, Ю. А. Кругляк. Электронное и геометрическое строение комплексов переходных металлов с молекулой азота, В кн. *Теория электронных оболочек атомов и молекул*. Вильнюс: Минтис, 1971.
- *Ю. О. Кругляк. Деякі методологічні питання і перспективи розвитку квантової хімії, *Вісник АН УРСР*, № 7, 32 – 46 (1972). [іон-молекулярні сполуки]
- * Д. А. Жоголев, Ю. А. Кругляк, Б. Х. Бунятян, И. В. Матяш. Теоретическое изучение первичных гидратных комплексов ионов Li⁺, Na⁺ и K⁺, *Teop. экспер. химия*, т. 8: 6, 745 753 (1972).
- *Ю.А.Кругляк. Квантовая теория сольватации ионов.
- 1. Возникновение представлений о сольватации ионов.
- 2. Термодинамические функции сольватации электролитов.
- 3. Методы разделения термодинамических функций сольватации электролитов на ионные составляющие, *Препринт ИТФ АН УССР*, № 42, 1973.
- *Ю.А.Кругляк. Квантовая теория сольватации ионов.
 - 4. Вычисление термодинамических функций сольватации ионов на основе электростатических представлений, *Препринт ИТФ АН УССР*, № 60, 1973.
- *D. A. Zhogolev, B. Kh. Bunyatyan, Yu. A. Kruglyak. Studies on primary hydrated complexes of Li⁺, Na⁺, and K⁺ ions by the extended Huckel method, *Chem. Phys. Lett.*, v. 18: 1, 135 139 (1973).
- * М. Д. Долгушин, В. М. Пинчук, Ю. А. Кругляк. Неэмпирический расчет молекулярных комплексов Li⁺ … OH₂ и H₂O … HOH в ограниченных гауссовых базисах, Препринт ИТФ АН УССР, № 116, 1973.

* В. М. Пинчук, М. Д. Долгушин, Ю. А. Кругляк. К вычислению *ab initio* энергии взаимодействия между системами, описываемыми ограниченными базисами, *Препринт ИТФ АН УССР*, № 127, 1974. [Li⁺·OH₂]

- * V. M. Pinchuk, Yu. A. Kruglyak, M. D. Dolgushin. Spacial and electronic structure of the complexes Li⁺, Na⁺, Be²⁺ and Mg²⁺ ions with HF, H₂O and NH₃ molecules, *Preprint ITP AS USSR*, № 128, 1974.
- *В. В. Ильин, Ю. А. Кругляк, В. М. Пинчук. Аналитическая аппроксимация энергии взаимодействия в ион-молекулярных комплексах, *Препринт ИТФ АН УССР*, № 163, 1974.
- *Ю. А. Кругляк, Г. В. Бугрий, П. Шустер, А. Бейер. К анализу взаимодействия иона лития с молекулой азота, *Препринт ИТФ АН УССР*, № 127, 1975.
- *К. Б. Яцимирский, Ю. А. Кругляк, А. Ю. Посудиевский. Электронное строение мембрано-активного комплексона 12-короны-4 и его монопротонированной формы, ДАН СССР, т. 223: 4, 924 – 927 (1975).

- * A. Pullman, C. Giessner-Prettre, Yu. A. Kruglyak. Cation binding to «crown» ethers: an *ab initio* model study, *Chem. Phys. Lett.*, v. 35: 2, 156 160 (1975).
- * М. Д. Долгушин, Ю. А. Кругляк, В. М. Пинчук. О неэмпирических расчетах молекул в ограниченных базисах гауссовых функций, Препринт ИТФ АН УССР, № 48, 1976. [Li⁺·OH₂]

* Ю. А. Кругляк. Взаимодействие ионов Li⁺, Na⁺ и K⁺ с молекулами диметилового эфира и воды *ab initio*/3G, *Препринт ИТФ АН УССР*, № 114, 1976.

- *Ю. А. Кругляк. Электронно-конформационный механизм взаимодействия иона Li⁺ с 12-короной-4, *ДАН УССР, Сер. А*, № 5, 441 445 (1976).
- *В. В. Ильин, Ю. А. Кругляк, В. М. Пинчук. Влияние координации ионов Li⁺, Na⁺, Be⁺⁺ и Mg⁺⁺ на спектроскопические постоянные молекулы HF, Препринт ИТФ АН УССР, № 9, 1977.
- *Ю. А. Кругляк, Г. В. Бугрий, П. Шустер, А. Бейер. К анализу взаимодействия иона лития с молекулой азота, *Физика молекул*, № 6, 61 76 (1978).
- * М. Д. Долгушин, Ю. А. Кругляк, В. М. Пинчук. О неэмпирических расчетах молекул в ограниченных базисах гауссовых функций,
 Ж. структ. хим., т. 19: 4, 587 593 (1978). [Li⁺·OH₂]
- * А. Ю. Посудиевский, О. В. Фролов, В. В. Стрелко, Ю. А. Кругляк. Об одной молекулярной модели взаимодействия двуокиси кремния с примесными атомами. Кластерная модель канала с шестью тетраэдрами SiO₄ в элементарном звене, Препринт ИТФ АН УССР, № 22, 1978.
- * А. Ю. Посудиевский, О. В. Фролов, В. В. Стрелко, Ю. А. Кругляк. Об одной молекулярной модели взаимодействия двуокиси кремния с примесными атомами. Кластерная модель канала с восьмью тетраэдрами SiO₄ в элементарном звене, Препринт ИТФ АН УССР, № 23, 1978.
- *E. M. Ivashkovich, Yu. A. Kruglyak, A. F. Gurko. Quantum-chemical study of hydroxylamine coordination by Ni²⁺ and Zn²⁺, *Zh. Strukt. Khim.*, v. 28: 4, 159 162 (1987).
- *Ю. А. Кругляк, Н. Е. Кругляк. Взаимодействие ионов Li⁺, Na⁺ и K⁺ с молекулами диметилового эфира и воды *ab initio*/3G, *Вестник Одесс. гос. ун-та*, № 15, 202 212 (2013).

Приложение П-9. Новые инварианты взвешенных графов для расчета критических свойств фреонов

Проблема установления связи между структурой молекул и свойствами молекулярных веществ сложна и многопланова. Причиной тому является не только разнообразие свойств веществ и трудности их экспериментального исследования как структуры, так и свойств составляющих их молекул, но и обстоятельство. Основными следующее методами исследования СВЯЗИ «структура – свойство» являются методы регрессионного и корреляционного анализа и распознавания образов. Эти методы оперируют с численными характеристиками структуры молекул. Естественные численные характеристики молекулярной структуры такие как длины связей, валентные и диэдрические углы и разнообразные квантовохимические расчетные свойства молекул часто с успехом используются в методах распознавания образов, но мало пригодны для регрессионного и корреляционного анализа. Для этих методов предпочтительны интегральные численные характеристики В большой молекулярной структуры. ЭТОМ плане интерес вызывают топологические инварианты, позволяющие описать структуру молекулы одним числом [1–7].

Под инвариантом молекулярного графа подразумевают такую величину, которая принимает одно и то же численное значение при любой произвольной нумерации вершин графа. Инварианты молекулярных графов получили в литературе название топологических индексов (ТИ). Под молекулярным графом подразумевают такой граф, вершины которого находятся во взаимнооднозначном соответствии с атомами рассматриваемой молекулы, а ребра – с химическими связями. Применение ТИ в качестве численных интегральных характеристик структуры молекул для установления связи «структура – свойство» имеет ряд преимуществ. Во-первых, топологическое описание молекул опирается на хорошо разработанную теорию графов. Во-вторых, ТИ вычисляются только на основе структурной формулы молекул. В-третьих, для таких расчетов не требуется больших вычислительных ресурсов.

П-9.1. Критические свойства фреонов как объект исследования

Критические свойства фреонов были выбраны для изучения по трем причинам:

1) для их расчета не существует достаточно надежных методов при том, что экспериментальное измерение критических свойств фреонов вызывает значительные трудности;

2) фреоны являются удобными модельными соединениями для отработки методики параметризации предлагаемого нами метода, поскольку молекулы фреонов обладают простой структурой и разнообразием атомов;

3) изменение критических свойств в ряду галогензамещенных алканов характеризуется рядом особенностей, которые не позволяют описать зависимость этих свойств от строения молекул аддитивными методами.

Рассмотрим достоинства и недостатки наиболее известных методов расчета критических свойств веществ.

Первый путь – это восстановление неизвестных свойств по большому массиву известных экспериментальных данных согласно некоторым соотношениям, подтвержденным экспериментально на других соединениях [8]. Такой подход дает хорошие результаты, но он мало доступен, поскольку

641

требует обработки больших массивов экспериментальных данных, при этом даже такие громоздкие вычисления не гарантируют требуемой точности.

Второй, чаще всего применяемый прием, – использование эмпирических и полуэмпирических формул [9 – 12]. Все известные эмпирические и полуэмпирические методы могут быть разбиты на два типа по способу их применения.

К первому типу относятся методы, которые после параметризации на обучающей выборке веществ не требуют при расчете никаких дополнительных сведений о веществе кроме структуры его молекул и найденных параметров. Ко второму типу относятся такие методы, которые в качестве коррелирующего фактора используют другие экспериментально измеряемые свойства рассматриваемых веществ, что резко ограничивает возможности таких методов и делает невозможным их применение для расчета свойств еще не синтезированных веществ, а если и синтезированных, но необходимые свойства которых еще не измерены экспериментально.

Для расчета T_c , K предложены методы только второго типа. Все они основаны на использовании обобщенного правила Гульдберга: $T_c = T_b / \Theta$, где T_b – нормальная температура кипения, а величина Θ определяется разными авторами по разному:

 $\Theta = 0.567 + \sum \Delta_T - \left(\sum \Delta_T\right)^2$ через аддитивные инкременты по Лидерсену [10], $\Theta = 2 - \exp \left[A - B\sqrt{\ln(M/\rho_b)}\right]$ через молекулярную массу *M*, плотность жидкости ρ_b при T_b и так называемый ψ -фактор по методу Сладкова-1 [12] и $\Theta = 2 - \exp(0.45 - 0.065\sqrt{3.296 + \ln \Pi})$ через парахор П по методу Сладкова-2 [12].

Для расчета V_c и P_c предложены методы расчета первого типа. Критический объем вычисляется по инкрементам в методах Лидерсена [10] и Воулеса [11], а в методе Сладкова – через молекулярную массу и плотность жидкости при T_b с учетом типа соединения [12]. Критическое давление вычисляется через молекулярную массу и инкременты в методе Лидерсена [10], а в методе Сладкова – через T_c , молекулярную массу и ρ_b [12]. Как будет показано ниже, наши расчеты свидетельствуют, что эти методы прогнозирования V_c и P_c характеризуются большой погрешностью.

Известны попытки использовать ТИ для вычисления критических свойств веществ. Для алканов предложены зависимости их критических свойств от ТИ молекулярной связуемости χ -индексов различного вида [1 – 3, 13]. Однако, их применение ограничено только классом углеводородов, описываемых молекулярными графами без учета атомов водорода. Кроме того, весьма сложный ВИД найденных зависимостей позволяет не сделать даже

приблизительные предположения о характере возникновения обнаруженных корреляций.

Выбранный нами класс фреонов характеризуется разнообразием атомов. Для их топологического описания мы предлагаем использовать полностью взвешенные графы, взвешенные как по вершинам, так и по ребрам. Задача состояла в том, чтобы найти такие инварианты полностью взвешенных графов, чтобы каждое из критических свойств коррелировало не только монотонно, но и линейно только с одним инвариантом. Для взвешивания вершин и ребер в настоящем исследовании использовались только числа. Однако, ничто не мешает взвешивание вершин и ребер в молекулярных графах вести изощренее, например, с помощью параметрических функций, векторов, операторов и еще более сложных математических объектов.

П-9.2. Проблема выбора инвариантов и параметров

Требование монотонной зависимости свойства от ТИ является достаточно жестким условием, позволяющем выделить на первом этапе исследования ограниченный круг претендентов среди множества ТИ, а также найти границы возможного изменения весов вершин и ребер. Достигается это путем решения ряда неравенств типа $I(G_i) > I(G_j)$, если $F(S_i) > F(S_j)$, где $F(S_i) -$ значение физического свойства соединения S_i , а $I(G_i) -$ инвариант соответствующего молекулярного графа.

Параметризацию целесообразно начинать с простейших соединений из рассматриваемого класса веществ. В нашем случае это галогенпроизводные метана. Оказывается возможным подобные неравенства решить аналитически. сразу два вопроса: При ЭТОМ выясняются 1) возможно ЛИ вообще удовлетворение этих неравенств при каких-либо значениях параметров (весов вершин и ребер), тем самым решается вопрос о принципиальной применимости того или иного ТИ; 2) если это возможно, то в каких границах должны изменяться параметры.

Начинать анализ удобно с выделения подрядов выбранного класса соединений, образованных последовательным замещением одного параметризуемого атома на другой. В этом случае неравенства оказываются достаточно простыми, а кроме того мы избегаем опасности появления ошибки из-за неточности экспериментальных данных, поскольку такие соединения, как правило, различаются по свойствам на значительную величину. Если же исследовать соединения В порядке возрастания или убывания рассматриваемого свойства, то противоречия в справочных данных часто не позволяют определить даже порядок следования веществ.

643

Рассмотрим для примера T_c . При замещении атомов водорода метана атомами фтора T_c увеличивается в следующем порядке (литературные источники используемых экспериментальных данных будут приведены позже): $T_c(CH_4) = 190.6$, $T_c(CF_4) = 227.5$, $T_c(CHF_3) = 229.0$, $T_c(CH_3F) = 317.7$, $T_c(CH_2F_2) = 351.6 K$, в то время как для хлорзамещенных метана T_c увеличивается последовательно при переходе от CH₄ к CCl₄.

Рассмотрим ТИ класса² χ , модифицированный нами для взвешенных графов в виде [14],

$${}^{2}\tilde{\chi} = \sum_{i,j,k-adj} a_{i}a_{j}a_{k}b_{ij}b_{jk} .$$
⁽¹⁾

Пусть в ряду фторзамещенных метана $a_{\rm H}, a_{\rm C}, a_{\rm F}$ есть веса соответствующих вершин, а $b_{\rm H} \equiv b_{\rm CH}, b_{\rm F} \equiv b_{\rm CF}$ – веса ребер. Тогда

$${}^{2}\tilde{\chi} (CH_{4}) = 6a_{C}a_{H}^{2}b_{H}^{2}, {}^{2}\tilde{\chi} (CF_{4}) = 6a_{C}a_{F}^{2}b_{F}^{2},$$

$${}^{2}\tilde{\chi} (CHF_{3}) = 3a_{C}a_{H}a_{F}b_{H}b_{F} + 3a_{C}a_{F}^{2}b_{F}^{2},$$

$${}^{2}\tilde{\chi} (CH_{3}F) = 3a_{C}a_{H}a_{F}b_{H}b_{F} + 3a_{C}a_{H}^{2}b_{H}^{2},$$

$${}^{2}\tilde{\chi} (CH_{2}F_{2}) = a_{C}a_{H}^{2}b_{H}^{2} + a_{C}a_{F}^{2}b_{F}^{2} + 4a_{C}a_{H}a_{F}b_{H}b_{F}.$$
(2)

Разделим эти выражения на $a_{\rm C}a_{\rm H}^2b_{\rm H}^2$, что не влияет на порядок следования значений индекса ${}^2\tilde{\chi}$ по возрастанию. Примем $a \equiv a_F/a_H$, $b \equiv b_F/b_H$, тогда должны выполняться неравенства:

$$6 < 6a^{2}b^{2} < 3ab(1+ab) < 3(1+ab) < 1+a^{2}b^{2}+4ab.$$
(3)

Из первого неравенства следует, что |ab|>1. Пусть ab>1, тогда 1+ab>2 и из третьего неравенства получаем ab<1, что противоречит исходной посылке. Допустим, что ab<-1, тогда 1+ab<0 и из третьего неравенства при сокращении на 1+ab знак неравенства меняется на противоположный и получаем ab>1, что опять противоречит исходной посылке. Следовательно, ни при каких значениях a и b невозможно удовлетворить рассматриваемую последовательность неравенств (3), и как следствие этого индекс ${}^{2}\tilde{\chi}$ не может описать изменение T_{c} при замещении атомов водорода в метане атомами фтора.

Аналогичным образом были проверены все многочисленные известные нам ТИ, и ни один из них не попал в число претендентов для прогнозирования T_c и P_c . Покажем, что на эту роль может претендовать предлагаемый нами новый ТИ – индекс парасочетаний.

П-9.3. Обоснование индекса парасочетаний

В корреляциях «структура – свойство» часто используется полином парасочетаний (ПП) [15 – 18]. Он определяется следующим образом:

$$\alpha(G,x) = \sum_{k=0}^{\lfloor p/2 \rfloor} (-1)^k P(G,k) x^{p-2k}, \qquad (4)$$

где p – число вершин графа G, P(G,k) – число k-парасочетаний, P(G,0) = 1. При этом k-парасочетание трактуется как k попарно не связанных ребер. Аналогично определяется многочлен Хозоя [19]:

$$Q(G,x) = \sum_{k=0}^{\lfloor p/2 \rfloor} P(G,k) x^k .$$
(5)

Есть в литературе и другое толкование самого понятия парасочетания и, как следствие, соответствующего полинома. В [20] дается дословно следующее определение: «Под парасочетанием M графа G мы будем понимать основной подграф графа G, состоящий только из ребер и вершин. Если M содержит k ребер, то M называется k-парасочетанием. Ясно, что если G содержит p вершин, то k-парасочетание в G содержит p-2k вершин». И далее следует формула для ПП:

$$M(G,w) = \sum_{k=0}^{\lfloor p/2 \rfloor} a_k w_1^{p-2k} w_2^k , \qquad (6)$$

где $w = (w_1, w_2)$ – весовой 2-вектор, компоненты которого образуют полином, w_1 – вес вершин, w_2 – вес ребер, a_k – число *k*-парасочетаний. Понятно, что число $a_k = P(G,k)$, а полином $\alpha(G,x)$ является частным случаем M(G,w) при $w_2 = -1$, т.е.

$$\alpha(G, x) = M\left(G, (x, -1)\right). \tag{7}$$

Приведенное определение интересно тем, что открывает большие возможности для описания гетероатомных молекул. Полином $\alpha(G, x)$ первоначально использовался лишь для характеристики углеводородов, т.е. таких соединений, при описании которых в виде графа без учета атомов водорода нет необходимости придавать веса вершинам и ребрам. Именно поэтому таким эффективным для этого класса веществ оказался полином Q(G, x) и его выражение при x = 1 (так называемый индекс Хозоя [19, 21]).

Переход от углеводородов к гетероатомным молекулам – задача довольно сложная. При использования ТИ для описания некоторого свойства

гетероатомной молекулы необходимо ввести веса вершин и ребер. Они должны отражать влияние атомов и связей на величину исследуемого свойства вещества. Применительно к гетеросопряженным системам такой переход для характеристического полинома совершается естественным образом В соответствии с методом Хюккеля, вопрос лишь в адекватном подборе значений кулоновских и резонансных интегралов. Попытки преобразовать ΠП не применительно к гетероатомным молекулам нам известны. Для гетеросопряженных молекул вводятся веса вершин и ребер в рекуррентной форме [22]:

$$\alpha(G_h, x) = \alpha(G, x) - h\alpha(G - v, x),$$

$$\alpha(G_h, x) = \alpha(G - l, x) - k^2 \alpha(G - (l), x),$$
(8)

где h – вес петли при вершине, соответствующей гетероатому v, k – вес ребра l, G-v – граф с удаленной вершиной v, G-l – удаление ребра l, G-(l) – удаление ребра l с инцидентными ему ребрами. Такая форма обосновывается аналогией с характеристическими полиномами. Однако, она применима лишь для класса гетеросопряженных молекул и, несмотря на свою наглядность, реализуется алгоритмами со сложной логической структурой.

Уместно вспомнить о представлении ПП в форме M(G,w). Если в формуле (10) считать, что веса ребер w_2 не равны между собой, а характеризуют химическую связь, соответствующую данному ребру, то для каждого парасочетания M_k^j вместо w_2^k можно записать $\prod_{i=1}^k b_i^j$, где b_i^j – вес *i*-го ребра, принадлежащего *j*-му *k*-парасочетанию M_k^j . Аналогично можно раскрыть w_1^{p-2k} в (10). Если считать различными веса вершин, то w_1^{p-2k} преобразуется в $\prod_{i=1}^{p-2k} a_i^j$, где a_i^j принадлежат M_k^j . В результате каждому *k*-парасочетанию соответствует произведение весов входящих в него вершин и ребер, и число таких произведений равно P(G,k). Просуммировав, получаем вместо $P(G,k)w_1^{p-2k}w_2^k$ число

$$\tilde{P}(G,k) = \sum_{j=1}^{P(G,k)} \left(\prod_{i=1}^{p-2k} a_i^j\right) \left(\prod_{i=1}^k b_i^j\right).$$
(9)

Отсюда легко получается предлагаемый нами индекс парасочетаний (ИП)

$$R(G) = \sum_{k=1}^{\lfloor p/2 \rfloor} \tilde{P}(G,k).$$
(10)

Числа $\tilde{P}(G,k)$ можно назвать значениями *k*-гетеропарасочетаний и использовать их в соответствующих полиномах вместо P(G,k). В случае, если веса вершин и ребер равны единице, то $\tilde{P}(G,k) = P(G,k)$, и предлагаемый нами индекс парасочетаний превращается в индекс Хозоя. Отличие предлагаемого нами метода построения ИП от использовавшихся подходов ранее заключается в том, что при суммировании по подграфам в каждом слагаемом участвуют как характеристики элементов этих подграфов (в нашем случае ребер), так и характеристики непокрываемых этими подграфами вершин, что позволяет в каждом слагаемом учесть влияние окружения.

П-9.4. Вычисление индекса парасочетаний

Для нахождения чисел P(G,k) предложены эффективные алгоритмы, однако, задача вычисления $\tilde{P}(G,k)$ предполагает перебор всех парасочетаний. Представляется целесообразным свести этот процесс к перебору полных подграфов с последовательным увеличением их порядка.

Пусть *G* взвешенный граф с *p* вершинами и *q* ребрами, *A* – вектор размерности *p* весов вершин, *B* – вектор размерности *q* весов ребер. Граф *G* может задаваться либо бинарной матрицей смежности, либо перечислением пар смежных вершин. В обоих случаях не составляет труда построить матрицу смежности *M* реберного графа L(G).

Вершинами графа L(G) являются ребра графа G. Две вершины графа L(G) смежны тогда и только тогда, когда смежны соответствующие им ребра графа G [23]. Поскольку матрица M симметричная, то, сохраняя всю информацию о графе, можно считать ее верхней треугольной

$$M = \left\{ \delta_{ij} \right\}, \quad i, j = 1, 2, ..., q \tag{11}$$

c

$$\delta_{ij} = \begin{cases} 1, & \text{если } j > i \text{ и вершины графа } L(G) \text{ смежные,} \\ 0 & \text{в противном случае.} \end{cases}$$
(12)

Рассматривая δ_{ii} как битовые константы, получаем матрицу

$$\bar{M} = \left\{ \delta_{ij}^{\prime} \right\},\tag{13}$$

где

$$\delta_{ij}' = \begin{cases} \overline{\delta}_{ij}, & \text{если } j > i, \\ 0, & \text{если } j \le i. \end{cases}$$
(14)
Это матрица смежности дополнения графа L(G). Если $\overline{L(G)}$ есть дополнение графа L(G), то любой полный подграф $\overline{L(G)}$ с *k* вершинами соответствует набору ребер *k*-парасочетания графа *G*.

Все *k*-парасочетания можно объединить в матрицу

$$W_{k} = \begin{pmatrix} l_{11} & l_{12} & \cdots & l_{1L} \\ l_{21} & l_{22} & \cdots & l_{2L} \\ \cdots & \cdots & \cdots & \cdots \\ l_{k1} & l_{k2} & \cdots & l_{kL} \end{pmatrix},$$
(15)

где L = P(G,k), *j*-ый столбец представляет собой номера ребер, входящих в *j*-ое *k*-парасочетание графа *G* или номера вершин полного подграфа графа $\overline{L(G)}$. Таким образом, несложными преобразованиями, легко осуществимыми алгоритмически, задача сводится к перечислению всех полных подграфов графа $\overline{L(G)}$.

Это перечисление проводится простым и эффективным способом. При k = 1 матрица W_1 представляет собой строку номеров вершин: $W_1 = (1, 2, ..., q)$, а при k = 2 матрица W_2 – это индексы единиц в матрице M, или номера пар смежных вершин.

Пусть найдена матрица W_k , тогда для вычисления матрицы W_{k+1} с каждым *j*-ым столбцом матрицы W_k производится следующая операция. Строки матрицы *M* рассматриваются как логические векторы X_n . Ищется вектор

$$X = (X_1, X_2, ..., X_n), \quad n \in \{l_{ki}\}$$

где $\{l_{kj}\}$ – номера вершин, перечисленных в *j*-ом столбце матрицы W_k . Когда X = 0, никаких действий не производится, в противном случае, если $\{l_{k+1,f}\}$ (1 < f < q) – номера единиц в векторе X, то в матрицу W_{k+1} заносятся столбцы $(l_{1j}, l_{2j}, ..., l_{kj}, l_{k+1,f})^T$. Процедура продолжается до тех пор, пока для каждого столбца из W_k вектор X не будет равен нулю.

В качестве примера рассмотрим вычисления ИП для некоторого галогенпроизводного пропана:

где вершины обозначены весами. Связи этого графа задаются таблицей:

Номер ребра	1	2	3	4	5	6	7	8	9	10
Инцидентные	9	9	9	10	10	11	11	11	9	10
вершины	1	2	3	4	5	6	7	8	10	11
Вес ребра	b_1	b_2	b_3	b_4	b_5	b_6	b_7	b_8	$b_{\rm C}$	$b_{\rm C}$

Составляем матрицы:

Ищем полные подграфы:

 $W_1 = (12345678910),$

$$W_2 = \begin{pmatrix} 111111 & 1 & 222222 & 233333 & 3444555678 \\ 456781045678104567810678678999 \end{pmatrix}$$

Просматриваем последовательно столбцы W_2 . Для первого столбца

$$X = X_1 \wedge X_4 = (0000011100),$$

следовательно, первые три столбца *W*₃ будут выглядеть таким образом: 1 1 1

4 4 4. Остальные столбцы получаем аналогично:

6 7 8

$$W_3 = \begin{pmatrix} 11111122222333333\\444555444555444555\\678678678678678678678678 \end{pmatrix}.$$

Любая конъюнкция для *W*₃ равна нулю. Следовательно, максимальным будет 3-паросочетание. Для него, например, на основе матрицы *W*₃ можно записать:

$$P(G,3) = b_1 b_4 b_6 a_2 a_3 a_5 a_7 a_8 + b_1 b_4 b_8 a_2 a_3 a_5 a_6 a_7 + \dots + b_3 b_5 b_8 a_1 a_2 a_4 a_6 a_7.$$

При программной реализации алгоритма многие действия можно упростить и объединить.

П-9.5. Параметризация и расчет T_c и P_c фреонов

Прогнозирование *T_c* и *P_c* фреонов выполнено с использованием предложенного нами ИП (14). Никакие известные нам ТИ, модифицированные для взвешенных графов, не выдержали проверки уже на описанном ниже первом этапе. Это, однако, не исключает возможности генерации другого ТИ, пригодного для стоящей перед нами задачи.

П-9.5.1. Этап 1: Неравенства

Рассматриваем галогенопроизводные метана, выделяем подряд

$$CX_4 \quad CX_3Y \quad CX_2Y_2 \quad CXY_3 \quad CY_4 \tag{16}$$

и найдем ограничения на параметры вершин и ребер при увеличении изучаемого свойства в той же последовательности. Выпишем последовательно в соответствии с (16) в общем виде выражения для ИП:

$$4b_{X}a_{X}^{3}, \quad 3b_{X}a_{X}^{2}a_{Y} + b_{Y}a_{X}^{3}, \quad 2b_{X}a_{X}a_{Y}^{2} + 2b_{Y}a_{X}^{2}a_{Y}, \quad b_{X}a_{Y}^{3} + 3b_{Y}a_{X}a_{Y}^{2}, \quad 4b_{Y}a_{Y}^{3}.$$
(17)

Разделим все выражения на $b_x a_x^3$ и внесем это сомножитель в дальнейшем в коэффициент при ИП. Положим $a = a_y/a_x$, $b = b_y/b_x$ и получим следующую последовательность неравенств:

$$4 < 3a + b < 2a(a + b) < 3ba^2 + a^3 < 4ba^3.$$
⁽¹⁸⁾

Найдем ограничения на параметр *b* сразу из всех четырех неравенств:

$$1:4 < 3a + b \Longrightarrow b > 4 - 3a, \tag{19}$$

$$2: 3a+b < 2a(a+b) \Longrightarrow (2a-1)b > 3a-2a^2,$$
(20)

a) если
$$2a-1>0$$
, то $b > \frac{3a-2a^2}{2a-1}$, (21)

б) если
$$2a - 1 < 0$$
, то $b < \frac{3a - 2a^2}{2a - 1}$, (22)

$$3:2a(a+b) < 3ba^2 \Longrightarrow b > \frac{a-a^2}{2},\tag{23}$$

$$4: 3ba^2 + a^3 < 4ba^3 \Longrightarrow b(4a - 3) > a, \tag{24}$$

a) если
$$4a-3>0$$
, то $b>\frac{a}{4a-3}$, (25)

б) если
$$4a - 3 < 0$$
, то $b < \frac{a}{4a - 3}$. (26)

Выясним какое из первых двух неравенств более строгое. Для этого рассмотрим разность:

$$\frac{3a-2a^2}{2a-1} - (4-3a) = \frac{4(a-1)^2}{2a-1}.$$
(27)

Начнем со случая 2а), тогда из (27) следует

$$\frac{3a-2a^2}{2a-1} > 4-3a,\tag{28}$$

так что в дальнейшем надо проверять условие (21). Перейдем к случаю 2б), тогда

$$4 - 3a < b < \frac{3a - 2a^2}{2a - 1}.$$
(29)

Из (27) следует, что

$$4 - 3a > \frac{3a - 2a^2}{2a - 1}$$

и мы приходим к противоречию с (29), значит a > 0.5. Из (23) $b > \frac{a - a^2}{2}$, сравниваем с (21). Предположим, что (21) более строгое неравенство, тогда

$$\frac{3a-2a^2}{2a-1} > \frac{a-a^2}{2} \Longrightarrow 6-4a > (2a-1)(1-a) \Longrightarrow 2a^2 - 7a + 7 > 0, \tag{30}$$

т.е. предположение верно.

Для сравнения условий (25) и (26) с (21) рассмотрим разность

$$\frac{3a-2a^2}{2a-1} - \frac{a}{4a-3} = \frac{-8a(a-1)^2}{(2a-1)(4a-3)}.$$
(31)

В случае 4а из (31) следует, что $\frac{a}{4a-3} > \frac{3a-2a^2}{2a-1}$, так что неравенство (25) более строгое. Случай 4б не возможен, т.к. из (31) следует, что при 4*a*-3 имеет место

неравенство $\frac{a}{4a-3} < \frac{3a-2a^2}{2a-1}$. Отсюда получаем окончательные ограничения на параметры:

$$a > 0.75, \quad b > \frac{a}{4a - 3}.$$
 (32)

Такая последовательность возрастания свойства характерна для T_c при:

1) X = H, Y = Cl; 2 X = H, Y = Br; 3 X = F, Y = Cl; 4 X = F, Y = Br; 5 X = Cl, Y = Br, Y = Br; T = B

а для Р при:

$$1 X = F, Y = Cl; 2 X = F, Y = Br; 3 X = Cl, Y = Br.$$

Последовательность, отличная от рассмотренной, обнаруживается для Т. при X = H, Y = F. B этом подряду T_c возрастает в следующем порядке:

 CH_4 , CF_4 , CHF_3 , CH_3F , CH_2F_2 .

Соответствующие неравенства могут быть удовлетворены при следующих ограничениях на параметры:

1)
$$0.5 < a < \sqrt{3}/3$$
, $b > \frac{3a - 2a^2}{2a - 1}$,
2) $0.75 < a < 1$, $\frac{1}{a^3} < b < \frac{3a - a^3}{3a^2 - 1}$. (33)

Для P_c при X = H, Y = F и X = H, Y = Cl вещества в порядке возрастания свойства располагаются следующим образом:

 CY_4 , CX_4 , CXY_3 , CX_2Y_2 , CX_3Y .

Это приводит к следующим ограничениям на параметры:

1)
$$0.657 < a < 1$$
, $\frac{4-a^3}{3a^2} < b < \frac{3a-2a^2}{2a-1}$,
2) $0.5 < a < 0.657$, $\frac{4-a^3}{3a^2} < b < \frac{1}{a^3}$. (34)

При X = H, Y = Br последовательности

 CX_4 , CY_4 , CXY_3 , CX_2Y_2 , CX_3Y

соответствуют ограничения:

1)
$$0 < a < 0.5, b > a^{-3},$$

2) $0.5 < a < 0.657, \frac{1}{a^3} < b < \frac{3a - 2a^2}{2a - 1}.$ (35)

В процессе анализа других подрядов по мере расширения числа веществ были найдены еще более строгие неравенства и иные соотношения между параметрами. Здесь же мы демонстрируем лишь анализ неравенств на первом этапе.

П-9.5.2. Этап 2: Оптимизация

Этот этап осуществлялся с помощью разработанного нами комплекса программ [24], позволяющего проводить оптимизацию параметров как методом симплекса, так и перебором параметров в заданных границах с выбранным шагом для каждого параметра. Была учтена возможность сокращения перебора путем введения соотношений между параметрами. В качестве критериальной функции для оптимизации весов вершин и ребер использовалась подпрограмма, реализующая линейный метод наименьших квадратов, но была возможность использовать и другие методы.

При поиске начального приближения для последующей оптимизации проводился перебор параметров вершин с шагом 0.001 и параметров ребер с шагом 0.01 с учетом различия в чувствительности ИП к их изменениям. Результаты расчетов представлены в таблицах 1 и 2.

Для сравнительного анализа методов расчета T_c и P_c все вещества разбивались на группы по надежности экспериментальных данных. Результаты сравнения сведены в таблицы 3 и 4. Для каждой группы указаны число входящих в нее соединений *n* и относительная погрешность литературных экспериментальных данных $E_{exp} = \frac{F_{max} - F_{min}}{F_{min}}$ 100%. Соединения, сведения о которых встречаются только в [8], отнесены в последние группы. Для сравнения приводятся средние E_{av} и максимальные E_{max} относительные погрешности по группам данных.

Преимущество применения ИП для вычисления P_c очевидно. Для T_c ситуация несколько хуже, однако, предлагаемый нами метод не требует привлечения дополнительных экспериментальных данных, как в методах Сладкова и Лидерсена, что резко сужает возможности этих методов применительно к веществам, для которых нужные экспериментальные данные еще не измерены, не говоря уже о ситуации, когда не синтезированы еще сами вещества. П-9.5.3.

Этап 3: Расширение

Далее рассматриваем галогензамещенные этана. В дополнение к уже подобранным параметрам необходимы еще два: $a_{\rm C}$ и $b_{\rm C} \equiv b_{\rm C-C}$. Выразим ИП *R* в общем виде через $a_{\rm C}$ и $b_{\rm C}$, считая их переменными, и через ранее найденные параметры атомов $A \equiv \{a_i\} = (a_{\rm H}, a_{\rm F}, a_{\rm CI}, a_{\rm Br})$ и связей $B \equiv \{b_i\} = (b_{\rm H}, b_{\rm F}, b_{\rm CI}, b_{\rm Br})$, считая их константами:

$$R = a_{\rm C} \prod \sum_{i=1}^{6} \frac{b_i}{a_i} + b_{\rm C} \Pi + \prod \sum_{i=1}^{3} \sum_{j=4}^{6} \frac{b_i}{a_i} \frac{b_j}{a_j}, \quad \Pi = \prod_{i=1}^{6} a_i.$$
(36)

Выпишем значения, которые известны до подбора $a_{\rm C}$ и $b_{\rm C}$ для некоторого *l*-го соединения:

$$S_{1}^{(l)} = \Pi^{(l)} \sum_{i=1}^{6} \frac{b_{i}^{(l)}}{a_{i}^{(l)}}, \quad S_{2}^{(l)} = \Pi^{(l)}, \quad S_{3}^{(l)} = \Pi^{(l)} \sum_{i=1}^{3} \sum_{j=4}^{6} \frac{b_{i}^{(l)}}{a_{i}^{(l)}} \frac{b_{j}^{(l)}}{a_{j}^{(l)}}.$$
(37)

Таблица 1

Экспериментальные и	расчетные значения 7	Γ_{α}, K	фреонов	метанового	ряда
	1	<i>C</i> '	11		

\mathbb{N}_{2}^{1}	Ключ ²	Экспер	оимент.	Мет	од	Мет	од	Мет	од	Наш ра	счет ⁵
		данн	ныe ³	Сладко	ва-1 ⁴	Сладко	ва-2 ⁴	Лидеро	сена ⁴	_	
		Min	Max	T_{c}	<i>E</i> ,%	T_{c}	<i>E</i> ,%	T_{c}	<i>E</i> ,%	T_{c}	<i>E</i> %
01#	0000	190.55	191.60	181.32	4.84	181.24	4.89	189.92	0.33	196.70	2.67
02#	0001	317.70	317.80	310.81	2.17	313.50	1.32	320.37	0.81	319.48	0.53
03#	0002	416.20	416.30	396.25	4.79	399.80	3.94	413.42	0.67	400.46	3.78
04	0003	462.16	467.00	437.91	5.24	442.06	4.35	464.02	0.00	438.63	5.09
05#	0011	351.55	351.60	354.15	0.73	357.77	1.75	357.06	1.55	340.14	3.25
06*	0012	424.83	424.83	417.88	1.64	422.56	0.53	426.35	0.36	421.35	0.82
07*	0013	468.14	468.14	456.49	2.49	462.01	1.31	472.73	0.98	464.39	0.82
08#	0022	509.85	510.00	492.37	3.43	497.74	2.37	506.57	0.64	510.74	0.14
09*	0023	555.49	555.49	532.99	4.05	540.55	2.69	557.48	0.36	558.19	0.49
10	0033	583.00	605.70	577.74	0.90	584.73	0.00	611.08	0.92	607.80	0.36
11#	0111	298.89	299.45	304.14	1.57	307.66	2.75	303.61	1.39	301.91	0.82
12#	0112	369.13	369.30	365.93	0.87	371.02	0.47	369.86	0.15	378.23	2.42
13*	0113	411.11	411.11	409.88	0.30	409.68	0.35	413.91	0.68	421.34	2.49
14#	0122	451.50	451.65	447.31	0.93	447.15	0.96	449.40	0.47	462.12	2.32
15*	0123	507.54	507.54	501.27	1.23	500.80	1.33	509.77	0.44	509.57	0.42
16*	0133	543.53	543.53	534.05	1.74	533.36	1.87	549.88	1.17	559.36	2.91
17#	0222	536.40	536.60	528.93	1.39	527.52	1.66	533.84	0.48	554.36	3.31
18*	0223	585.43	585.43	572.51	2.21	571.77	2.33	585.77	0.06	606.57	3.61
19	0233	630.00	654.41	636.87	0.00	635.88	0.00	659.57	0.82	661.37	1.10
20	0333	656.00	684.94	663.14	0.00	662.02	0.00	695.30	1.58	718.87	5.17
21#	1111	227.50	227.60	232.79	2.28	233.12	2.42	228.74	0.50	232.04	2.30
22#	1112	301.75	302.00	304.80	0.93	305.28	1.09	302.41	0.13	301.66	0.03
23#	1113	339.90	340.70	341.85	0.34	342.11	0.42	343.32	0.77	342.14	0.42
24#	1122	385.00	385.20	385.16	0.00	385.50	0.08	384.84	0.04	377.26	2.01
25#	1123	426.73	427.80	425.10	0.38	425.40	0.31	429.96	0.51	421.77	1.16
26	1133	470.00	472.08	468.97	0.22	469.60	0.21	479.94	1.67	468.57	0.30
27#	1222	471.00	471.50	467.61	0.72	467.66	0.71	469.95	0.22	460.32	2.27
28*	1223	516.26	516.26	511.20	0.98	510.98	1.02	519.68	0.66	509.24	1.36
29	1233	562.16	570.00	554.45	1.37	554.19	1.42	570.46	0.08	560.69	0.26
30	1333	600.00	605.31	595.28	0.79	594.46	0.92	619.39	2.35	614.80	1.58
31#	2222	556.30	556.60	550.48	1.05	550.07	1.12	555.97	0.06	551.55	0.85
32	2223	588.00	602.46	592.71	0.00	591.95	0.00	605.34	0.49	605.33	0.49
33	2233	640.00	668.21	654.93	0.00	654.18	0.00	676.93	1.36	661.90	0.02
34	2333	674.67	678.00	658.63	2.37	657.83	2.50	688.90	1.61	721.38	6.43
35	3333	722.00	741.99	722.49	0.00	720.72	0.18	763.96	3.04	783.94	5.81

¹ Значком [#] отмечены вещества, входящие в обучающую выборку. Значком * отмечены вещества, данные о которых встречаются только в [8], достоверность их не известна.

² Фреоны кодируются ключами, в которых цифры соответствуют атомам, связанным с атомом углерода: $H \equiv 0$, $F \equiv 1$, $Cl \equiv 2$, $Br \equiv 3$.

³ Экспериментальные данные приводятся по [8, 10, 12, 25 – 28]. ⁴ Вычислено нами. Относительная погрешность расчетных значений определялась как $E = (\Delta F / F_{\min}) \cdot 100\%$, где

$$\Delta F = \begin{cases} F_{\min} - F_{\text{calc}}, & \text{если} & F_{\text{calc}} < F_{\min}, \\ 0, & \text{если} & F_{\min} < F_{\text{calc}} < F_{\max}, \\ F_{\text{calc}} - F_{\max}, & \text{если} & F_{\text{calc}} > F_{\min}. \end{cases}$$

⁵ Веса вершин и ребер, использованные в расчете:

 $a_{\rm H} = b_{\rm H} = 1$, $a_{\rm F} = 0.751$, $b_{\rm F} = 2.49$, $a_{\rm Cl} = 0.822$, $b_{\rm Cl} = 2.767$, $a_{\rm Br} = 0.872$, $b_{\rm Br} = 2.848$. Метод статистических испытаний при оценке дисперсии этих параметров привел к значениям $\Delta a = 0.003$, $\Delta b = 0.01$.

Имеет место линейная регрессия $T_c(R)$ с $k = 165.257, c = -464.331, r = 0.996, \sigma = 2.13.$

Таблица 2

Экспериментальные и расчетные значения *P_c*, *МПа* фреонов метанового ряда

\mathbb{N}^{0}	Ключ ²	Экспер	оимент.	Ме	етод Iкора ⁴	М	етод	Ha	аш иет ⁵
		Min	Мах	Р	<u>кова</u> Е.%	Р	Е.%	P Pac	E %
01#	0000	4.53	1.64	$\frac{1}{c}$	8.96	1 c 5 05	9.14	1 _c	0.13
01^{\pm}	0000	5.86	5.88	6.57	11.81	5.05	5.02	5.80	0.15
02	0001	5.00 6.49	5.00 6.68	6.76	1 1 1 9	6 50	0.00	636	2.00
03	0002	5 22	8.61	6.80	0.00	8.45	0.00	7.27	2.00
05	0003	5 39	5 84	6.83	18 29	5.12	5.10	5 58	0.00
06*	0012	6.00	6.00	6 50	8 30	5.62	6 35	5.92	1.56
07*	0012	6.11	6.11	6.43	5.21	6.86	12.34	6.43	5.25
08#	0022	6.08	6.17	6.61	7.22	5.91	2.84	6.28	1.89
09*	0023	6.32	6.32	6.24	1.31	6.81	7.76	6.80	7.57
10	0033	6.47	7.19	6.66	0.00	7.17	0.00	7.23	1.33
11#	0111	4.81	4.83	5.39	11.68	4.75	1.26	4.71	2.02
12#	0112	4.93	4.99	5.15	3.22	5.04	1.06	4.96	0.00
13*	0113	5.17	5.17	5.18	0.11	5.91	14.20	5.24	1.22
14#	0122	5.16	5.19	5.13	0.60	5.21	0.47	5.22	0.56
15*	0123	5.35	5.35	5.38	0.43	5.88	9.74	5.50	2.77
16*	0133	5.49	5.49	5.35	2.57	6.17	12.45	5.76	4.96
17#	0222	5.47	5.47	5.52	0.95	5.30	3.00	5.49	0.31
18*	0223	5.60	5.60	5.34	4.77	5.81	3.67	5.78	3.08
19*	0233	5.75	5.75	5.59	2.72	6.03	4.97	6.04	5.13
20*	0333	5.91	5.91	5.49	7.14	6.09	3.04	6.29	6.33
21#	1111	3.74	3.81	3.69	1.38	4.26	12.13	3.76	0.00
22#	1112	3.86	3.92	3.81	1.29	4.45	13.74	3.93	0.27
23#	1113	3.95	3.97	3.97	0.00	5.09	28.28	4.08	2.79
24#	1122	4.12	4.14	4.07	1.12	4.57	10.32	4.11	0.16
25#	1123	4.25	4.34	4.16	2.08	5.07	17.13	4.27	0.00
26#	1133	4.26	4.33	4.34	0.15	5.32	23.22	4.41	1.66
27#	1222	4.37	4.41	4.32	1.08	4.63	4.99	4.30	1.35
28*	1223	4.44	4.44	4.48	0.87	5.03	13.24	4.46	0.41
29#	1233	4.58	4.69	4.55	0.68	5.23	11.72	4.60	0.00
30#	1333	4.65	4.73	4.73	0.05	5.30	12.31	4.73	0.00
31#	2222	4.49	4.56	4.56	0.08	4.65	2.07	4.50	0.00
32#	2223	4.66	4.69	4.70	0.09	4.97	5.97	4.66	0.03
33#	2233	4.78	4.83	4.88	0.91	5.13	6.10	4.80	0.00
34#	2333	4.85	5.02	4.67	3.78	5.18	3.18	4.93	0.00
35#	3333	5.07	5.21	5.05	0.48	5.17	0.00	5.05	0.36

^{1,2,3,4} См. сноски к табл. 1.

⁵ Веса вершин и ребер, использованные в расчете:

 $a_{\rm H} = b_{\rm H} = 1$, $a_{\rm F} = 0.621$, $b_{\rm F} = 3.305$, $a_{\rm Cl} = 0.64$, $b_{\rm Cl} = 3.685$, $a_{\rm Br} = 0.62$, $b_{\rm Br} = 4.595$. Имеет место линейная регрессия $P_c(R)$ с k = 1.0672, c = 0.377, r = 0.995, $\sigma = 0.01_5$.

Таблица 3

Группы	E,%		Метод		Наши
		Сладкова-1	Сладкова-2	Лидерсона	расчеты
Группа А <i>n</i> = 18	$E_{\rm av}$	1.79	1.6	0.58	1.84
$E_{\rm exp} < 1 \%$	$E_{\rm max}$	5.24	4.89	1.55	3.74
Группа Б	$E_{\rm av}$	1.45	1.29	0.69	2.04
Bce $n = 35$	$E_{\rm max}$	5.24	4.89	3.04	6.43
Привлекаемые экспер. данные		T_b, ρ_b	T_{b}	T_{b}	_

Сравнение методов расчета *T_c* для галогенпроизводных метана

Таблица 4

Сравнение методов расчета *P_c* для галогенпроизводных метана

Группы	E,%	Me	етод	Наши
		Сладкова	Лидерсона	расчеты
Группа А $n = 7$	$E_{\rm av}$	6.20	7.57	1.05
$E_{\rm exp} < 1 \%$	$E_{\rm max}$	11.67	28.28	2.79
Группа Б $n = 16$	$E_{\rm av}$	2.50	7.74	0.83
$E_{\rm exp} < 3\%$	$E_{\rm max}$	11.67	28.28	2.79
Группа В	$E_{\rm av}$	3.09	6.90	1.53
Bce $n = 35$	$E_{\rm max}$	18.29	28.28	7.57
Привлекаемые		T_c	_	_
экспер. данные				

В предположении, что рассматриваемое свойство вещества F зависит линейно от ИП R, в чем на примере T_c и P_c мы уже убедились из приведенные выше регрессионных уравнений, получим:

$$F^{(l)} = k_1 S_1^{(l)} + k_2 S_2^{(l)} + k_3 S_3^{(l)} + C, \quad k_1 = k a_C, \quad k_2 = k b_C, \quad k_3 = k.$$
(38)

Таким образом, для нахождения параметров *a*_c и *b*_c достаточно воспользоваться стандартными программами линейного регрессионного анализа.

Для оценки устойчивости решения из 19 соединений с известными *T_c* и *P_c* 16 соединений выбирались для построения регрессионного уравнения, а остальные 3 оставались для контроля прогнозирующей способности.

Выполненные расчеты при 20 разных выборках опорных соединениях показали устойчивость искомых коэффициентов относительно выбора обучающих соединений. В дальнейшем из всех уравнений было выбрано для расчета параметров уравнение с наилучшими прогнозирующими и статистическими характеристиками. Результаты расчетов представлены в таблицах 5 и 6.

Таблица 5

\mathbb{N}_{2}^{1}	Ключ ²	Экспер.	Метод Сла	ідкова-2 ⁴	Метод Ли,	дерсена ⁴	Наш ра	асчет ⁵
		данные ³	T_{c}	<i>E</i> ,%	T_{c}	<i>E</i> ,%	T_{c}	<i>E</i> ,%
01#	111-112	352.9	368.6	4.37	353.2	0.08	358.5	1.51
02	111-122	418.6	434.5	3.79	418.6	0.00	415.1	0.83
03#	112-112	418.8	434.5	3.79	418.4	0.10	415.2	0.87
04#	112-122	487.0	501.2	2.86	485.2	0.37	477.4	1.98
05#	122-122	551.0	568.0	3.09	552.4	0.25	545.7	0.96
06#	111-111	292.8	308.6	3.90	293.8	0.34	307.0	4.86
07#	000-112	410.0	416.6	1.60	411.6	0.39	403.2	1.66
08#	002-022	602.0	606.3	0.72	601.6	0.07	633.1	5.17
09#	000-111	346.2	358.7	3.62	354.8	2.48	347.4	0.36
10	000-022	523.0	488.7	6.55	525.6	0.49	510.8	2.32
11#	002-002	561.0	527.5	5.97	561.1	0.02	572.4	2.04
12#	000-011	386.6	395.8	2.39	394.1	1.94	385.5	0.54
13#	000-003	503.8	492.7	2.21	506.9	0.62	475.9	5.53
14#	000-002	460.4	452.7	1.68	459.8	0.13	445.8	3.18
15#	000-001	375.3	358.6	4.44	378.7	0.91	384.4	2.43
16#	000-000	305.4	285.1	7.62	304.8	0.20	318.5	4.29
17#	113-123	563.0	572.5	1.69	565.7	0.48	552.0	1.96
18#	113-113	487.6	500.2	2.54	492.1	0.92	483.0	0.94
19 ⁶	003-003	583.0	592.0	1.54	-	-	(674.9)	(11.1)
		$E_{\rm av}$,%		3.49		0.54		2.30
		$E_{\rm max}$,%		7.62		2.48		5.53

Экспериментальные и расчетные значения Т_с, К фреонов этанового ряда

^{1,2,3,4} См. сноски к табл. 1. В литературных экспериментальных данных почти нет расхождений.

⁵ Расчет производился с параметрами $a_c = 4.012, b_c = -0.363$; дисперсии параметров: $\Delta a_c = 0.08, \Delta b_c = 0.02$. Остальные параметры – прежние (табл. 1). Имеет место линейная регрессия $T_c(R)$ с $k = 16.2816, c = -214.07, r = 0.992, \sigma = 2.01$.

⁶Экспериментальное значение T_c для этого соединения встречается только в [28]. Для него не известна T_b , и T_c по Лидерсену вычислить невозможно. Есть сомнения в надежности приведенного экспериментального значения. Оно в конечном итоге было исключено из окончательного расчета предлагаемым нами методом.

Обращает на себя внимание тот факт, что ИП хорошо описывает свойства изомеров, например, соединения с номерами 2, 3 и 10, 11 в таблицах 5 и 6. Эту закономерность можно исследовать в общем виде. Рассмотрим два изомера $CX_3 - CXY_2$ (1) и $CX_2Y - CX_2Y$ (2).

Для них

$$R_{1} = 3b_{X}^{2}a_{X}^{2}a_{Y}^{2} + 6b_{X}b_{Y}a_{X}^{3}a_{Y} + S,$$

$$R_{2} = 4b_{X}^{2}a_{X}^{2}a_{Y}^{2} + 4b_{X}b_{Y}a_{X}^{3}a_{Y} + b_{Y}^{2}a_{X}^{4} + S,$$

$$S = a_{C}(4b_{X}a_{X}^{3}a_{Y}^{2} + 2b_{Y}a_{X}^{4}a_{Y}) + b_{C}a_{X}^{4}a_{Y}^{2},$$

$$R_{2} - R_{1} = b_{X}^{2}a_{X}^{2}a_{Y}^{2} + b_{Y}^{2}a_{X}^{4} - 2b_{X}b_{Y}a_{X}^{3}a_{Y} = a_{X}^{2}(b_{X}a_{Y} - b_{Y}a_{X})^{2}.$$
(39)

Таблица 6

Экспериментальные и расчетные значения Р, МПа фреонов этанового ряда

Nº₁	Ключ ²	Экспер.	данные ³	Метод Ли	идерсена ⁴	Наш р	асчет ⁵
		Min	Max	P_{c}	Е,%	P_{c}	<i>E</i> ,%
01#	111-112	3.16	3.19	3.23	1.28	3.10	1.90
02	111-122	3.30		3.28	0.48	3.19	3.20
03#	112-112	2.26	3.33	3.28	0.00	3.19	3.18
04#	112-122	3.39	3.41	3.32	2.11	3.29	2.95
05#	122-122	3.33	3.41	3.34	0.00	3.40	0.00
06#	111-111	2.88	2.98	3.16	5.98	3.01	1.04
07#	000-112	4.12	4.14	4.26	3.06	4.13	0.00
08 ⁶	002-022	4.15		4.48	7.93	5.22	25.9
09#	000-111	3.76	4.11	4.05	0.00	3.98	0.00
10#	000-022	5.06		4.99	1.38	5.07	0.18
11#	002-002	5.37		4.87	9.22	5.68	5.83
12#	000-011	4.49	4.50	4.46	0.67	4.65	3.33
13#	000-003	6.23		6.77	8.65	5.85	5.58
14#	000-002	5.27	5.39	5.43	0.75	5.41	0.38
15#	000-001	4.72	5.02	4.86	0.00	5.13	2.19
16	000-000	4.88	4.93	4.83	0.99	4.94	0.20
17	113-123	3.52	4.06	3.69	0.00	3.47	1.40
18#	113-113	3.36	3.49	3.73	6.91	3.37	0.00
19 ⁶	003-003	7.14		5.92	17.0	6.62	7.19
		$\overline{E_{\mathrm{av}}}$,%	0		2.44		1.84
		$E_{\rm max}$, 9	%		9.22		5.83

1,2,3,4 См. сноски к табл. 1.

⁵ Расчет производился с параметрами $a_{\rm C} = 5.846, b_{\rm C} = 11.034$. Остальные параметры – прежние (табл. 2). Имеет место линейная регрессия $P_c(R)$ с k = 0.0662, c = 1.293.

⁶ Эти вещества исключены из рассмотрения. Упоминаются в литературе только один раз, достоверность их не известна. В обоих методах дают большую погрешность.

Таким образом, ИП для изомеров со структурой (2) всегда больше либо равен ИП для изомеров со структурой (1), равенство же выполняется при условии $b_x/b_y = a_x/a_y$. Это обстоятельство можно использовать для подбора параметров. Из рассмотренного случая следуют два вывода: 1) на этапе 1 после подтверждения возможности применения данного ТИ можно использовать особенности изомеров для получения дополнительных ограничений на параметры; 2) с помощью ИП можно описывать T_c и P_c , но нельзя описать V_c , поскольку при исследовании этого свойства, как будет видно из дальнейшего, наблюдается обратный эффект.

Вычисленные нами значения *T_c* и *P_c* для всех 210 фреонов этанового ряда приведены в [29].

П-9.5.4. Этап 4: Усложнение

Расчет T_c и P_c для галогенпроизводных пропана. Новые параметры не требуются. Если бы при усложнении молекулярной структуры потребовались бы новые параметры, то нужно лишь вернуться к этапу 3. Задача же в нашем случае состоит лишь в том, чтобы найти коэффициенты корреляционного уравнения и оценить его прогнозирующую способность. Если учесть, что для статистически значимого уравнения число веществ должно в 4 – 5 раз превосходить число параметров, то обучающая выборка должна содержать не менее 8 соединений.

В нашем распоряжении было всего 9 соединений с известными свойствами, но не известной достоверности. Все они были использованы для получения регрессионного уравнения для расчета T_c . Когда станут доступными более точные экспериментальные данные и для большего числа соединений, желательно уточнить регрессионное уравнение. Расхождения в литературных экспериментальных данных P_c и V_c для галогензамещанных пропана вообще не позволяют построить хоть сколько-нибудь достоверное уравнение. Результаты расчетов по T_c представлены в табл. 7.

Таблица 7

\mathbb{N}^{1}	Ключ ²	Экспер.	Метод Ли	дерсена ⁴	Наш ра	асчет5
		данные ³	T_{c}	Е,%	T_{c}	<i>E</i> ,%
01#	111-11-222	505.0	502.9	0.42	476.5	5.70
02#	111-12-112	451.0	447.7	0.73	431.5	4.31
03#	111-11-112	395.0	394.2	0.20	389.0	1.32
04#	111-11-111	345.0	343.6	0.41	352.3	2.11
05#	000-00-000	369.8	372.2	0.65	396.9	7.32
06 #6	000-11-111	380.1			407.3	7.15
07#	000-00-002	503.0	500.9	0.42	474.1	5.75
08#	002-02-002	651.0	650.6	0.06	666.7	2.42
09#	000-02-002	577.0	572.3	0.82	582.1	0.88
	E	,%		0.46		4.11
	E_{r}	,%		0.82		7.32

Экспериментальные и расчетные значения *T_c*, *K* фреонов пропанового ряда

^{1,2,3,4} См. сноски к табл. 1.

⁵ Расчет производился с такими же параметрами, как и для этановых фреонов.

⁶Для этого соединения не известна T_b и T_c по Лидерсену вычислить невозможно.

Вычисленные значения *T_c* для всех 2100 фреонов пропанового ряда приведены в [29].

П-9.6. Параметризация и расчет V_c фреонов

Критический объем зависит от структуры молекулы практически аддитивно, что и обусловило появление большого числа инкрементных методов расчета [11]. При этом, естественно, ни один из них не отражает существенной разницы между значениями V_c для изомеров CH₂Cl-CH₂Cl и CH₃-CHCl₂, которые составляют соответственно 220 и 240 см³·моль⁻¹. Выше было показано, что ИП также не отражает это различие между изомерами. Поэтому велся поиск других ТИ.

Обратимся к введенному нами индексу ${}^{2}\tilde{\chi}$ (1). Поскольку для галогензамещенных алканов в индексе ${}^{2}\tilde{\chi}$ параметры вершин и ребер встречаются только в виде произведения, то их можно заменить одним параметром. Рассмотрим изомеры $CX_{3} - CXY_{2}$ (1) и $CX_{2}Y - CX_{2}Y$ (2). Для них при $x = a_{x}b_{x}$, $y = a_{y}b_{y}$:

$${}^{2}\tilde{\chi}_{1} = a_{\rm C}^{2}b_{\rm C}(4x+2y) + a_{\rm C}(y^{2}+2xy+3x^{2}),$$

$${}^{2}\tilde{\chi}_{2} = a_{\rm C}^{2}b_{\rm C}(4x+2y) + a_{\rm C}(2x^{2}+4xy),$$

$${}^{2}\tilde{\chi}_{1} - {}^{2}\tilde{\chi}_{2} = a_{\rm C}(y^{2}-2xy+x^{2}) = a_{\rm C}(x-y)^{2} \ge 0.$$
(40)

Казалось бы, этот индекс мог бы подойти для описания V_c , однако, равенство, которое имеет место для соединений $CF_3 - CFCl_2$ и $CF_2Cl - CF_2Cl$, может выполняться только при X = Y, что неприемлемо. Поэтому возникла потребность модифицировать индекс ${}^2\tilde{\chi}$ по аналогии с ИП, т.е. умножать произведение весов смежных ребер не на веса вершин, которые они покрывают, а на веса вершин, не покрываемых этими ребрами, а именно:

$${}^{2}\tilde{\tilde{\chi}} = \sum_{i,j,k-adj} (b_{ij}b_{jk} \prod_{\substack{l=1\\l\neq i,j,k}}^{p} a_{l}) = \prod_{i=1}^{p} a_{i} \cdot \sum_{i,j,k-adj} \frac{b_{ij}b_{jk}}{a_{i}a_{j}a_{k}},$$
(41)

где *p* – число вершин, а суммирование ведется по всем парам смежных ребер. Для этого инварианта

$${}^{2}\tilde{\tilde{\chi}}_{1} - {}^{2}\tilde{\tilde{\chi}}_{2} = a_{\rm C}a_{\rm X}^{2}(b_{\rm X}a_{\rm Y} - b_{\rm Y}a_{\rm X})^{2}, \qquad (42)$$

т.е. равенство выполняется при условии $b_X/b_Y = a_X/a_Y$. Отсюда получаем дополнительные зависимости между параметрами:

$$\frac{b_{\rm Cl}}{b_{\rm F}} = \frac{a_{\rm Cl}}{a_{\rm F}}, \quad \frac{b_{\rm Cl}}{b_{\rm H}} \neq \frac{a_{\rm Cl}}{a_{\rm H}}.$$
 (43)

Таблица 8

Экспериментальные и расчетные значения V_c , $cm^3 \cdot monb^{-1}$ фреонов метанового

ряда.											
№¹	Ключ ²	Экспер	имент.	Мет	од	Мет	од	Мет	од	Наш ра	счет ⁵
		данн	ные ³	Сладк	ова4	Воуле	eca ⁴	Лидер	сена4		
		Min	Max	V_{c}	<i>E</i> ,%	V_c	<i>E</i> ,%	V_{c}	<i>E</i> ,%	V_c	<i>E</i> ,%
01#	0000	98.40	117.42	101.97	0.00	91.00	7.52	93.00	3.46	98.13	0.28
02#	0001	105.00	114.97	109.85	0.00	107.10	0.00	113.00	0.00	110.13	0.00
03#	0002	126.51	139.10	136.09	0.00	137.50	0.00	144.00	3.87	138.57	0.00
04#	0003	150.00	158.76	149.56	0.29	156.00	0.00	165.00	4.16	149.91	0.06
05#	0011	121.00	122.40	120.36	0.53	123.20	0.66	131.00	7.11	121.77	0.00
06*	0012	154.41	154.41	149.22	3.36	153.60	0.52	162.00	4.92	150.92	2.26
07*	0013	167.63	167.63	164.80	1.69	172.10	2.67	183.00	9.17	164.45	1.90
08#	0022	178.00	183.00	172.90	2.86	184.00	0.56	193.00	5.62	181.89	0/00
09#	0023	193.33	194.00	198.26	2.20	202.50	2.40	214.00	10.35	196.31	1.19
10#	0033	206.83	208.00	201.36	2.64	221.00	6.29	235.00	13.05	205.81	0.49
11#	0111	132.40	133.10	130.86	1.16	139.30	4.68	145.00	8.99	133.00	0.00
12#	0112	160.96	168.20	164.95	0.00	169.70	0.93	176.00	4.85	162.83	0.00
13*	0113	174.54	174.54	183.60	5.19	188.20	7.83	197.00	12.87	178.65	2.35
14#	0122	194.00	197.00	202.20	1.60	200.10	1.60	207.00	5.15	194.52	0.00
15*	0123	208.47	208.47	216.35	3.78	218.60	4.86	228.00	9.37	211.37	1.39
16*	0133	217.86	217.86	231.66	6.33	237.10	8.83	249.00	14.29	223.27	2.48
17#	0222	216.11	239.00	222.22	0.00	230.50	0.00	238.00	0.00	228.18	0.00
18	0223	230.03	240.03	248.92	3.87	249.00	3.90	259.00	8.25	246.14	2.65
19*	0233	250.94	250.94	264.31	5.33	267.50	6.60	280.00	11.58	258.83	3.14
20	0333	255.59	263.00	280.33	6.78	286.00	9.00	301.00	14.87	265.87	1.12
21#	1111	139.75	147.00	146.60	0.00	155.40	6.01	153.00	4.29	143.78	0.00
22#	1112	174.42	180.00	185.61	3.21	185.80	3.33	184.00	2.29	174.27	0.09
23#	1113	193.39	200.00	200.09	0.05	204.30	2.22	205.00	2.59	192.44	0.49
24#	1122	208.79	217.10	219.46	1.13	216.20	0.00	215.00	0.00	206.65	1/03
25#	1123	223.16	232.00	236.96	2.22	234.70	1.21	236.00	1.79	226.00	0.00
26#	1133	242.16	253.00	250.69	0.00	253.20	0.08	257.00	1.65	240.44	0.71
27#	1222	240.91	248.00	251.03	1.26	246.60	0.00	246.00	0.00	241.04	0.00
28*	1223	258.30	258.30	264.91	2.56	265.10	2.63	267.00	3.37	261.66	1.30
29#	1233	272.09	283.00	282.62	0.00	283.60	0.22	288.00	1.84	277.05	0.00
30	1333	283.51	300.00	291.88	0.00	302.10	0.74	309.00	3.17	286.63	0.00
31	2222	276.00	277.65	279.95	0.83	277.00	0.00	277.00	0.00	277.58	0.00
32	2223	284.54	291.00	292.83	0.64	295.50	1.58	298.00	2.46	299.53	3.00
33	2233	305.94	311.00	311.55	0.18	314.00	0.98	319.00	2.61	315.95	1.62
34	2333	296.73	324.00	327.58	1.21	332.50	2.86	340.00	5.39	326.18	0.74
35	3333	314.16	330.00	332.30	0.73	351.00	6.68	361.00	9.87	330.12	0.04
$E_{\rm av}$,%					1.79		2.78		5.52		0.82
		E .9	6		6.78		9.00		14.9		3.14
		max '									

1,2,3,4 См. сноски к табл. 1.

⁵ Веса вершин и ребер, использованные в расчете: $a_{\rm H} = b_{\rm H} = 1$, $a_{\rm F} = 1.095$, $b_{\rm F} = 0.959$, $a_{\rm Cl} = 1.165$, $b_{\rm Cl} = 1.017$, $a_{\rm Br} = 1.003$, $b_{\rm Br} = 1.23$; дисперсии параметров: $\Delta a = \Delta b = 0.003$. Имеет место линейная регрессия $V_c(R)$ с k = 74.075, c = -346.32, r = 0.999, $\sigma = 0.33$.

Таблица 9

Экспериментальные и расчетные значения V_c, см³ моль⁻¹ фреонов этанового ряда

\mathbb{N}^{0}	Ключ ²	Экспер. Д	цанные ³	Метод В	оулеса ⁴	Метод Ј	Тидерсена ⁴	Наш ра	асчет5
		Min	Max	V_{c}	<i>E</i> ,%	V_{c}	<i>E</i> ,%	V_{c}	<i>E</i> ,%
01#	111-112	231.5	252	275.0	9.13	261	3.57	257.3	2.09
02#	111-122	294		305.4	3.88	292	0.68	290.6	1.16
03#	112-112	274.4	294	305.4	3.88	292	0.00	290.6	0.00
04#	112-122	304	325	335.8	3.32	323	0.00	326.0	0.30
05#	122-122	358.4	370	366.2	0.00	354	1.23	363.6	0.00
06#	111-111	216.3	225	244.6	8.58	230	2.22	225.9	0.42
07#	000-112	219	233	226.7	0.00	221	0.00	226.0	0.00
08#	002-022	294		287.5	2.21	293	0.34	284.4	3.26
09#	000-111	187.3	221	196.3	0.00	190	0.00	196.3	0.00
10	000-022	240		241.0	0.42	244	1.67	239.4	0.25
11#	002-002	220		241.0	9.54	248	12.7	236.6	7.53
12#	000-011	181	188	180.0	0.55	182	0.00	180.3	0.41
13#	000-003	215		213.0	0.93	220	2.33	199.1	7.38
14	000-002	191.4	199	194.5	0.00	199	0.00	193.4	0.00
15	000-001	158	169	164.1	0.00	168	0.00	165.6	0.00
16#	000-000	140.6	148	148.0	0.00	150	1.35	152.1	2.78
17 [#]	113-123	346.6		372.8	7.54	365	5.29	353.3	1.94
18#	113-113	319	328	342.4	4.39	334	1.83	316.2	0.87
19#	003-003	242	260	278.0	6.92	290	11.5	246.4	0.00
E _{av} ,%					3.30		2.66		1.49
		$E_{ m max}$,%			9.54		12.73		7.54

^{1,2,3,4} См. сноски к табл. 1.

⁵ Расчет производился с параметрами $a_{\rm C} = 1.75$, $b_{\rm C} = -0.781$; дисперсии параметров: $\Delta a_{\rm C} = 0.06, \ \Delta b_{\rm C} = 0.05.$ Остальные параметры – прежние (табл. 8).

Имеет место линейная регрессия $V_c(R)$ с $k = 74.075, c = -278.75, r = 0.994, \sigma = 1.38.$

Расчеты V_c выполнялись аналогично расчетам T_c и P_c с учетом (43). Отметим, что на этапе 3 (этановый ряд) для вычисления $a_{\rm c}$ и $b_{\rm c}$ использовалось выражение

$${}^{2}\tilde{\tilde{\chi}}(CX_{1}X_{2}X_{3} - CX_{4}X_{5}X_{6}) = a_{C}\prod_{i=1}^{6}a_{i} \cdot \sum_{i,C,j-adj}\frac{b_{i}}{a_{i}}\frac{b_{j}}{a_{j}} + b_{C}\prod_{i=1}^{6}a_{i} \cdot \sum_{i=1}^{6}\frac{b_{i}}{a_{i}}.$$
(44)

Результаты вычисления V_c для фреонов метанового и этанового рядов приведены таблицах 8 и 9.

Вычисленные нами значения V для всех 210 фреонов этанового ряда приведены в [29].

П-9.7. Выводы

Для количественного описания критических свойств фреонов предложен новый подход класса «структура – свойство» с использованием инвариантов взвешенных графов. Он предполагает зависимость топологического описания молекул от изучаемого свойства. Сформулирован общий принцип построения топологических инвариантов взвешенных графов для корреляций «структура – свойство», а именно:

$$I(G) = \sum_{G_i} \left[\left(\prod_{j \in E_i} b_j \right) \left(\prod_{k \in V_i} a_k \right) \right],$$

где G_i – всевозможные подграфы графа G заданного вида, E_i – множество ребер с весами b_i

этих подграфов, V'_i – множество вершин с весами a_k подграфов $G'_i = G \setminus G_i$. В соответствии с этим принципом предложены два новых инварианта ${}^2\tilde{\chi}$ (1) и R(G) (10), примененных для расчета критических свойств T_c, P_c и V_c фреонов метанового, этанового и пропанового рядов.

Предложенный нами подход в отличие от инкрементных методов Лидерсена Сладкова не предполагает привлечения каких-либо И экспериментальных данных и закономерностей для расчета критических свойств. Для P_c и V_c получены заметно лучшие результаты по сравнению с методами Лидерсена, Воулеса и Сладкова. Что касается Т_с, то результаты прогноза вполне приемлемы, учитывая также то обстоятельство, что не использовалось, как в других методах, опорное экспериментальное значение T_{h} . Особо подчеркнем, что предлагаемый нами подход обеспечивает статистически надежную линейную зависимость всех критических свойств фреонов от значения индекса парасочетаний соответствующего молекулярного графа.

Вычислены более 2.5 тысяч ранее неизвестных значений критических свойств фреонов.

663

Литература

- 1. Т. Н. Нестерова, И. А. Нестеров. *Критические температуры и давления органических соединений. Анализ состояния базы данных и развитие методов прогнозирования*, Самара: Самарский НЦ РАН, 2009.
- 2. B. D. Gute, S. C. Basak, D. Mills *et al.* Tailored Similarity Spaces for the. Prediction of Physicochemical Properties, *Internet Electron. J. Mol. Des.*, v. 1: 8, 374 387 (2002).
- S. Gupta, M. Singh, A. K. Madan. Eccentric distance sum: A novel graph invariant for predicting biological and physical properties, *J. Math. Analys. Appl.*, v. 275: 1, 386 – 401 (2002).
- 4. Л. Ловас, М. Пламмер. Прикладные задачи теории графов. Теория парасочетаний в математике, физике, химии. Москва: Мир, 1998.
- 5. S. C. Basak, G. J. Niemi. A graph-theoretical approach to predicting molecular properties, *Math. Comput. Model.* v. 14, 511 516 (1990).
- 6. Р. Кинг (ред.). *Химические приложения топологии и теории графов.* Москва: Мир, 1987.
- 7. A. T. Balaban. Chemical Graphs. XXXIV. Five New Topological Indices for the Branching of Tree-like Graphs, *Theor. chim. Acta.*, v. 53: 4, 355 375 (1979).
- И. И. Перельштейн, У. Б. Парушин. Термодинамические и теплофизические свойства рабочих веществ холодильных машин и тепловых насосов. Москва: Легкая промышленность. 1984.
- 9. М. М. Викторов. Методы вычисления физико-химических величин и прикладные расчеты. Ленинград: Химия, 1977.
- 10. Р. Рид, Дж. Праусниц, Т. Шервуд. Свойства газов и жидкостей. Ленинград: Химия, 1982.
- 11. Л. П. Филиппов, Е. В. Воробьева, А. Д. Охоцимский и др. В сб. М. И. Шахпаронов, Л. П. Филиппов (ред.). Исследование строения, теплового движения и свойств жидкостей. Москва: Изд-во МГУ, 1986.
- 12. А. Г. Морачевский, И. Б. Сладков. *Физико-химические свойства молекулярных неорганических соединений*. Ленинград: Химия. 1987.
- D. V. S. Jain, S. Singh, V. Gombar. Correlation Between Topological Features and Physicochemical Properties of Molecules, *Proc. Indian Acad. Sci.* (*Chem. Sci.*), v. 93: 6, 927 – 945 (1984).
- 14. Ю. А. Кругляк, И. В. Передунова., VII Всесоюзная конференция «Использование вычислительных машин в химических исследованиях и спектроскопии молекул». Тезисы докладов. Рига, 1986.
- 15. J. V. Knop, N. Trinajstic. Chemical Graph Theory. 11. On the Graph Theoretical Polynomials of Conjugated Structures, *Intern. J. Quantum Chem.*, v. 14S, 503 520 (1980).
- 16. C. D. Godsil, I. Gutman. Some Remarks on the Matching Polynomial and Its Zeros, *Croat. Chem. Acta*, v. 54: 1, 53 59 (1981).
- 17. C. D. Godsil. Matchings and Walks in Graphs, J. Graph Theory, v. 5, 285 297 (1981).
- H. Hosoya, N. Ohkami. Operator Technique for Obtaining the Recursion Formulae of Characteristic and Matching Polynomials as Applied to Polyhex Graphs, *J. Comput. Chem.*, v. 4: 4, 585 – 593 (1983).
- H. Hosoya. Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons, *Bull. Chem. Soc. Japan*, v. 44: 9, 2332 – 2339 (1971).
- 20. T. J. Farrel. An Introduction to Matching Polynomials, J. Combinatorial Theory, v. B27, 75 – 86 (1979).

- 21. I. Gutman, A. Shalabi. Topological Properties of Benzoid Systems. XXIX. On Hosoya's Topological Index, Z. Naturforsch., v. 39A, 797 799 (1984).
- I. Gutman, M. Milun, N. Trinajstic. Graph Theory and Molecular Orbitals, 19. Nonparametric Resonance Energies of Arbitrary Cojugated Systems, *J. Amer. Chem. Soc.*, v. 99: 6, 1692 – 1703 (1977).
- 23. Ф. Харари. Теория графов. Москва: Мир. 1973.
- 24. И. В. Передунова, Ю. А. Кругляк. Пакет программ для установления связи «структура свойство» гетероатомных молекул с использованием инвариантов взвешенных графов, *Ж. структ. хим.*, т. 29: 1, 174 – 175 (1988).
- 25. С. Н. Богданов, О. П. Иванов, Ф. В. Куприянова. *Холодильная техника. Свойства* веществ. Справочник. Москва: Агропромиздат. 1985.
- 26. В. Ф. Томановская, Б. Е. Колотова. *Фреоны. Свойства и применение*. Ленинград: Химия. 1970.
- 27. A. P. Kudchadker, G. H. Alani, B. J. Zwolinski. The Critical Constants of Organic Substances, *Chem. Rev.*, v. 68, 659 735 (1968).
- 28. Л. П. Филиппов. Подобие свойств веществ. Москва: Изд-во МГУ, 1978.
- 29. И. В. Передунова. Инварианты взвешенных графов в расчетах критических свойств алканов, фреонов и их Si-аналогов. Канд. дисс. НИОХ АН СССР, Новосибирск. 1990: www.tekhnosfera.com/invarianty-vzveshennyh-grafov-v-raschetah-kriticheskih-svoystvalkanov-freonov-i-ih-st-analogov.

Ю. А. Кругляк Профессор, д.х.н. Действительный член Академии наук высшей школы Украины по отделению физики

Научные интересы:

Квантовая химия Физика молекул Наноэлектроника

Основные результаты в области:

Методы самосогласованного поля Учет корреляции электронов Расчет молекулярных систем *ab initio* Ион-молекулярные взаимодействия Молекулярная и наноэлектроника Прогнозирование свойств веществ

